Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(50): 20268-73, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23213217

RESUMO

As part of the government response to the Deepwater Horizon blowout, a Well Integrity Team evaluated the geologic hazards of shutting in the Macondo Well at the seafloor and determined the conditions under which it could safely be undertaken. Of particular concern was the possibility that, under the anticipated high shut-in pressures, oil could leak out of the well casing below the seafloor. Such a leak could lead to new geologic pathways for hydrocarbon release to the Gulf of Mexico. Evaluating this hazard required analyses of 2D and 3D seismic surveys, seafloor bathymetry, sediment properties, geophysical well logs, and drilling data to assess the geological, hydrological, and geomechanical conditions around the Macondo Well. After the well was successfully capped and shut in on July 15, 2010, a variety of monitoring activities were used to assess subsurface well integrity. These activities included acquisition of wellhead pressure data, marine multichannel seismic profiles, seafloor and water-column sonar surveys, and wellhead visual/acoustic monitoring. These data showed that the Macondo Well was not leaking after shut in, and therefore, it could remain safely shut until reservoir pressures were suppressed (killed) with heavy drilling mud and the well was sealed with cement.

2.
Sci Data ; 7(1): 176, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647176

RESUMO

Bathymetry (seafloor depth), is a critical parameter providing the geospatial context for a multitude of marine scientific studies. Since 1997, the International Bathymetric Chart of the Arctic Ocean (IBCAO) has been the authoritative source of bathymetry for the Arctic Ocean. IBCAO has merged its efforts with the Nippon Foundation-GEBCO-Seabed 2030 Project, with the goal of mapping all of the oceans by 2030. Here we present the latest version (IBCAO Ver. 4.0), with more than twice the resolution (200 × 200 m versus 500 × 500 m) and with individual depth soundings constraining three times more area of the Arctic Ocean (∼19.8% versus 6.7%), than the previous IBCAO Ver. 3.0 released in 2012. Modern multibeam bathymetry comprises ∼14.3% in Ver. 4.0 compared to ∼5.4% in Ver. 3.0. Thus, the new IBCAO Ver. 4.0 has substantially more seafloor morphological information that offers new insights into a range of submarine features and processes; for example, the improved portrayal of Greenland fjords better serves predictive modelling of the fate of the Greenland Ice Sheet.

3.
Nat Commun ; 9(1): 2104, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844384

RESUMO

Submarine glacial landforms in fjords are imprints of the dynamic behaviour of marine-terminating glaciers and are informative about their most recent retreat phase. Here we use detailed multibeam bathymetry to map glacial landforms in Petermann Fjord and Nares Strait, northwestern Greenland. A large grounding-zone wedge (GZW) demonstrates that Petermann Glacier stabilised at the fjord mouth for a considerable time, likely buttressed by an ice shelf. This stability was followed by successive backstepping of the ice margin down the GZW's retrograde backslope forming small retreat ridges to 680 m current depth (∼730-800 m palaeodepth). Iceberg ploughmarks occurring somewhat deeper show that thick, grounded ice persisted to these water depths before final breakup occurred. The palaeodepth limit of the recessional moraines is consistent with final collapse driven by marine ice cliff instability (MICI) with retreat to the next stable position located underneath the present Petermann ice tongue, where the seafloor is unmapped.

4.
Mar Environ Res ; 56(1-2): 15-46, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12648948

RESUMO

Santa Monica Bay was mapped in 1996 using a high-resolution multibeam system, providing the first substantial update of the submarine geomorphology since the initial compilation by Shepard and Emery [(1941) Geol. Soc. Amer. Spec. Paper 31]. The multibeam mapping generated not only high-resolution bathymetry, but also coregistered, calibrated acoustic backscatter at 95 kHz. The geomorphology has been subdivided into six provinces; shelf, marginal plateau, submarine canyon, basin slope, apron, and basin. The dimensions, gradients, and backscatter characteristics of each province is described and related to a combination of tectonics, climate, sea level, and sediment supply. Fluctuations of eustatic sea level have had a profound effect on the area; by periodically eroding the surface of Santa Monica plateau, extending the mouth of the Los Angeles River to various locations along the shelf break, and by connecting submarine canyons to rivers. A wetter glacial climate undoubtedly generated more sediment to the rivers that then transported the increased sediment load to the low-stand coastline and canyon heads. The trends of Santa Monica Canyon and several bathymetric highs suggest a complex tectonic stress field that has controlled the various segments. There is no geomorphic evidence to suggest Redondo Canyon is fault controlled. The San Pedro fault can be extended more than 30 km to the northwest by the alignment of a series of bathymetric highs and abrupt changes in direction of channel thalwegs.


Assuntos
Monitoramento Ambiental , Geologia , Acústica , California , Fenômenos Geológicos , Abastecimento de Água
5.
J Acoust Soc Am ; 117(4 Pt 1): 2013-27, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15898644

RESUMO

Development of protocols for calibrating multibeam sonar by means of the standard-target method is documented. Particular systems used in the development work included three that provide the water-column signals, namely the SIMRAD SM2000/90- and 200-kHz sonars and RESON SeaBat 8101 sonar, with operating frequency of 240 kHz. Two facilities were instrumented specifically for the work: a sea well at the Woods Hole Oceanographic Institution and a large, indoor freshwater tank at the University of New Hampshire. Methods for measuring the transfer characteristics of each sonar, with transducers attached, are described and illustrated with measurement results. The principal results, however, are the protocols themselves. These are elaborated for positioning the target, choosing the receiver gain function, quantifying the system stability, mapping the directionality in the plane of the receiving array and in the plane normal to the central axis, measuring the directionality of individual beams, and measuring the nearfield response. General preparations for calibrating multibeam sonars and a method for measuring the receiver response electronically are outlined. Advantages of multibeam sonar calibration and outstanding problems, such as that of validation of the performance of multibeam sonars as configured for use, are mentioned.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa