Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Pathol ; 192(12): 1683-1698, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36063901

RESUMO

Normal myofibroblast differentiation is critical for proper skin wound healing. Neoexpression of α-smooth muscle actin (α-SMA), a marker for myofibroblast differentiation, is driven by transforming growth factor (TGF)-ß receptor-mediated signaling. Hyaluronan and its three synthesizing enzymes, hyaluronan synthases (Has 1, 2, and 3), also participate in this process. Closure of skin wounds is significantly accelerated in Has1/3 double-knockout (Has1/3-null) mice. Herein, TGF-ß activity and dermal collagen maturation were increased in Has1/3-null healing skin. Cultures of primary skin fibroblasts isolated from Has1/3-null mice had higher levels of TGF-ß activity, α-SMA expression, and phosphorylation of p38 mitogen-activated protein kinase at Thr180/Tyr182, compared with wild-type fibroblasts. p38α mitogen-activated protein kinase was a necessary element in a noncanonical TGF-ß receptor signaling pathway driving α-SMA expression in Has1/3-null fibroblasts. Myocardin-related transcription factor (MRTF), a cofactor that binds to the transcription factor serum response factor (SRF), was also critical. Nuclear localization of MRTF was increased, and MRTF binding to SRF was enhanced in Has1/3-null fibroblasts. Inhibition of MRTF or SRF expression by RNA interference suppresses α-SMA expression at baseline and diminished its overexpression in Has1/3-null fibroblasts. Interestingly, total matrix metalloproteinase activity was increased in healing skin and fibroblasts from Has1/3-null mice, possibly explaining the increased TGF-ß activation.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno , Proteínas Quinases p38 Ativadas por Mitógeno , Camundongos , Animais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Miofibroblastos/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Células Cultivadas , Actinas/metabolismo , Fibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Transdução de Sinais , Cicatrização , Fatores de Crescimento Transformadores/metabolismo
2.
Exp Dermatol ; 32(9): 1485-1497, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37309615

RESUMO

Each year, 3.3 million Americans are diagnosed with non-melanoma skin cancers (NMSC) and an additional 40 million individuals undergo treatment of precancerous actinic keratosis lesions. The most effective treatments of NMSC (surgical excision and Mohs surgery) are invasive, expensive and require specialised training. More readily accessible topical therapies currently are 5-fluorouracil (a chemotherapeutic agent) and imiquimod (an immune modulator), but these can have significant side effects which limit their efficacy. Therefore, more effective and accessible treatments are needed for non-melanoma cancers and precancers. Our previous work demonstrated that the small molecule N-phosphonacetyl-L-aspartate (PALA) both inhibits pyrimidine nucleotide synthesis and activates pattern recognition receptor nucleotide-binding oligomerization domain 2. We propose that topical application of PALA would be an effective NMSC therapy, by combining the chemotherapeutic and immune modulatory features of 5-fluorouracil and imiquimod. Daily topical application of PALA to mouse skin was well tolerated and resulted in less irritation, fewer histopathological changes, and less inflammation than caused by either 5-fluorouracil or imiquimod. In an ultraviolet light-induced NMSC mouse model, topical PALA treatment substantially reduced the numbers, areas and grades of tumours, compared to vehicle controls. This anti-neoplastic activity was associated with increased expression of the antimicrobial peptide cathelicidin and increased recruitment of CD8+ T cells and F4/80+ macrophages to the tumours, demonstrating both immunomodulatory and anti-proliferative effects. These findings indicate that topical PALA is an excellent candidate as an effective alternative to current standard-of-care NMSC therapies.


Assuntos
Ácido Aspártico , Neoplasias Cutâneas , Animais , Camundongos , Imiquimode , Linfócitos T CD8-Positivos , Neoplasias Cutâneas/tratamento farmacológico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico
3.
J Am Acad Dermatol ; 87(1): 80-86, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35314199

RESUMO

BACKGROUND: In mouse models of skin cancer, high-dose oral vitamin D3 (VD3; cholecalciferol) combined with photodynamic therapy (PDT) can improve the clearance of squamous precancers (actinic keratoses [AKs]). OBJECTIVE: To determine whether oral VD3 can improve the clinical efficacy of a painless PDT regimen in humans with AK. METHODS: The baseline lesion counts and serum 25-hydroxyvitamin D3 levels were determined. In group 1, 29 patients underwent gentle debridement and 15-minute aminolevulinic acid preincubation with blue light (30 minutes; 20 J/cm2). In group 2, 29 patients took oral VD3 (10,000 IU daily for 5 or 14 days) prior to debridement and PDT. Lesion clearance was assessed at 3 to 6 months. RESULTS: In group 1, the mean clearance rates of facial AK were lower in patients with VD3 deficiency (25-hydroxyvitamin D3 level < 31 ng/dL; clearance rate, 40.9% ± 42%) than in patients with normal 25-hydroxyvitamin D3 levels (62.6% ± 14.2%). High-dose VD3 supplementation (group 2) significantly improved the overall AK lesion response (72.5% ± 13.6%) compared with that in group 1 (54.4% ± 22.8%). No differences in side effects were noted. LIMITATIONS: Nonrandomized trial design (interventional cohort matched to registry-based controls). CONCLUSIONS: Oral VD3 pretreatment significantly improves AK clinical responses to PDT. The regimen appears promising and well tolerated.


Assuntos
Ceratose Actínica , Fotoquimioterapia , Ácido Aminolevulínico , Animais , Humanos , Ceratose Actínica/tratamento farmacológico , Ceratose Actínica/patologia , Camundongos , Fotoquimioterapia/efeitos adversos , Fármacos Fotossensibilizantes , Resultado do Tratamento , Vitamina D/uso terapêutico , Vitaminas/uso terapêutico
4.
J Drugs Dermatol ; 21(2): 128-134, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35133114

RESUMO

This is a report of the survey results from the International Dermatology Outcome Measures (IDEOM) actinic keratosis (AK) workgroup. The purpose of the survey was to compile a list of gaps within AK care and management that require refinement. The results were discussed at the IDEOM annual meeting held virtually on October 23–24, 2020. This built a framework with which the AK workgroup, which consisted of physicians, patients, and pharmaceutical scientists, discussed at length in their breakout session at the meeting. The electronic survey was distributed to patients, pharmaceutical scientists, and leading physician experts in the field via email on September 22, 2020, with a deadline of October 2, 2020. The survey consisted of three open-ended prompts concerning key gaps and/or unmet needs in (1) the care of AKs, (2) outcome measurement of AKs in clinical trials and, (3) the measurement of AKs in clinical practice. The results were qualitative, with a response rate of 47%. Responses included reform of outcome measures for clinical trials, a methodology for evaluating the efficacy of preventative measures, and a comparison of treatments to establish a treatment protocol, among other efforts. This paper will also provide a brief overview of the current state of the AK outcome measures, emphasizing the heterogeneity of the measures and detailing the AK workgroup's future efforts to create a reliable and applicable core outcome measure set. J Drugs Dermatol. 2022;21(2):128-134. doi:10.36849/JDD.6360.


Assuntos
Ceratose Actínica , Humanos , Ceratose Actínica/tratamento farmacológico , Avaliação de Resultados em Cuidados de Saúde , Inquéritos e Questionários
5.
J Biol Chem ; 295(15): 4849-4857, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32107314

RESUMO

Monocytes are rapidly recruited to sites of diabetic complications and differentiate into macrophages. Previously, we showed that rat kidney mesangial cells dividing during hyperglycemic stress abnormally synthesize hyaluronan (HA) in intracellular compartments. This initiates a stress response, resulting in an extracellular HA matrix after division that recruits inflammatory cells. Cell-cell communication among macrophages that are recruited into the glomeruli and the damaged rat mesangial cells leads to diabetic nephropathy, fibrosis, and proteinurea, which are inhibited in heparin-treated diabetic rats. In this study, we found that murine bone marrow-derived macrophages (BMDMs) and a human leukemic cell line, U937 cells, dividing in hyperglycemia also accumulate intracellular HA and that heparin inhibits the HA accumulation. Both cell types expressed increased levels of proinflammatory markers: inducible nitric-oxide synthase and tumor necrosis factor-α, when cultured under hyperglycemic stress, which was inhibited by heparin. Furthermore, the abnormal intracellular HA was also observed in peripheral blood monocytes derived from three different hyperglycemic diabetic mouse models: streptozotocin-treated, high-fat fed, and Ins2Akita. Moreover, peripheral blood monocytes in humans with type 2 diabetes and poorly controlled blood glucose levels (hemoglobin A1c (HbA1c) levels of >7) also had intracellular HA, whereas those with HbA1c of <7, did not. Of note, heparin increased the anti-inflammatory markers arginase 1 and interleukin-10 in murine BMDMs. We conclude that heparin treatment of high glucose-exposed dividing BMDMs promotes an anti-inflammatory tissue-repair phenotype in these cells.


Assuntos
Anti-Inflamatórios/farmacologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Heparina/farmacologia , Hiperglicemia/patologia , Inflamação/prevenção & controle , Macrófagos/imunologia , Animais , Anticoagulantes/farmacologia , Arginase/metabolismo , Matriz Extracelular/metabolismo , Feminino , Glucose/metabolismo , Humanos , Hiperglicemia/imunologia , Hiperglicemia/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Interleucina-10/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo
6.
Gastrointest Endosc ; 94(1): 179-186, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33647286

RESUMO

BACKGROUND AND AIMS: Locally advanced pancreatic cancer (LAPC) often causes obstruction. Verteporfin photodynamic therapy (PDT) can feasibly "debulk" the tumor more safely than noncurative surgery and has multiple advantages over older PDT agents. We aimed to assess the feasibility of EUS-guided verteporfin PDT in ablating nonresectable LAPC. METHODS: Adults with LAPC with adequate biliary drainage were prospectively enrolled. Exclusion criteria were significant metastatic disease burden, disease involving >50% duodenal or major artery circumference, and recent treatment with curative intent. CT was obtained between days -28 to 0. On day 0, verteporfin .4 mg/kg was infused 60 to 90 minutes before EUS, during which a diffuser was positioned in the tumor and delivered light at 50 J/cm for 333 seconds. CT was obtained on day 2, with adverse event monitoring occurring on days 1, 2, and 14. The primary outcome was presence of necrosis. RESULTS: Of 8 patients (62.5% men, mean age 65 ± 7.9 years) included in the study, 5 were staged at T3, 2 at T2, and 1 at T1. Most (n = 4) had primary lesions in the pancreatic head. Mean pretrial tumor diameter was 33.3 ± 13.4 mm. On day 2 CT, 5 lesions demonstrated a zone of necrosis measuring a mean diameter of 15.7 ± 5.5 mm; 3 cases did not develop necrosis. No adverse events were noted during the procedure or postprocedure observation period (days 1-3), and no changes in patient-reported outcomes were noted. CONCLUSIONS: In this pilot study, EUS-guided verteporfin PDT is feasible and shows promise as a minimally invasive ablative therapy for LAPC in select patients. Tumor necrosis is visible within 48 hours after treatment. Patient enrollment and data collection are ongoing. (Clinical trial registration number: NCT03033225.).


Assuntos
Neoplasias Pancreáticas , Fotoquimioterapia , Porfirinas , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Projetos Piloto , Porfirinas/uso terapêutico , Verteporfina/uso terapêutico
7.
J Biol Chem ; 294(34): 12779-12794, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31285260

RESUMO

Well-regulated differentiation of fibroblasts into myofibroblasts (MF) is critical for skin wound healing. Neoexpression of α-smooth muscle actin (α-SMA), an established marker for MF differentiation, is driven by TGFß receptor (TGFßR)-mediated signaling. Hyaluronan (HA) and its receptor CD44 may also participate in this process. To further understand this process, primary mouse skin fibroblasts were isolated and treated in vitro with recombinant TGF-ß1 (rTGF-ß1) to induce α-SMA expression. CD44 expression was also increased. Paradoxically, CD44 knockdown by RNA interference (RNAi) led to increased α-SMA expression and α-SMA-containing stress fibers. Removal of extracellular HA or inhibition of HA synthesis had no effect on α-SMA levels, suggesting a dispensable role for HA. Exploration of mechanisms linking CD44 knockdown to α-SMA induction, using RNAi and chemical inhibitors, revealed a requirement for noncanonical TGFßR signaling through p38MAPK. Decreased monomeric G-actin but increased filamentous F-actin following CD44 RNAi suggested a possible role for myocardin-related transcription factor (MRTF), a known regulator of α-SMA transcription and itself regulated by G-actin binding. CD44 RNAi promoted nuclear accumulation of MRTF and the binding to its transcriptional cofactor SRF. MRTF knockdown abrogated the increased α-SMA expression caused by CD44 RNAi, suggesting that MRTF is required for CD44-mediated regulation of α-SMA. Finally, chemical inhibition of p38MAPK reversed nuclear MRTF accumulation after rTGF-ß1 addition or CD44 RNAi, revealing a central involvement of p38MAPK in both cases. We concluded that CD44 regulates α-SMA gene expression through cooperation between two intersecting signaling pathways, one mediated by G-actin/MRTF and the other via TGFßR/p38MAPK.


Assuntos
Actinas/antagonistas & inibidores , Fibroblastos/metabolismo , Receptores de Hialuronatos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transativadores/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso/química , Músculo Liso/metabolismo , Transdução de Sinais , Pele/citologia , Pele/metabolismo
8.
Biomacromolecules ; 21(10): 4030-4042, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32902971

RESUMO

Thread size and polymer composition are critical properties to consider for achieving a positive healing outcome with a wound dressing. Three-dimensional (3D) printed scaffolds and electrospun mats both offer distinct advantages as replaceable wound dressings. This research aims to determine if the thread size and polymer compositions of the scaffolds affect skin wound healing outcomes, an aspect that has not been adequately explored. Using a modular polymer platform, four polyester direct-write 3D printed scaffolds and electrospun mats were fabricated into wound dressings. The dressings were applied to splinted, full thickness skin wounds in an excisional wound rat model and evaluated against control wounds to which no dressing was applied. Wound closure rates and reduction of the wound bed width were not affected by the thread size or polymer composition. However, epidermal thickness was larger in wounds treated with electrospun dressings and was slightly affected by the polymer composition. Two of the four tested polymer compositions lead to delayed reorganization of granulation tissues. Moreover, enhanced angiogenesis was seen in wounds treated with 3D printed dressings compared to those treated with electrospun dressings. The results from this study can be used to inform the choice of dressing architecture and polymer compositions to achieve positive wound healing outcomes.


Assuntos
Bandagens , Polímeros , Animais , Poliésteres , Impressão Tridimensional , Ratos , Cicatrização
9.
J Am Acad Dermatol ; 82(4): 862-868, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31525441

RESUMO

BACKGROUND: Blue light photodynamic therapy (PDT) is effective for actinic keratosis, but many patients experience stinging pain during illumination. OBJECTIVE: To compare a conventional regimen (1 hour of 5-aminolevulinic acid [ALA] preincubation, followed by blue light) versus a new modified regimen in which blue light is started immediately after ALA application. METHODS: A clinical trial with a bilaterally controlled, intrapatient study design was conducted with 23 patients. Topical 20% ALA was applied to the entire face and/or scalp. On 1 side of the body, blue light was started immediately and continued for either 30, 45, or 60 minutes (simultaneous PDT). On the contralateral side, the blue light began 1 hour after ALA application and lasted 1000 seconds (conventional PDT). Pain was evaluated on a scale from 0 to 10. Actinic keratosis lesion counts were determined by clinical examination and photography. RESULTS: All patients experienced significantly less pain during simultaneous illumination than during the conventional regimen. At 3 months after treatment, lesion clearance was nearly identical on the 2 sides, as determined by statistical testing of noninferiority ± 15% margin. LIMITATIONS: Although bilaterally controlled, the study was relatively small. Additional studies are recommended. CONCLUSION: The modified PDT regimen is essentially painless, yet it provides treatment efficacy similar to a conventional regimen.


Assuntos
Ácido Aminolevulínico/administração & dosagem , Dermatoses Faciais/tratamento farmacológico , Ceratose Actínica/tratamento farmacológico , Dor/prevenção & controle , Fotoquimioterapia/efeitos adversos , Fármacos Fotossensibilizantes/administração & dosagem , Dermatoses do Couro Cabeludo/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Esquema de Medicação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fotoquimioterapia/métodos , Resultado do Tratamento
11.
Glycobiology ; 26(6): 553-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26964566

RESUMO

Dermatology is a field that strives not only to alleviate skin disease (therapeutics) but also to improve the perception of wellness (cosmetics). Thus, in this special issue of Glycobiology, it seems appropriate to discuss the biology of a glycosaminoglycan, called hyaluronic acid (hyaluronan, or HA), that has become the most popular agent today for intradermal injections to improve wrinkles and other cosmetic defects. HA is a simple linear polymer in which a simple disaccharide is repeated thousands of time, thereby creating a huge hydrophilic molecule that confers a large volume of hydration and contributes to the turgor and flexibility of healthy skin. Beyond cosmetic considerations, however, HA also has important biological and physiological functions that were largely under-appreciated until recently. New research has confirmed that HA is dynamically produced by most skin cells, not only fibroblasts (the cells that make most of the skin's extracellular matrix) but also by keratinocytes in the outer protective layer (epidermis). For both fibroblasts and keratinocytes, HA plays a regulatory role in controlling cell physiology through interaction of extracellular HA with a major cell-surface receptor, CD44. This interaction mediates intracellular signaling both directly and indirectly, through CD44 interactions with the cytoskeleton and with EGF and TGFß receptors. Furthermore, degradation of HA by specific hyaluronidase enzymes produces HA fragments that can help to regulate inflammatory processes. In this review, current knowledge about the role of HA in skin inflammation and wound healing are reviewed and possible future applications of such knowledge discussed.


Assuntos
Fibroblastos/metabolismo , Ácido Hialurônico/metabolismo , Queratinócitos/metabolismo , Envelhecimento da Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Receptores ErbB/genética , Receptores ErbB/imunologia , Matriz Extracelular/química , Matriz Extracelular/imunologia , Fibroblastos/química , Fibroblastos/imunologia , Regulação da Expressão Gênica , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/imunologia , Ácido Hialurônico/química , Ácido Hialurônico/imunologia , Ácido Hialurônico/uso terapêutico , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/imunologia , Interações Hidrofóbicas e Hidrofílicas , Hipodermóclise , Queratinócitos/química , Queratinócitos/imunologia , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/imunologia , Transdução de Sinais , Pele/efeitos dos fármacos , Pele/lesões , Pele/patologia , Envelhecimento da Pele/imunologia , Envelhecimento da Pele/patologia , Cicatrização/fisiologia
12.
Br J Cancer ; 115(7): 805-13, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27575852

RESUMO

BACKGROUND: Aminolevulinic acid (ALA)-based photodynamic therapy (PDT) provides selective uptake and conversion of ALA into protoporphyrin IX (PpIX) in actinic keratosis and squamous cell carcinoma, yet large response variations in effect are common between individuals. The aim of this study was to compare pre-treatment strategies that increase the therapeutic effect, including fractionated light delivery during PDT (fPDT) and use of iron chelator desferrioxamine (DFO), separately and combined. METHODS: Optical measurements of fluorescence were used to quantify PpIX produced, and the total amount of PpIX photobleached as an implicit measure of the photodynamic dose. In addition, measurements of white light reflectance were used to quantify changes in vascular physiology throughout the PDT treatment. RESULTS: fPDT produced both a replenishment of PpIX and vascular re-oxygenation during a 2 h dark interval between the first and second PDT light fractions. The absolute photodynamic dose was increased 57% by fPDT, DFO and their combination, as compared with PDT group (from 0.7 to 1.1). Despite that light fractionation increased oedema and scab formation during the week after treatment, no significant difference in long-term survival has been observed between treatment groups. However, outcomes stratified on the basis of measured photodynamic dose showed a significant difference in long-term survival. CONCLUSIONS: The assessment of implicit photodynamic dose was a more significant predictor of efficacy for ALA-PDT skin cancer treatments than prescription of an enhanced treatment strategy, likely because of high individual variation in response between subjects.


Assuntos
Ácido Aminolevulínico/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Desferroxamina/uso terapêutico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Protoporfirinas/uso terapêutico , Sideróforos/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Animais , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Desferroxamina/farmacologia , Fracionamento da Dose de Radiação , Relação Dose-Resposta à Radiação , Feminino , Heme/biossíntese , Humanos , Lasers Semicondutores , Iluminação/instrumentação , Iluminação/métodos , Camundongos , Camundongos Nus , Fármacos Fotossensibilizantes/farmacocinética , Protoporfirinas/farmacocinética , Distribuição Aleatória , Sideróforos/farmacologia , Neoplasias Cutâneas/patologia , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Biol Chem ; 289(46): 32253-32265, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25266724

RESUMO

A balanced turnover of dermal fibroblasts is crucial for structural integrity and normal function of the skin. During recovery from environmental injury (such as UV exposure and physical wounding), apoptosis is an important mechanism regulating fibroblast turnover. We are interested in the role that hyaluronan (HA), an extracellular matrix molecule synthesized by HA synthase enzymes (Has), plays in regulating apoptosis in fibroblasts. We previously reported that Has1 and Has3 double knock-out (Has1/3 null) mice show accelerated wound closure and increased numbers of fibroblasts in the dermis. In the present study, we report that HA levels and Has2 mRNA expression are higher in cultured Has1/3 null primary skin fibroblasts than in wild type (WT) cells. Apoptosis induced by two different environmental stressors, UV exposure and serum starvation (SS), was reduced in the Has1/3 null cells. Hyaluronidase, added to cultures to remove extracellular HA, surprisingly had no effect upon apoptotic susceptibility to UVB or SS. However, cells treated with 4-methylumbelliferone to inhibit HA synthesis were sensitized to apoptosis induced by SS or UVB. When fibroblasts were transfected with Has2-specific siRNA that lowered Has2 mRNA and HA levels by 90%, both Has1/3 null and WT cells became significantly more sensitive to apoptosis. The exogenous addition of high molecular weight HA failed to reverse this effect. We conclude that Has1/3 null skin fibroblasts (which have higher levels of Has2 gene expression) are resistant to stress-induced apoptosis.


Assuntos
Apoptose , Fibroblastos/enzimologia , Glucuronosiltransferase/fisiologia , Glicosaminoglicanos/química , Animais , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Hialuronan Sintases , Ácido Hialurônico/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Raios Ultravioleta
14.
Photochem Photobiol ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38310633

RESUMO

Photodynamic therapy (PDT) is a nonscarring cancer treatment in which a pro-drug (5-aminolevulinic acid, ALA) is applied, converted into a photosensitizer (protoporphyrin IX, PpIX) which is then activated by visible light. ALA-PDT is now popular for treating nonmelanoma skin cancer (NMSC), but can be ineffective for larger skin tumors, mainly due to inadequate production of PpIX. Work over the past two decades has shown that differentiation-promoting agents, including methotrexate (MTX), 5-fluorouracil (5FU) and vitamin D (Vit D) can be combined with ALA-PDT as neoadjuvants to promote tumor-specific accumulation of PpIX, enhance tumor-selective cell death, and improve therapeutic outcome. In this review, we provide a historical perspective of how the combinations of differentiation-promoting agents with PDT (cPDT) evolved, including Initial discoveries, biochemical and molecular mechanisms, and clinical translation for the treatment of NMSCs. For added context, we also compare the differentiation-promoting neoadjuvants with some other clinical PDT combinations such as surgery, laser ablation, iron-chelating agents (CP94), and immunomodulators that do not induce differentiation. Although this review focuses mainly on the application of cPDT for NMSCs, the concepts and findings described here may be more broadly applicable towards improving the therapeutic outcomes of PDT treatment for other types of cancers.

15.
Photodiagnosis Photodyn Ther ; 45: 103838, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37844787

RESUMO

INTRODUCTION: Photodynamic therapy (PDT) is a safe, non-mutagenic, and non-scarring treatment for actinic keratoses (AK). BACKGROUND: 'Painless' photodynamic therapy (p-PDT) is a regimen for AK that employs simultaneous aminolevulinate incubation and blue light illumination. The efficacy of p-PDT resembles that of traditional PDT, but detailed mechanisms of action for p-PDT are not well understood. METHODS: To characterize the inflammatory effects of the p-PDT procedure 48 h following treatment and determine the association of inflammation with precancer burden, we performed a retrospective cohort study of 104 patients with AK of face or scalp treated with p-PDT between 2017 and 2019. Patients self-reported their side effects 48 h following p-PDT and took photographs of their face and scalp. Photographs were edited to define seven anatomic regions, and erythema was scored by four investigators. RESULTS: Ninety-eight patients provided photographs suitable for erythema evaluation. Most patients experienced 2 or more side effects and some pain 48 h post-procedure. Females experienced more pain (p = 0.01) and side effects (p = 0.002) compared to males. AK burden was positively associated with post p-PDT erythema response (p < 0.0001) at all sites, but particularly in the temples (p = 0.002) and supralabial area (p = 0.009). DISCUSSION: This study confirms a strong clinical inflammatory response after p-PDT. Severity of inflammation is positively associated with AK tumor burden, suggesting that post-treatment inflammation may be a pre-requisite for p-PDT efficacy. Interestingly, the results also identify certain gender-related differences in the severity of side effects experienced by patients post-PDT.


Assuntos
Ceratose Actínica , Fotoquimioterapia , Feminino , Masculino , Humanos , Ceratose Actínica/tratamento farmacológico , Estudos Retrospectivos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/efeitos adversos , Couro Cabeludo , Inflamação/tratamento farmacológico , Dor , Eritema
16.
Photodiagnosis Photodyn Ther ; 45: 103983, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38281610

RESUMO

Improved treatment outcomes for non-melanoma skin cancers can be achieved if Vitamin D (Vit D) is used as a neoadjuvant prior to photodynamic therapy (PDT). However, the mechanisms for this effect are unclear. Vit D elevates protoporphyrin (PpIX) levels within tumor cells, but also exerts immune-modulatory effects. Here, two murine models, UVB-induced actinic keratoses (AK) and human squamous cell carcinoma (A431) xenografts, were used to analyze the time course of local and systemic immune responses after PDT ± Vit D. Fluorescence immunohistochemistry of tissues and flow analysis (FACS) of blood were employed. In tissue, damage-associated molecular patterns (DAMPs) were increased, and infiltration of neutrophils (Ly6G+), macrophages (F4/80+), and dendritic cells (CD11c+) were observed. In most cases, Vit D alone or PDT alone increased cell recruitment, but Vit D + PDT showed even greater recruitment effects. Similarly for T cells, increased infiltration of total (CD3+), cytotoxic (CD8+) and regulatory (FoxP3+) T-cells was observed after Vit D or PDT, but the increase was even greater with the combination. FACS analysis revealed a variety of interesting changes in circulating immune cell levels. In particular, neutrophils decreased in the blood after Vit D, consistent with migration of neutrophils into AK lesions. Levels of cells expressing the PD-1+ checkpoint receptor were reduced in AKs following Vit D, potentially counteracting PD-1+ elevations seen after PDT alone. In summary, Vit D and ALA-PDT, two treatments with individual immunogenic effects, may be advantageous in combination to improve treatment efficacy and management of AK in the dermatology clinic.


Assuntos
Carcinoma de Células Escamosas , Ceratose Actínica , Fotoquimioterapia , Neoplasias Cutâneas , Humanos , Camundongos , Animais , Fármacos Fotossensibilizantes/uso terapêutico , Vitamina D/farmacologia , Vitamina D/uso terapêutico , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/uso terapêutico , Fotoquimioterapia/métodos , Modelos Animais de Doenças , Receptor de Morte Celular Programada 1/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Ceratose Actínica/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Células Epiteliais/patologia
17.
J Invest Dermatol ; 143(8): 1538-1547, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36813159

RESUMO

Vitamin D3, a prohormone, is converted to circulating calcidiol and then to calcitriol, the hormone that binds to the vitamin D receptor (VDR) (a nuclear transcription factor). Polymorphic genetic sequence variants of the VDR are associated with an increased risk of breast cancer and melanoma. However, the relationship between VDR allelic variants and the risk of squamous cell carcinoma and actinic keratosis remains unclear. We examined the associations between two VDR polymorphic sites, Fok1 and Poly-A, and serum calcidiol levels, actinic keratosis lesion incidence, and the history of cutaneous squamous cell carcinoma in 137 serially enrolled patients. By evaluating the Fok1 (F) and (f) alleles and the Poly-A long (L) and short (S) alleles together, a strong association between genotypes FFSS or FfSS and high calcidiol serum levels (50.0 ng/ml) was found; conversely, ffLL patients showed very low calcidiol levels (29.1 ng/ml). Interestingly, the FFSS and FfSS genotypes were also associated with reduced actinic keratosis incidence. For Poly-A, additive modeling showed that Poly-A (L) is a risk allele for squamous cell carcinoma, with an OR of 1.55 per copy of the L allele. We conclude that actinic keratosis and squamous cell carcinoma should be added to the list of squamous neoplasias that are differentially regulated by the VDR Poly-A allele.


Assuntos
Carcinoma de Células Escamosas , Ceratose Actínica , Neoplasias Cutâneas , Humanos , Vitamina D , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Alelos , Calcifediol , Incidência , Carcinoma de Células Escamosas/epidemiologia , Carcinoma de Células Escamosas/genética , Ceratose Actínica/epidemiologia , Ceratose Actínica/genética , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/genética , Vitaminas , Genótipo
18.
Photochem Photobiol ; 99(2): 437-447, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36039609

RESUMO

We previously showed that a combination of differentiation-inducing agents (5-fluorouracil [5FU], vitamin D3 or methotrexate) and aminolevulinate-based photodynamic therapy (PDT) improves clinical responses by enhancing protoporphyrin IX (PpIX) photosensitizer levels and cell death. Here, we show that in addition to its previously known effects, 5FU enhances PDT-induced tumor-regressing immunity. Murine actinic keratoses were treated with topical 5FU or vehicle for 3 days prior to aminolevulinic acid application, followed by blue light illumination (~417 nm). Lesions were harvested for time-course analyses of innate immune cell recruitment into lesions, i.e. neutrophils (Ly6G+) and macrophages (F4/80+), which peaked at 72 h and 1 week post-PDT, respectively, and were greater in 5FU-treated lesions. Enhanced infiltration of activated T cells (CD3+) throughout the time course, and of cytotoxic T cells (CD8+) at 1-2 weeks post-PDT, also occurred in 5FU-treated lesions. 5FU pretreatment reduced the presence of cells expressing the immune checkpoint marker PD-1 at ~72 h post-PDT, favoring cytotoxic T cell activity. A combination of 5FU and PDT, each individually known to induce long-term tumor-targeting immune responses in addition to their more immediate effects on cancer cells, may synergize to provide better management of squamous precancers.


Assuntos
Ceratose Actínica , Fotoquimioterapia , Animais , Camundongos , Ceratose Actínica/tratamento farmacológico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Modelos Animais de Doenças , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Ácido Aminolevulínico/uso terapêutico , Biomarcadores , Imunidade
19.
Front Immunol ; 14: 1148893, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37475852

RESUMO

Pyoderma gangrenosum (PG) is a debilitating skin condition often accompanied by inflammatory bowel disease (IBD). Strikingly, ~40% of patients that present with PG have underlying IBD, suggesting shared but unknown mechanisms of pathogenesis. Impeding the development of effective treatments for PG is the absence of an animal model that exhibits features of both skin and gut manifestations. This study describes the development of the first experimental drug-induced mouse model of PG with concomitant intestinal inflammation. Topical application of pyrimidine synthesis inhibitors on wounded mouse skin generates skin ulcers enriched in neutrophil extracellular traps (NETs) as well as pro-inflammatory cellular and soluble mediators mimicking human PG. The mice also develop spontaneous intestinal inflammation demonstrated by histologic damage. Further investigations revealed increased circulating low density IL-1ß primed neutrophils that undergo enhanced NETosis at inflamed tissue sites supported by an increase in circulatory citrullinated histone 3, a marker of aberrant NET formation. Granulocyte depletion dampens the intestinal inflammation in this model, further supporting the notion that granulocytes contribute to the skin-gut crosstalk in PG mice. We anticipate that this novel murine PG model will enable researchers to probe common disease mechanisms and identify more effective targets for treatment for PG patients with IBD.


Assuntos
Doenças Inflamatórias Intestinais , Pioderma Gangrenoso , Humanos , Animais , Camundongos , Neutrófilos/patologia , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/patologia , Inflamação/patologia
20.
Diagnostics (Basel) ; 13(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37998567

RESUMO

This paper presents a technique for high sensitivity measurement of singlet oxygen luminescence generated during photodynamic therapy (PDT) and ultraviolet (UV) irradiation on skin. The high measurement sensitivity is achieved by using a computational spectroscopy (CS) approach that provides improved photon detection efficiency compared to spectral filtering methodology. A solid-state InGaAs photodiode is used as the CS detector, which significantly reduces system cost and improves robustness compared to photomultiplier tubes. The spectral resolution enables high-accuracy determination and subtraction of photosensitizer fluorescence baseline without the need for time-gating. This allows for high sensitivity detection of singlet oxygen luminescence emission generated by continuous wave light sources, such as solar simulator sources and those commonly used in PDT clinics. The value of the technology is demonstrated during in vivo and ex vivo experiments that show the correlation of measured singlet oxygen with PDT treatment efficacy and the illumination intensity on the skin. These results demonstrate the potential use of the technology as a dosimeter to guide PDT treatment and as an analytical tool supporting the development of improved sunscreen products for skin cancer prevention.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa