Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Nat Chem Biol ; 20(8): 1053-1065, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38424171

RESUMO

Organisms use organic molecules called osmolytes to adapt to environmental conditions. In vitro studies indicate that osmolytes thermally stabilize proteins, but mechanisms are controversial, and systematic studies within the cellular milieu are lacking. We analyzed Escherichia coli and human protein thermal stabilization by osmolytes in situ and across the proteome. Using structural proteomics, we probed osmolyte effects on protein thermal stability, structure and aggregation, revealing common mechanisms but also osmolyte- and protein-specific effects. All tested osmolytes (trimethylamine N-oxide, betaine, glycerol, proline, trehalose and glucose) stabilized many proteins, predominantly via a preferential exclusion mechanism, and caused an upward shift in temperatures at which most proteins aggregated. Thermal profiling of the human proteome provided evidence for intrinsic disorder in situ but also identified potential structure in predicted disordered regions. Our analysis provides mechanistic insight into osmolyte function within a complex biological matrix and sheds light on the in situ prevalence of intrinsically disordered regions.


Assuntos
Escherichia coli , Estabilidade Proteica , Proteoma , Proteoma/metabolismo , Proteoma/química , Humanos , Escherichia coli/metabolismo , Temperatura , Betaína/química , Betaína/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Trealose/química , Trealose/metabolismo , Proteômica/métodos , Prolina/química , Prolina/metabolismo , Glucose/química , Glucose/metabolismo , Glicerol/química , Glicerol/metabolismo , Metilaminas
2.
J Am Chem Soc ; 146(18): 12365-12374, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38656163

RESUMO

Through mechanistic work and rational design, we have developed the fastest organometallic abiotic Cys bioconjugation. As a result, the developed organometallic Au(III) bioconjugation reagents enable selective labeling of Cys moieties down to picomolar concentrations and allow for the rapid construction of complex heterostructures from peptides, proteins, and oligonucleotides. This work showcases how organometallic chemistry can be interfaced with biomolecules and lead to a range of reactivities that are largely unmatched by classical organic chemistry tools.


Assuntos
Cisteína , Ouro , Cisteína/química , Ouro/química , Peptídeos/química , Compostos Organoáuricos/química , Compostos Organoáuricos/síntese química , Estrutura Molecular
3.
Bioconjug Chem ; 35(7): 883-889, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38914957

RESUMO

Development of bioconjugation strategies to efficiently modify biomolecules is of key importance for fundamental and translational scientific studies. Cysteine S-arylation is an approach which is becoming more popular due to generally rapid kinetics and high chemoselectivity, as well as the strong covalently bonded S-aryl linkage created in these processes. Organometallic approaches to cysteine S-arylation have been explored that feature many advantages compared to their more traditional organic counterparts. In this Viewpoint, progress in the use of Au(III) and Pd(II) oxidative addition (OA) complexes for stoichiometric cysteine S-arylation is presented and discussed. A focus is placed on understanding the rapid kinetics of these reactions under mild conditions, as well as the ability to generate biomolecular heterostructures. Potential avenues for further exploration are addressed and usefulness of these methods to the practitioner are emphasized in the discussion.


Assuntos
Cisteína , Oxirredução , Paládio , Cisteína/química , Ouro/química , Cinética , Compostos Organometálicos/química , Paládio/química
4.
Bioconjug Chem ; 35(6): 744-749, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38809040

RESUMO

Bioconjugation of polymers to proteins is a method to impart improved stability and pharmacokinetic properties to biologic systems. However, the precise effects of polymer architecture on the resulting bioconjugates are not well understood. Particularly, cyclic polymers are known to possess unique features such as a decreased hydrodynamic radius when compared to their linear counterparts of the same molecular weight, but have not yet been studied. Here, we report the first bioconjugation of a cyclic polymer, poly(ethylene glycol) (PEG), to a model protein, T4 lysozyme, containing a single engineered cysteine residue (V131C). We compare the stability and activity of this conjugate with those of a linear PEG-T4 lysozyme analogue of similar molecular weight. Furthermore, we used molecular dynamics (MD) simulations to determine the behavior of the polymer-protein conjugates in solution. We introduce cyclic polymer-protein conjugates as potential candidates for the improvement of biologic therapeutics.


Assuntos
Simulação de Dinâmica Molecular , Muramidase , Polietilenoglicóis , Polietilenoglicóis/química , Muramidase/química , Bacteriófago T4/enzimologia
5.
J Am Chem Soc ; 144(13): 6050-6058, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35321547

RESUMO

Traceless self-immolative linkers are widely used for the reversible modification of proteins and peptides. This article describes a new class of traceless linkers based on ortho- or para-hydroxybenzylamines. The introduction of electron-donating substituents on the aromatic core stabilizes the quinone methide intermediate, thus providing a platform for payload release that can be modulated. To determine the extent to which the electronics affect the rate of release, we prepared a small library of hydroxybenzylamine linkers with varied electronics in the aromatic core, resulting in half-lives ranging from 20 to 144 h. Optimization of the linker design was carried out with mechanistic insights from density functional theory (DFT) and the in silico design of an intramolecular trapping agent through the use of DFT and intramolecular distortion energy calculations. This resulted in the development of a faster self-immolative linker with a half-life of 4.6 h. To demonstrate their effectiveness as traceless linkers for bioconjugation, reversible protein-polyethylene glycol conjugates with a model protein lysozyme were prepared, which had reduced protein activity but recovered ≥94% activity upon traceless release of the polymer. This new class of linkers with tunable release rates expands the traceless linkers toolbox for a variety of bioconjugation applications.


Assuntos
Polietilenoglicóis , Polímeros , Polímeros/química , Proteínas
6.
Bioconjug Chem ; 33(8): 1536-1542, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35939764

RESUMO

Bioconjugation techniques for biomolecule-polymer conjugation are numerous; however, slow kinetics and steric challenges generally necessitate excess reagents or long reaction times. Organometallic transformations are known to circumvent these issues; yet, harsh reaction conditions, incompatibility in aqueous media, and substrate promiscuity often limit their use in a biological context. The work reported herein demonstrates a facile and benign organometallic Au(III) S-arylation approach that enables the synthesis of poly(ethylene glycol) monomethyl ether (mPEG)-protein conjugates with high efficiency. Isolable and bench-stable 2, 5, and 10 kDa mPEG-Au(III) reagents were synthesized via oxidative addition into terminal aryl iodide substituents installed on mPEG substrates with a (Me-DalPhos)Au(I)Cl precursor. Reaction of the isolable mPEG-Au(III) oxidative addition complexes with a cysteine thiol on a biomolecule resulted in facile and selective cysteine arylation chemistry, forging covalent S-aryl linkages and affording the mPEG-biomolecule conjugates. Notably, low polymer reagent loadings were used to achieve near quantitative conversion at room temperature in 1 min due to the rapid kinetics and high chemoselectivity of this Au-based bioconjugation approach. Therefore, this work represents an important addition to the protein-polymer conjugation chemical toolbox.


Assuntos
Cisteína , Polietilenoglicóis , Cisteína/química , Indicadores e Reagentes , Oxirredução , Polietilenoglicóis/química , Proteínas/química
7.
Biomacromolecules ; 23(8): 3383-3395, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35767465

RESUMO

Poly(styrenyl acetal trehalose) (pSAT), composed of trehalose side chains linked to a polystyrene backbone via acetals, stabilizes a variety of proteins and enzymes against fluctuations in temperature. A promising application of pSAT is conjugation of the polymer to therapeutic proteins to reduce renal clearance. To explore this possibility, the safety of the polymer was first studied. Investigation of acute toxicity of pSAT in mice showed that there were no adverse effects of the polymer at a high (10 mg/kg) concentration. The immune response (antipolymer antibody and cytokine production) in mice was also studied. No significant antipolymer IgG was detected for pSAT, and only a transient and low level of IgM was elicited. pSAT was also safe in terms of cytokine response. The polymer was then conjugated to a granulocyte colony stimulating factor (GCSF), a therapeutic protein that is approved by the Federal Drug Administration, in order to study the biodistribution of a pSAT conjugate. A site-selective, two-step synthesis approach was developed for efficient conjugate preparation for the biodistribution study resulting in 90% conjugation efficiency. The organ distribution of GCSF-pSAT was measured by positron emission tomography and compared to controls GCSF and GCSF-poly(ethylene glycol), which confirmed that the trehalose polymer conjugate improved the in vivo half-life of the protein by reducing renal clearance. These findings suggest that trehalose styrenyl polymers are promising for use in therapeutic protein-polymer conjugates for reduced renal clearance of the biomolecule.


Assuntos
Acetais , Trealose , Animais , Fator Estimulador de Colônias de Granulócitos , Camundongos , Polímeros/química , Proteínas/química , Distribuição Tecidual , Trealose/química
8.
Biomacromolecules ; 22(2): 299-308, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33295758

RESUMO

Growth hormone (GH) has been implicated in cancer progression andis a potential target for anticancer therapy. Currently, pegvisomant is the only GH receptor (GHR) antagonist approved for clinical use. Pegvisomant is a mutated GH molecule (B2036) which is PEGylated on amine groups to extend serum half-life. However, PEGylation significantly reduces the bioactivity of the antagonist in mice. To improve bioactivity, we generated a series of B2036 conjugates with the site-specific attachment of 20, 30, or 40 kDa methoxyPEG maleimide (mPEG maleimide) by introduction of a cysteine residue at amino acid 144 (S144C). Recombinant B2036-S144C was expressed in Escherichia coli, purified, and then PEGylated using cysteine-specific conjugation chemistry. To avoid issues with dimerization due to the introduced cysteine, B2036-S144C was PEGylated while immobilized on an Ni-nitrilotriacetic (Ni-NTA) acid column, which effectively reduced disulfide-mediated dimer formation and allowed efficient conjugation to mPEG maleimide. Following PEGylation, the IC50 values for the 20, 30, and 40 kDa mPEG maleimide B2036-S144C conjugates were 66.2 ± 3.8, 106.1 ± 7.1, and 127.4 ± 3.6 nM, respectively. The circulating half-life of the 40 kDa mPEG conjugate was 58.3 h in mice. Subcutaneous administration of the 40 kDa mPEG conjugate (10 mg/kg/day) reduced serum insulin-like growth factor I (IGF-I) concentrations by 50.6%. This in vivo reduction in serum IGF-I was at a considerably lower dose compared to the higher doses required to observe comparable activity in studies with pegvisomant. In conclusion, we have generated a novel PEGylated GHR antagonist by the solid-phase site-specific attachment of mPEG maleimide at an introduced cysteine residue, which effectively reduces serum IGF-I in vivo.


Assuntos
Cisteína , Hormônio do Crescimento , Animais , Dimerização , Escherichia coli , Humanos , Camundongos , Proteínas Recombinantes
9.
Prog Polym Sci ; 1002020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32863465

RESUMO

Biomolecule-polymer conjugates are constructs that take advantage of the functional or otherwise beneficial traits inherent to biomolecules and combine them with synthetic polymers possessing specially tailored properties. The rapid development of novel biomolecule-polymer conjugates based on proteins, peptides, or nucleic acids has ushered in a variety of unique materials, which exhibit functional attributes including thermo-responsiveness, exceptional stability, and specialized specificity. Key to the synthesis of new biomolecule-polymer hybrids is the use of controlled polymerization techniques coupled with either grafting-from, grafting-to, or grafting-through methodology, each of which exhibit distinct advantages and/or disadvantages. In this review, we present recent progress in the development of biomolecule-polymer conjugates with a focus on works that have detailed the use of grafting-from methods employing ATRP, RAFT, or ROMP.

10.
Bioconjug Chem ; 31(9): 2179-2190, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32786367

RESUMO

Regulation of human growth hormone (GH) signaling has important applications in the remediation of several diseases including acromegaly and cancer. Growth hormone receptor (GHR) antagonists currently provide the most effective means for suppression of GH signaling. However, these small 22 kDa recombinantly engineered GH analogues exhibit short plasma circulation times. To improve clinical viability, between four and six molecules of 5 kDa poly(ethylene glycol) (PEG) are nonspecifically conjugated to the nine amines of the GHR antagonist designated as B2036 in the FDA-approved therapeutic pegvisomant. PEGylation increases the molecular weight of B2036 and considerably extends its circulation time, but also dramatically reduces its bioactivity, contributing to high dosing requirements and increased cost. As an alternative to nonspecific PEGylation, we report the use of genetic code expansion technology to site-specifically incorporate the unnatural amino acid propargyl tyrosine (pglY) into B2036 with the goal of producing site-specific protein-polymer conjugates. Substitution of tyrosine 35 with pglY yielded a B2036 variant containing an alkyne functional group without compromising bioactivity, as verified by a cellular assay. Subsequent conjugation of 5, 10, and 20 kDa azide-containing PEGs via the copper-catalyzed click reaction yielded high purity, site-specific conjugates with >89% conjugation efficiencies. Site-specific attachment of PEG to B2036 is associated with substantially improved in vitro bioactivity values compared to pegvisomant, with an inverse relationship between polymer size and activity observed. Notably, the B2036-20 kDa PEG conjugate has a molecular weight comparable to pegvisomant, while exhibiting a 12.5 fold improvement in half-maximal inhibitory concentration in GHR-expressing Ba/F3 cells (103.3 nM vs 1289 nM). We expect that this straightforward route to achieve site-specific GHR antagonists will be useful for GH signal regulation.


Assuntos
Química Click , Hormônio do Crescimento Humano/análogos & derivados , Polietilenoglicóis/química , Tirosina/análogos & derivados , Azidas/química , Catálise , Cobre/química , Código Genético , Hormônio do Crescimento Humano/química , Hormônio do Crescimento Humano/genética , Humanos , Tirosina/genética
11.
Bioconjug Chem ; 31(6): 1651-1660, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32423203

RESUMO

Growth hormone (GH) is a peptide hormone that mediates actions through binding to a cell surface GH receptor (GHR). The GHR antagonist, B2036, combines an amino acid substitution at 120 that confers GHR antagonist activity, with eight additional amino acid substitutions. Conjugation to polyethylene glycol (PEG) increases the serum half-life of these proteins due to reduced renal clearance. Recombinant forms of GH and its antagonists are mainly produced in prokaryotic expression systems, such as E. coli. However, efficient production in E. coli is problematic, as these proteins form aggregates as inclusion bodies resulting in poor solubility. In the present study, we demonstrate that N-terminal fusion to a thioredoxin (Trx) fusion partner improves soluble expression of codon-optimized B2036 in E. coli when expressed at 18 °C. Expression, purification and PEGylation protocols were established for three GHR antagonists: B2036, B20, and G120Rv. Following purification, these antagonists inhibited the proliferation of Ba/F3-GHR cells in a concentration-dependent manner. PEGylation with amine-reactive 5 kDa methoxy PEG succinimidyl propionate yielded a heterogeneous mixture of conjugates containing four to seven PEG moieties. PEGylation significantly reduced in vitro bioactivity of the conjugates. However, substitution of lysine to arginine at amino acid residue 120 in B2036 improved the in vitro activity of the PEGylated protein when compared to unmodified PEGylated B2036. Pharmacokinetic analysis demonstrated that the circulating half-life of PEGylated B20 was 15.2 h in mice. Taken together, we describe an effective strategy to produce biologically active PEGylated human GHR antagonists.


Assuntos
Escherichia coli/metabolismo , Hormônio do Crescimento Humano/análogos & derivados , Hormônio do Crescimento Humano/antagonistas & inibidores , Substituição de Aminoácidos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Meia-Vida , Hormônio do Crescimento Humano/biossíntese , Hormônio do Crescimento Humano/química , Hormônio do Crescimento Humano/farmacocinética , Hormônio do Crescimento Humano/farmacologia , Humanos , Polietilenoglicóis/química , Transdução de Sinais/efeitos dos fármacos , Solubilidade
12.
Biomacromolecules ; 21(6): 2147-2154, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32369347

RESUMO

Polymers that stabilize biomolecules are important as excipients in protein formulation. Herein, we describe a class of degradable polymers that have tunable degradation rates depending on the polymer backbone and can stabilize proteins to aggregation. Specifically, zwitterion- and trehalose-substituted polycaprolactone, polyvalerolactone, polycarbonate, and polylactide were prepared and characterized with regards to their hydrolytic degradation and ability to stabilize insulin to mechanical agitation during heat. Ring-opening polymerization (ROP) of allyl-substituted monomers was performed by using organocatalysis, resulting in well-defined alkene-substituted polymers with good control over molecular weight and dispersity. The polymers were then modified by using photocatalyzed thiol-ene reactions to install protein-stabilizing carboxybetaine and trehalose side chains. The resulting polymers were water-soluble and exhibited a wide range of half-lives, from 12 h to more than 3 months. The polymers maintained the ability to stabilize the therapeutic protein insulin from activity loss due to aggregation, demonstrating their potential as degradable excipients for protein formulation.


Assuntos
Polímeros , Trealose , Insulina , Peso Molecular , Polimerização
13.
Bioconjug Chem ; 30(10): 2594-2603, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31498600

RESUMO

Multivalent protein-protein interactions serve central roles in many essential biological processes, ranging from cell signaling and adhesion to pathogen recognition. Uncovering the rules that govern these intricate interactions is important not only to basic biology and chemistry but also to the applied sciences where researchers are interested in developing molecules to promote or inhibit these interactions. Here we report the synthesis and application of atomically precise inorganic cluster nanomolecules consisting of an inorganic core and a covalently linked densely packed layer of saccharides. These hybrid agents are stable under biologically relevant conditions and exhibit multivalent binding capabilities, which enable us to study the complex interactions between glycosylated structures and a dendritic cell lectin receptor. Importantly, we find that subtle changes in the molecular structure lead to significant differences in the nanomolecule's protein-binding properties. Furthermore, we demonstrate an example of using these hybrid nanomolecules to effectively inhibit protein-protein interactions in a human cell line. Ultimately, this work reveals an intricate interplay between the structural design of multivalent agents and their biological activities toward protein surfaces.


Assuntos
Nanoestruturas/química , Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Engenharia , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Bioconjug Chem ; 30(8): 2216-2227, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31265254

RESUMO

"Vaults" are ubiquitously expressed endogenous ribonucleoprotein nanoparticles with potential utility for targeted drug delivery. Here, we show that recombinant human vault nanoparticles are readily engulfed by certain key human peripheral blood mononuclear cells (PBMC), predominately dendritic cells, monocytes/macrophages, and activated T cells. As these cell types are the primary targets for human immunodeficiency virus type 1 (HIV-1) infection, we examined the utility of recombinant human vaults for targeted delivery of antiretroviral drugs. We chemically modified three different antiretroviral drugs, zidovudine, tenofovir, and elvitegravir, for direct conjugation to vaults. Tested in infection assays, drug-conjugated vaults inhibited HIV-1 infection of PBMC with equivalent activity to free drugs, indicating vault delivery and drug release in the cytoplasm of HIV-1-susceptible cells. The ability to deliver functional drugs via vault nanoparticle conjugates suggests their potential utility for targeted drug delivery against HIV-1.


Assuntos
Antirretrovirais/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Infecções por HIV/tratamento farmacológico , Nanopartículas/uso terapêutico , Antirretrovirais/química , Células Cultivadas , Citoplasma/metabolismo , Liberação Controlada de Fármacos , Infecções por HIV/prevenção & controle , HIV-1 , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Nanopartículas/química , Nanopartículas/metabolismo , Ribonucleoproteínas
15.
Chem Soc Rev ; 47(24): 8998-9014, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30443654

RESUMO

Proteins are an important class of therapeutics that have advantages including high target specificity, but challenges to their use include rapid clearance and low physical stability. Conjugation of synthetic polymers is an effective approach to address the drawbacks and enhance other properties such as solubility. In this review, we present various considerations in synthesizing protein-polymer conjugates for therapeutic applications with a focus on the choice of polymer, protein, and conjugation method, as well as characterization and evaluation of the resulting conjugate in order to maximize the therapeutic potential of the protein drug.


Assuntos
Materiais Biomiméticos/química , Desenho de Fármacos , Polímeros/química , Proteínas/química , Animais , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/farmacologia , Técnicas de Química Sintética/métodos , Humanos , Modelos Moleculares , Polímeros/síntese química , Polímeros/farmacologia , Proteínas/síntese química , Proteínas/farmacologia
16.
J Am Chem Soc ; 140(23): 7065-7069, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29790740

RESUMO

An efficient method for chemoselective cysteine arylation of unprotected peptides and proteins using Au(III) organometallic complexes is reported. The bioconjugation reactions proceed rapidly (<5 min) at ambient temperature in various buffers and within a wide pH range (0.5-14). This approach provides access to a diverse array of S-aryl bioconjugates including fluorescent dye, complex drug molecule, affinity label, poly(ethylene glycol) tags, and a stapled peptide. A library of Au(III) arylation reagents can be prepared as air-stable, crystalline solids in one step from commercial reagents. The selective and efficient arylation procedures presented in this work broaden the synthetic scope of cysteine bioconjugation and serve as promising routes for the modification of complex biomolecules.


Assuntos
Complexos de Coordenação/química , Cisteína/análogos & derivados , Ouro/química , Compostos Organoáuricos/química , Complexos de Coordenação/síntese química , Cisteína/síntese química , Glutationa/química , Concentração de Íons de Hidrogênio , Fenômenos de Química Orgânica , Compostos Organoáuricos/síntese química , Oxirredução
17.
J Am Chem Soc ; 140(20): 6317-6324, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29723475

RESUMO

The Lewis acid-base adduct approach has been widely used to form uniform perovskite films, which has provided a methodological base for the development of high-performance perovskite solar cells. However, its incompatibility with formamidinium (FA)-based perovskites has impeded further enhancement of photovoltaic performance and stability. Here, we report an efficient and reproducible method to fabricate highly uniform FAPbI3 films via the adduct approach. Replacement of the typical Lewis base dimethyl sulfoxide (DMSO) with N-methyl-2-pyrrolidone (NMP) enabled the formation of a stable intermediate adduct phase, which can be converted into a uniform and pinhole-free FAPbI3 film. Infrared and computational analyses revealed a stronger interaction between NMP with the FA cation than DMSO, which facilitates the formation of a stable FAI·PbI2·NMP adduct. On the basis of the molecular interactions with different Lewis bases, we proposed criteria for selecting the Lewis bases. Owed to the high film quality, perovskite solar cells with the highest PCE over 20% (stabilized PCE of 19.34%) and average PCE of 18.83 ± 0.73% were demonstrated.

18.
Bioconjug Chem ; 29(11): 3739-3745, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30358981

RESUMO

Poly(ethylene glycols) (PEGs) with protein-reactive end-groups are widely utilized in bioconjugation reactions. Herein, we describe the use of ring-opening metathesis polymerization (ROMP) to synthesize unsaturated protein-reactive PEG analogs. These ROMP PEGs (rPEGs) contained terminal aldehyde functionality and ranged in molecular weight from 6 to 20 kDa. The polymers were readily conjugated to free amines on the protein hen egg-white lysozyme (Lyz). Biocompatibility of the unsaturated PEGs was assessed in vitro, revealing the polymers to be nontoxic up to concentrations of at least 1 mg/mL in human dermal fibroblasts (HDFs). The resulting unsaturated rPEG-lysozyme conjugates underwent metathesis-based depolymerization, resulting in decreased molecular weight of the conjugate.


Assuntos
Aldeídos/química , Aminas/química , Muramidase/química , Polietilenoglicóis/química , Aldeídos/síntese química , Aminas/síntese química , Animais , Galinhas , Modelos Moleculares , Muramidase/síntese química , Polietilenoglicóis/síntese química , Polimerização , Proteínas/química
19.
Macromol Rapid Commun ; 39(5)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29251372

RESUMO

There is a significant need for new biodegradable protein stabilizing polymers. Herein, the synthesis of a polymer with trehalose side chains and hydrolytically degradable backbone esters and its evaluation for protein stabilization and cytotoxicity are described. Specifically, an alkene-containing parent polymer is synthesized by reversible addition-fragmentation chain transfer polymerization, and thiolated trehalose is installed using a radical-initiated thiol-ene reaction. The stabilizing properties of the polymer are investigated by thermally stressing granulocyte colony-stimulating factor (G-CSF), which is expressed and purified using a custom-designed G-CSF fusion protein with a polyhistidine-tagged maltose binding protein. The degradable polymer is shown to stabilize G-CSF to 66% after heating at 40 °C. Poly(5,6-benzo-2-methylene-1,3-dioxepane (BMDO)-co-butyl methacrylate-trehalose) is degraded and its cellular compatibility is investigated. While the polymer is noncytotoxic, cytotoxic effects are observed from the degraded products in fibroblasts and murine myeloblasts. These data provide important information for future use of BMDO-containing trehalose glycopolymers for biomedical applications.


Assuntos
Materiais Biocompatíveis/química , Polimerização , Polímeros/química , Trealose/química , Alcenos/química , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Leucemia Mieloide/patologia , Camundongos , Polímeros/síntese química , Polímeros/farmacologia , Compostos de Sulfidrila/química
20.
J Am Chem Soc ; 139(3): 1145-1154, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28079370

RESUMO

Many proteins, especially those used as therapeutics, are unstable to storage and shipping temperatures, leading to increased costs in research and industry. Therefore, the design and synthesis of novel stabilizers is an important area of investigation. Herein we report new degradable polymers that stabilize proteins to environmental stressors such as refrigeration and elevated temperature. Specifically, polycaprolactones with different pendant groups were synthesized and surveyed for their ability to stabilize an important therapeutic protein to storage and shipping conditions. Ring-opening polymerization (ROP) of an allyl-substituted caprolactone monomer was carried out using the organocatalyst 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) to yield a well-defined, alkene-substituted degradable polymer, which was used as a common backbone to control for the degree of polymerization. Relevant side chains such as trehalose, lactose, glucose, carboxybetaine, and oligo(ethylene glycol) were installed via postpolymerization thiol-ene reactions. These degradable polymers were then employed as excipients for the stabilization of the therapeutic protein granulocyte colony-stimulating factor (G-CSF) against storage at 4 °C and shipping temperatures of 60 °C. The best stabilization was observed using the trehalose- and zwitterion- substituted polyesters. Both the trehalose- and carboxybetaine-substituted pCL were further investigated with regard to molecular weight dependence, and it was found that the molecular weight was minimally important for stabilization to refrigeration, but critical for G-CSF stabilization at elevated temperatures. Both high performing zwitterionic and trehalose polyesters were also degraded, and the polymers and degradation products were shown to be noncytotoxic. This work provides potential biocompatible polymers for stabilization of the important therapeutic G-CSF, as well as a general platform for the future discovery of new polymeric protein stabilizers.


Assuntos
Alcenos/química , Fator Estimulador de Colônias de Granulócitos/química , Poliésteres/química , Compostos de Sulfidrila/química , Humanos , Modelos Moleculares , Conformação Molecular , Poliésteres/síntese química , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa