Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 578(7793): 66-69, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025016

RESUMO

The discovery of superconductivity at 200 kelvin in the hydrogen sulfide system at high pressures1 demonstrated the potential of hydrogen-rich materials as high-temperature superconductors. Recent theoretical predictions of rare-earth hydrides with hydrogen cages2,3 and the subsequent synthesis of LaH10 with a superconducting critical temperature (Tc) of 250 kelvin4,5 have placed these materials on the verge of achieving the long-standing goal of room-temperature superconductivity. Electrical and X-ray diffraction measurements have revealed a weakly pressure-dependent Tc for LaH10 between 137 and 218 gigapascals in a structure that has a face-centred cubic arrangement of lanthanum atoms5. Here we show that quantum atomic fluctuations stabilize a highly symmetrical [Formula: see text] crystal structure over this pressure range. The structure is consistent with experimental findings and has a very large electron-phonon coupling constant of 3.5. Although ab initio classical calculations predict that this [Formula: see text] structure undergoes distortion at pressures below 230 gigapascals2,3, yielding a complex energy landscape, the inclusion of quantum effects suggests that it is the true ground-state structure. The agreement between the calculated and experimental Tc values further indicates that this phase is responsible for the superconductivity observed at 250 kelvin. The relevance of quantum fluctuations calls into question many of the crystal structure predictions that have been made for hydrides within a classical approach and that currently guide the experimental quest for room-temperature superconductivity6-8. Furthermore, we find that quantum effects are crucial for the stabilization of solids with high electron-phonon coupling constants that could otherwise be destabilized by the large electron-phonon interaction9, thus reducing the pressures required for their synthesis.

2.
Nature ; 573(7773): 247-250, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31406319

RESUMO

Propagating atomic vibrational waves-phonons-determine important thermal, mechanical, optoelectronic and transport characteristics of materials. Thus a knowledge of phonon dispersion (that is, the dependence of vibrational energy on momentum) is a key part of our understanding and optimization of a material's behaviour. However, the phonon dispersion of a free-standing monolayer of a two-dimensional material such as graphene, and its local variations, have remained elusive for the past decade because of the experimental limitations of vibrational spectroscopy. Even though electron energy loss spectroscopy (EELS) in transmission has recently been shown to probe local vibrational charge responses1-4, such studies are still limited by momentum space integration due to the focused beam geometry; they are also restricted to polar materials such as boron nitride or oxides1-4, in which huge signals induced by strong dipole moments are present. On the other hand, measurements on graphene performed by inelastic X-ray (neutron) scattering spectroscopy5-7 or EELS in reflection8,9 do not have any spatial resolution and require large microcrystals. Here we provide a new pathway to determine phonon dispersions down to the scale of an individual free-standing graphene monolayer by mapping the distinct vibrational modes for a large momentum transfer. The measured scattering intensities are accurately reproduced and interpreted with density functional perturbation theory10. Additionally, a nanometre-scale mapping of selected momentum-resolved vibrational modes using graphene nanoribbon structures has enabled us to spatially disentangle bulk, edge and surface vibrations. Our results are a proof-of-principle demonstration of the feasibility of studying local vibrational modes in two-dimensional monolayer materials at the nanometre scale.

3.
Nano Lett ; 24(6): 1867-1873, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38306119

RESUMO

Few-layer graphene possesses low-energy carriers that behave as massive Fermions, exhibiting intriguing properties in both transport and light scattering experiments. Lowering the excitation energy of resonance Raman spectroscopy down to 1.17 eV, we target these massive quasiparticles in the split bands close to the K point. The low excitation energy weakens some of the Raman processes that are resonant in the visible, and induces a clearer frequency-separation of the substructures of the resonance 2D peak in bi- and trilayer samples. We follow the excitation-energy dependence of the intensity of each substructure, and comparing experimental measurements on bilayer graphene with ab initio theoretical calculations, we trace back such modifications on the joint effects of probing the electronic dispersion close to the band splitting and enhancement of electron-phonon matrix elements.

4.
Nano Lett ; 23(24): 11835-11841, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38088831

RESUMO

In this work, we perform electron energy-loss spectroscopy (EELS) of freestanding graphene with high energy and momentum resolution to disentangle the quasielastic scattering from the excitation gap of Dirac electrons close to the optical limit. We show the importance of many-body effects on electronic excitations at finite transferred momentum by comparing measured EELS to ab initio calculations at increasing levels of theory. Quasi-particle corrections and excitonic effects are addressed within the GW approximation and the Bethe-Salpeter equation, respectively. Both effects are essential in the description of the EEL spectra to obtain a quantitative agreement with experiments, with the position, dispersion, and shape of both the excitation gap and the π plasmon being significantly affected by excitonic effects.

5.
Phys Rev Lett ; 130(25): 256901, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37418733

RESUMO

We report on resonance Raman spectroscopy measurements with excitation photon energy down to 1.16 eV on graphene, to study how low-energy carriers interact with lattice vibrations. Thanks to the excitation energy close to the Dirac point at K, we unveil a giant increase of the intensity ratio between the double-resonant 2D and 2D^{'} peaks with respect to that measured in graphite. Comparing with fully ab initio theoretical calculations, we conclude that the observation is explained by an enhanced, momentum-dependent coupling between electrons and Brillouin zone-boundary optical phonons. This finding applies to two-dimensional Dirac systems and has important consequences for the modeling of transport in graphene devices operating at room temperature.


Assuntos
Grafite , Análise Espectral Raman , Análise Espectral Raman/métodos , Grafite/química , Fônons , Vibração , Elétrons
6.
Nano Lett ; 22(13): 5094-5099, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35715214

RESUMO

Conventionally, magnetism arises from the strong exchange interaction among the magnetic moments of d- or f-shell electrons. It can also emerge in perfect lattices from nonmagnetic elements, such as that exemplified by the Stoner criterion. Here we report tunable magnetism in suspended rhombohedral-stacked few-layer graphene (r-FLG) devices with flat bands. At small doping levels (n ∼ 1011 cm-2), we observe prominent conductance hysteresis and giant magnetoconductance that exceeds 1000% as a function of magnetic fields. Both phenomena are tunable by density and temperature and disappear at n > 1012 cm-2 or T > 5 K. These results are confirmed by first-principles calculations, which indicate the formation of a half-metallic state in doped r-FLG, in which the magnetization is tunable by electric field. Our combined experimental and theoretical work demonstrate that magnetism and spin polarization, arising from the strong electronic interactions in flat bands, emerge in a system composed entirely of carbon atoms.

7.
Phys Rev Lett ; 129(18): 185902, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36374700

RESUMO

We study the effect of doping on the electron-phonon interaction and on the phonon frequencies in doped semiconductors, taking into account the screening in the presence of free carriers at finite temperature. We study the impact of screening on the Fröhlich-like vertex and on the long-range components of the dynamical matrix, going beyond the state-of-the-art description for undoped crystals, thanks to the development of a computational method based on maximally localized Wannier functions. We apply our approach to cubic silicon carbide, where in the presence of doping the Fröhlich coupling and the longitudinal-transverse phonon splitting are strongly reduced, thereby influencing observable properties such as the electronic lifetime.

8.
Nature ; 532(7597): 81-4, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27018657

RESUMO

The quantum nature of the proton can crucially affect the structural and physical properties of hydrogen compounds. For example, in the high-pressure phases of H2O, quantum proton fluctuations lead to symmetrization of the hydrogen bond and reduce the boundary between asymmetric and symmetric structures in the phase diagram by 30 gigapascals (ref. 3). Here we show that an analogous quantum symmetrization occurs in the recently discovered sulfur hydride superconductor with a superconducting transition temperature Tc of 203 kelvin at 155 gigapascals--the highest Tc reported for any superconductor so far. Superconductivity occurs via the formation of a compound with chemical formula H3S (sulfur trihydride) with sulfur atoms arranged on a body-centred cubic lattice. If the hydrogen atoms are treated as classical particles, then for pressures greater than about 175 gigapascals they are predicted to sit exactly halfway between two sulfur atoms in a structure with Im3m symmetry. At lower pressures, the hydrogen atoms move to an off-centre position, forming a short H-S covalent bond and a longer H···S hydrogen bond in a structure with R3m symmetry. X-ray diffraction experiments confirm the H3S stoichiometry and the sulfur lattice sites, but were unable to discriminate between the two phases. Ab initio density-functional-theory calculations show that quantum nuclear motion lowers the symmetrization pressure by 72 gigapascals for H3S and by 60 gigapascals for D3S. Consequently, we predict that the Im3m phase dominates the pressure range within which the high Tc was measured. The observed pressure dependence of Tc is accurately reproduced in our calculations for the phase, but not for the R3m phase. Therefore, the quantum nature of the proton fundamentally changes the superconducting phase diagram of H3S.

9.
Phys Rev Lett ; 126(22): 225703, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34152164

RESUMO

We show that in noncollinear magnetic molecules, nonadiabatic (dynamical) effects due to the electron-vibron coupling are time-reversal symmetry breaking interactions for the vibrational field. Because the electronic wave function cannot be chosen as real in these molecules, a nonzero geometric vector potential (Berry connection) arises. As a result, an intrinsic nonzero vibrational angular momentum occurs even for nondegenerate modes and in the absence of external probes. The vibronic modes can then be seen as elementary quantum particles carrying a sizeable angular momentum. As a proof of concept, we demonstrate the magnitude of this topological effect by performing nonadiabatic first principles calculations on platinum clusters and by showing that these molecules host sizeable intrinsic phonon angular momenta comparable to the orbital electronic ones in itinerant ferromagnets.

10.
Neuroendocrinology ; 111(5): 465-474, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32097935

RESUMO

INTRODUCTION: A comprehensive characterization of the tumour microenvironment is lacking in neuroendocrine tumours (NETs), where programmed cell death-1 receptor-ligand (PD-1/PD-L1) inhibitors are undergoing efficacy testing. OBJECTIVE: We investigated drivers of cancer-related immunosuppression across NETs of various sites and grades using multi-parameter immunohistochemistry and targeted transcriptomic profiling. METHODS: Tissue microarrays (n = 102) were stained for PD-L1 and 2 and indoleamine deoxygenase-1 (IDO-1) and evaluated in relationship to functional characteristics of tumour-infiltrating T-lymphocytes (TILs) and biomarkers of hypoxia/angiogenesis. PD-L1 expression was tested in circulating tumour cells (CTCs, n = 12) to evaluate its relationship with metastatic dissemination. RESULTS: PD-L1 expression was highest in lung NETs (n = 30, p = 0.007), whereas PD-L2 was highest in pancreatic NETs (n = 53, p < 0.001) with no correlation with grade or hypoxia/angiogenesis. PD-L1+ NETs (n = 26, 25%) had greater CD4+/FOXP3+ and CD8+/PD1+ TILs (p < 0.001) and necrosis (p = 0.02). CD4+/FOXP3+ infiltrate had the highest PD-L1/IDO-1 co-expressing tumours (p = 0.006). Grade 3 well-differentiated NETs had lower CD4+/FOXP3+ and CD8+/PD1+ TIL density (p < 0.001), and NanoString immune profiling revealed enrichment of macrophage-related transcripts in cases with poorer prognosis. We identified PD-L1(+) CTC subpopulations in 75% of evaluated patients (n = 12). CONCLUSIONS: PD-L1 expression correlates with T-cell exhaustion independent of tumour hypoxia and is enhanced in a subpopulation of CTCs, suggesting its relevance to the progression of NETs. These findings support a potential therapeutic role for PD-L1 inhibitors in a subset of NETs.


Assuntos
Antígeno B7-H1/metabolismo , Células Neoplásicas Circulantes/metabolismo , Tumores Neuroendócrinos/imunologia , Tumores Neuroendócrinos/metabolismo , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T , Linhagem Celular Tumoral , Humanos
11.
Liver Int ; 41(1): 192-203, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098208

RESUMO

BACKGROUND & AIMS: Tumour mutational burden (TMB) predicts improved response and survival to immunotherapy. In this pilot study, we optimized targeted next-generation sequencing (tNGS) to estimate TMB in hepatocellular carcinoma (HCC). METHODS: We sequenced 48 non-paired samples (21 fresh-frozen [FF] and 27 paraffin-embedded [FFPE]), among which 11 FFPE samples were pretreated with uracil-DNA glycosylase (UDG). Thirty samples satisfied post-sequencing quality control. High/low TMB was defined by median number of mutations/Mb (Mut/Mb), across different minimum allele frequency (MAF) thresholds (≥0.05, ≥0.1 and ≥0.2). RESULTS: Eligible patients (n = 29) were cirrhotic (84%) with TNM stage I-II HCC (75%). FFPE samples had higher TMB (median 958.39 vs 2.51 Mut/Mb, P < .0001), estimated deamination counts (median 1335.50 vs 0, P < .0001) and C > T transitions at CpG sites (median 60.3% vs 9.1%, P = .002) compared to FF. UDG-treated samples had lower TMB (median 4019.92 vs 353 Mut/Mb, P = .041) and deamination counts (median 6393.5 vs 328.5, P = .041) vs untreated FFPE. At 0.2 MAF threshold with UDG treatment, median TMB was 5.48 (range 1.68-16.07) and did not correlate with salient pathologic features of HCC, including survival. CONCLUSION: While tNGS on fresh HCC samples appears to be the optimal source of tumour DNA, the low median TMB values observed may limit the role of TMB as a predictor of response to immunotherapy in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Hepáticas/genética , Mutação , Projetos Piloto
12.
J Chem Phys ; 155(18): 184502, 2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34773945

RESUMO

Water ice is a unique material presenting intriguing physical properties, such as negative thermal expansion and anomalous volume isotope effect (VIE). They arise from the interplay between weak hydrogen bonds and nuclear quantum fluctuations, making theoretical calculations challenging. Here, we employ the stochastic self-consistent harmonic approximation to investigate how thermal and quantum fluctuations affect the physical properties of ice XI with ab initio accuracy. Regarding the anomalous VIE, our work reveals that quantum effects on hydrogen are so strong to be in a nonlinear regime: When progressively increasing the mass of hydrogen from protium to infinity (classical limit), the volume first expands and then contracts, with a maximum slightly above the mass of tritium. We observe an anharmonic renormalization of about 10% in the bending and stretching phonon frequencies probed in IR and Raman experiments. For the first time, we report an accurate comparison of the low-energy phonon dispersion with the experimental data, possible only thanks to high-level accuracy in the electronic correlation and nuclear quantum and thermal fluctuations, paving the way for the study of thermal transport in ice from first-principles and the simulation of ice under pressure.

13.
Nano Lett ; 20(7): 5017-5023, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32525317

RESUMO

The discovery of superconductivity and correlated electronic states in the flat bands of twisted bilayer graphene has raised a lot of excitement. Flat bands also occur in multilayer graphene flakes that present rhombohedral (ABC) stacking order on many consecutive layers. Although Bernal-stacked (AB) graphene is more stable, long-range ABC-ordered flakes involving up to 50 layers have been surprisingly observed in natural samples. Here, we present a microscopic atomistic model, based on first-principles density functional theory calculations, that demonstrates how shear stress can produce long-range ABC order. A stress-angle phase diagram shows under which conditions ABC-stacked graphene can be obtained, providing an experimental guide for its synthesis.

14.
Nano Lett ; 20(7): 4809-4815, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32496779

RESUMO

Low-dimensional systems with a vanishing band gap and a large electron-hole interaction have been proposed to be unstable toward exciton formation. As the exciton binding energy increases in low dimension, conventional wisdom suggests that excitonic insulators should be more stable in 2D than in 3D. Here we study the effects of the electron-hole interaction and anharmonicity in single-layer TiSe2. We find that, contrary to the bulk case and to the generally accepted picture, in single-layer TiSe2, the electron-hole exchange interaction is much smaller in 2D than in 3D and it has weak effects on phonon spectra. By calculating anharmonic phonon spectra within the stochastic self-consistent harmonic approximation, we obtain TCDW ≈ 440 K for an isolated and undoped single layer and TCDW ≈ 364 K for an electron-doping n = 4.6 × 1013 cm-2, close to the experimental result of 200-280 K on supported samples. Our work demonstrates that anharmonicity and doping melt the charge density wave in single-layer TiSe2.

15.
Phys Rev Lett ; 125(10): 106101, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32955304

RESUMO

Contradictory experiments have been reported about the dimensionality effect on the charge-density-wave transition in 2H NbSe_{2}. While scanning tunneling experiments on single layers grown by molecular beam epitaxy measure a charge-density-wave transition temperature in the monolayer similar to the bulk, around 33 K, Raman experiments on exfoliated samples observe a large enhancement of the transition temperature up to 145 K. By employing a nonperturbative approach to deal with anharmonicity, we calculate from first principles the temperature dependence of the phonon spectra both for bulk and monolayer. In both cases, the charge-density-wave transition temperature is estimated as the temperature at which the phonon energy of the mode driving the structural instability vanishes. The obtained transition temperature in the bulk is around 59 K, in rather good agreement with experiments, and it is just slightly increased in the single-layer limit to 73 K, showing the weak dependence of the transition on dimensionality. Environmental factors could motivate the disagreement between the transition temperatures reported by experiments. Our analysis also demonstrates the predominance of ionic fluctuations over electronic ones in the melting of the charge-density-wave order.

16.
Nano Lett ; 19(5): 3098-3103, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30932501

RESUMO

At ambient pressure, bulk 2H-NbS2 displays no charge density wave instability, which is at odds with the isostructural and isoelectronic compounds 2H-NbSe2, 2H-TaS2, and 2H-TaSe2, and in disagreement with harmonic calculations. Contradictory experimental results have been reported in supported single layers, as 1H-NbS2 on Au(111) does not display a charge density wave, whereas 1H-NbS2 on 6H-SiC(0001) endures a 3 × 3 reconstruction. Here, by carrying out quantum anharmonic calculations from first-principles, we evaluate the temperature dependence of phonon spectra in NbS2 bulk and single layer as a function of pressure/strain. For bulk 2H-NbS2, we find excellent agreement with inelastic X-ray spectra and demonstrate the removal of charge ordering due to anharmonicity. In the two-dimensional limit, we find an enhanced tendency toward charge density wave order. Freestanding 1H-NbS2 undergoes a 3 × 3 reconstruction, in agreement with data on 6H-SiC(0001) supported samples. Moreover, as strains smaller than 0.5% in the lattice parameter are enough to completely remove the 3 × 3 superstructure, deposition of 1H-NbS2 on flexible substrates or a small charge transfer via field-effect could lead to devices with dynamical switching on/off of charge order.

17.
Nano Lett ; 19(5): 3143-3150, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30939027

RESUMO

Nanomechanical resonators have emerged as sensors with exceptional sensitivities. These sensing capabilities open new possibilities in the studies of the thermodynamic properties in condensed matter. Here, we use mechanical sensing as a novel approach to measure the thermal properties of low-dimensional materials. We measure the temperature dependence of both the thermal conductivity and the specific heat capacity of a transition metal dichalcogenide monolayer down to cryogenic temperature, something that has not been achieved thus far with a single nanoscale object. These measurements show how heat is transported by phonons in two-dimensional systems. Both the thermal conductivity and the specific heat capacity measurements are consistent with predictions based on first-principles.

18.
Br J Cancer ; 120(5): 512-521, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30765873

RESUMO

BACKGROUND: Aberrant activation of Axl is implicated in the progression of hepatocellular carcinoma (HCC). We explored the biologic significance and preclinical efficacy of Axl inhibition as a therapeutic strategy in sorafenib-naive and resistant HCC. METHODS: We evaluated Axl expression in sorafenib-naive and resistant (SR) clones of epithelial (HuH7) and mesenchymal origin (SKHep-1) using antibody arrays and confirmed tissue expression. We tested the effect of Axl inhibition with RNA-interference and pharmacologically with R428 on a number of phenotypic assays. RESULTS: Axl mRNA overexpression in cell lines (n = 28) and RNA-seq tissue datasets (n = 373) correlated with epithelial-to-mesenchymal transition (EMT). Axl was overexpressed in HCC compared to cirrhosis and normal liver. We confirmed sorafenib resistance to be associated with EMT and enhanced motility in both HuH7-SR and SKHep-1-SR cells documenting a 4-fold increase in Axl phosphorylation as an adaptive feature of chronic sorafenib treatment in SKHep-1-SR cells. Axl inhibition reduced motility and enhanced sensitivity to sorafenib in SKHep-1SR cells. In patients treated with sorafenib (n = 40), circulating Axl levels correlated with shorter survival. CONCLUSIONS: Suppression of Axl-dependent signalling influences the transformed phenotype in HCC cells and contributes to adaptive resistance to sorafenib, providing a pre-clinical rationale for the development of Axl inhibitors as a measure to overcome sorafenib resistance.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Hepáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Sorafenibe/uso terapêutico , Adulto , Idoso , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas/antagonistas & inibidores , RNA Mensageiro/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Sorafenibe/farmacologia , Receptor Tirosina Quinase Axl
19.
Br J Cancer ; 120(11): 1033-1036, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31061454

RESUMO

Programmed cell death ligand-1 immunohistochemical detection (PD-L1 IHC) is a putative predictor of response to PD-1/PD-L1-targeted checkpoint inhibitors. However, there is no gold standard assay in hepatocellular carcinoma (HCC). We evaluated 5 PD-L1 IHC assay platforms (E1LN3, 28-8, 22c3, SP263 and SP142) in 100 HCCs reporting PD-L1 expression in malignant (M) and tumour-infiltrating immune cells (TICs) and non-tumorous cirrhotic tissues (NTICs). We found substantial inter-assay heterogeneity in detecting PD-L1 expression in M (R2 = 0.080-0.921), TICs (Cohen's κ = 0.175-0.396) and NTICs (κ = 0.004-0.505). Such diversity may impact on the reliability and reproducibility of PD-L1 IHC assays as a predictor of response to immune checkpoint inhibitors.


Assuntos
Antígeno B7-H1/análise , Carcinoma Hepatocelular/química , Neoplasias Hepáticas/química , Humanos , Imuno-Histoquímica , Linfócitos do Interstício Tumoral/química
20.
Phys Rev Lett ; 122(7): 075901, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30848620

RESUMO

Since 2014 the layered semiconductor SnSe in the high-temperature Cmcm phase is known to be the most efficient intrinsic thermoelectric material. Making use of first-principles calculations we show that its vibrational and thermal transport properties are determined by huge nonperturbative anharmonic effects. We show that the transition from the Cmcm phase to the low-symmetry Pnma is a second-order phase transition driven by the collapse of a zone border phonon, whose frequency vanishes at the transition temperature. Our calculations show that the spectral function of the in-plane vibrational modes are strongly anomalous with shoulders and double-peak structures. We calculate the lattice thermal conductivity obtaining good agreement with experiments only when nonperturbative anharmonic scattering is included. Our results suggest that the good thermoelectric efficiency of SnSe is strongly affected by the nonperturbative anharmonicity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa