Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Trends Cell Biol ; 15(7): 349-55, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15946846

RESUMO

Molecular motors generate cellular forces and act in a multitude of intracellular transport processes. The chromokinesins are a subgroup of kinesin motors. Chromokinesins act in various steps of mitosis, including chromosome condensation, metaphase alignment, chromosome segregation, cytokinesis and they help maintain genome stability. The emerging multifunctional nature of the chromokinesins provides insights into the coordination of distinct mitotic steps, and their role in maintenance of genome stability makes them attractive potential targets for therapeutic intervention.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Cinesinas/fisiologia , Mitose/fisiologia , Proteínas Motores Moleculares/fisiologia , Proteínas Nucleares/fisiologia , Animais , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Citocinese/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fuso Acromático/metabolismo
2.
Curr Biol ; 16(15): 1559-64, 2006 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-16890532

RESUMO

Aneuploidy has long been suggested to be causal in tumor formation. Direct testing of this hypothesis has been difficult because of the absence of methods to specifically induce aneuploidy. The chromosome-associated kinesin motor KIF4 plays multiple roles in mitosis, and its loss leads to multiple mitotic defects including aneuploidy. Here, we have taken advantage of the direct formation of aneuploidy in the absence of KIF4 to determine whether loss of a molecular motor and generation of aneuploidy during mitosis can trigger tumorigenesis. We find that embryonic stem cells genetically depleted of KIF4 support anchorage-independent growth and form tumors in nude mice. In cells lacking KIF4, mitotic spindle checkpoints and DNA-damage response pathways are activated. Down regulation or loss of KIF4 is physiologically relevant because reduced KIF4 levels are present in 35% of human cancers from several tissues. Our results support the notion that loss of a molecular motor leads to tumor formation and that aneuploidy can act as a primary trigger of tumorigenesis.


Assuntos
Aneuploidia , Proliferação de Células , Cinesinas/deficiência , Cinesinas/metabolismo , Neoplasias/genética , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Animais , Anticorpos Monoclonais , Western Blotting , Linhagem Celular Tumoral , Dano ao DNA/genética , Dano ao DNA/fisiologia , Embrião de Mamíferos/citologia , Genes cdc/fisiologia , Humanos , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Células-Tronco/citologia
3.
J Cell Biol ; 166(5): 613-20, 2004 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-15326200

RESUMO

Accurate chromosome alignment at metaphase and subsequent segregation of condensed chromosomes is a complex process involving elaborate and only partially characterized molecular machinery. Although several spindle associated molecular motors have been shown to be essential for mitotic function, only a few chromosome arm--associated motors have been described. Here, we show that human chromokinesin human HKIF4A (HKIF4A) is an essential chromosome-associated molecular motor involved in faithful chromosome segregation. HKIF4A localizes in the nucleoplasm during interphase and on condensed chromosome arms during mitosis. It accumulates in the mid-zone from late anaphase and localizes to the cytokinetic ring during cytokinesis. RNA interference--mediated depletion of HKIF4A in human cells results in defective prometaphase organization, chromosome mis-alignment at metaphase, spindle defects, and chromosome mis-segregation. HKIF4A interacts with the condensin I and II complexes and HKIF4A depletion results in chromosome hypercondensation, suggesting that HKIF4A is required for maintaining normal chromosome architecture. Our results provide functional evidence that human KIF4A is a novel component of the chromosome condensation and segregation machinery functioning in multiple steps of mitotic division.


Assuntos
Núcleo Celular/metabolismo , Segregação de Cromossomos/fisiologia , Cinesinas/fisiologia , Mitose/fisiologia , Proteínas Motores Moleculares/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Aneuploidia , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Cromossomos/genética , Cromossomos/metabolismo , Cromossomos/ultraestrutura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Cinesinas/genética , Metáfase/fisiologia , Proteínas Motores Moleculares/genética , Complexos Multiproteicos , Interferência de RNA , Fuso Acromático/genética , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura
4.
Nucleic Acids Res ; 32(9): 2716-29, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15148359

RESUMO

Proper patterns of genome-wide DNA methylation, mediated by DNA methyltransferases DNMT1, -3A and -3B, are essential for embryonic development and genomic stability in mammalian cells. The de novo DNA methyltransferase DNMT3B is of particular interest because it is frequently overexpressed in tumor cells and is mutated in immunodeficiency, centromere instability and facial anomalies (ICF) syndrome. In order to gain a better understanding of DNMT3B, in terms of the targeting of its methylation activity and its role in genome stability, we biochemically purified endogenous DNMT3B from HeLa cells. DNMT3B co-purifies and interacts, both in vivo and in vitro, with several components of the condensin complex (hCAP-C, hCAP-E and hCAP-G) and KIF4A. Condensin mediates genome-wide chromosome condensation at the onset of mitosis and is critical for proper segregation of sister chromatids. KIF4A is proposed to be a motor protein carrying DNA as cargo. DNMT3B also interacts with histone deacetylase 1 (HDAC1), the co-repressor SIN3A and the ATP-dependent chromatin remodeling enzyme hSNF2H. Further more, DNMT3B co-localizes with condensin and KIF4A on condensed chromosomes throughout mitosis. These studies therefore reveal the first direct link between the machineries regulating DNA methylation and mitotic chromosome condensation in mammalian cells.


Assuntos
Cromossomos/química , Cromossomos/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , DNA/genética , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/isolamento & purificação , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Imunofluorescência , Células HeLa , Humanos , Interfase , Cinesinas/metabolismo , Substâncias Macromoleculares , Mitose , Complexos Multiproteicos , Testes de Precipitina , Ligação Proteica , Transporte Proteico , Sequências Repetitivas de Ácido Nucleico , Xenopus , DNA Metiltransferase 3B
5.
Nucleus ; 2(6): 591-600, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22130187

RESUMO

The kinesin motor protein KIF4 performs essential functions in mitosis. Like other mitotic kinesins, loss of KIF4 causes spindle defects, aneuploidy, genomic instability and ultimately tumor formation. However, KIF4 is unique among molecular motors in that it resides in the cell nucleus throughout interphase, suggesting a non-mitotic function as well. Here we identify a novel cellular function for a molecular motor protein by demonstrating that KIF4 acts as a modulator of large-scale chromatin architecture during interphase. KIF4 binds globally to chromatin and its absence leads to chromatin decondensation and loss of heterochromatin domains. KIF4-dependent chromatin decondensation has functional consequences by causing replication defects and global mis-regulation of gene expression programs. KIF4 exerts its function in chromatin architecture via regulation of ADP-ribosylation of core and linker histones and by physical interaction and recruitment of chromatin assembly proteins during S-phase. These observations document a novel function for a molecular motor protein in establishment and maintenance of higher order chromatin structure.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Heterocromatina/metabolismo , Interfase/fisiologia , Cinesinas/metabolismo , Mitose/fisiologia , Fase S/fisiologia , Células HeLa , Heterocromatina/genética , Humanos , Cinesinas/genética
6.
Bioessays ; 24(11): 1012-22, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12386932

RESUMO

Embryonic development in Drosophila melanogaster begins with a rapid series of mitotic nuclear divisions, unaccompanied by cytokinesis, to produce a multi-nucleated single cell embryo, the syncytial blastoderm. The syncytium then undergoes a process of cell formation, in which the individual nuclei become enclosed in individual cells. This process of cellularization involves integrating mechanisms of cell polarity, cell-cell adhesion and a specialized form of cytokinesis. The detailed molecular mechanism, however, is highly complex and, despite extensive analysis, remains poorly understood. Nevertheless, new insights are emerging from recent studies on aspects of membrane polarization and insertion, which show that membrane components from intracellular organelles are involved. In addition, actin and actin-associated proteins have been heavily implicated while new evidence shows that microtubule cytoskeletal elements are mechanistically involved in all aspects of cellularization. This review will draw on both the traditional models and the new data to provide a current perspective on the nature of cellular blastoderm formation in Drosophila melanogaster.


Assuntos
Blastoderma/citologia , Blastoderma/fisiologia , Drosophila melanogaster/embriologia , Animais , Adesão Celular/fisiologia , Divisão Celular/fisiologia , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Polaridade Celular/fisiologia , Citoesqueleto/metabolismo , Drosophila melanogaster/genética , Genes de Insetos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa