Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 81(21): 4481-4492.e9, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34555356

RESUMO

The etiological role of NSD2 enzymatic activity in solid tumors is unclear. Here we show that NSD2, via H3K36me2 catalysis, cooperates with oncogenic KRAS signaling to drive lung adenocarcinoma (LUAD) pathogenesis. In vivo expression of NSD2E1099K, a hyperactive variant detected in individuals with LUAD, rapidly accelerates malignant tumor progression while decreasing survival in KRAS-driven LUAD mouse models. Pathologic H3K36me2 generation by NSD2 amplifies transcriptional output of KRAS and several complementary oncogenic gene expression programs. We establish a versatile in vivo CRISPRi-based system to test gene functions in LUAD and find that NSD2 loss strongly attenuates tumor progression. NSD2 knockdown also blocks neoplastic growth of PDXs (patient-dervived xenografts) from primary LUAD. Finally, a treatment regimen combining NSD2 depletion with MEK1/2 inhibition causes nearly complete regression of LUAD tumors. Our work identifies NSD2 as a bona fide LUAD therapeutic target and suggests a pivotal epigenetic role of the NSD2-H3K36me2 axis in sustaining oncogenic signaling.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Metilação de DNA , Histona-Lisina N-Metiltransferase/química , Histonas/química , Neoplasias Pulmonares/metabolismo , Proteínas Repressoras/química , Adenocarcinoma de Pulmão/mortalidade , Animais , Biópsia , Sistemas CRISPR-Cas , Carcinogênese/genética , Progressão da Doença , Epigênese Genética , Epigenômica , Feminino , Humanos , Neoplasias Pulmonares/mortalidade , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Oncogenes , Prognóstico , Transdução de Sinais , Resultado do Tratamento
2.
Nature ; 590(7846): 504-508, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536620

RESUMO

Amplification of chromosomal region 8p11-12 is a common genetic alteration that has been implicated in the aetiology of lung squamous cell carcinoma (LUSC)1-3. The FGFR1 gene is the main candidate driver of tumorigenesis within this region4. However, clinical trials evaluating FGFR1 inhibition as a targeted therapy have been unsuccessful5. Here we identify the histone H3 lysine 36 (H3K36) methyltransferase NSD3, the gene for which is located in the 8p11-12 amplicon, as a key regulator of LUSC tumorigenesis. In contrast to other 8p11-12 candidate LUSC drivers, increased expression of NSD3 correlated strongly with its gene amplification. Ablation of NSD3, but not of FGFR1, attenuated tumour growth and extended survival in a mouse model of LUSC. We identify an LUSC-associated variant NSD3(T1232A) that shows increased catalytic activity for dimethylation of H3K36 (H3K36me2) in vitro and in vivo. Structural dynamic analyses revealed that the T1232A substitution elicited localized mobility changes throughout the catalytic domain of NSD3 to relieve auto-inhibition and to increase accessibility of the H3 substrate. Expression of NSD3(T1232A) in vivo accelerated tumorigenesis and decreased overall survival in mouse models of LUSC. Pathological generation of H3K36me2 by NSD3(T1232A) reprograms the chromatin landscape to promote oncogenic gene expression signatures. Furthermore, NSD3, in a manner dependent on its catalytic activity, promoted transformation in human tracheobronchial cells and growth of xenografted human LUSC cell lines with amplification of 8p11-12. Depletion of NSD3 in patient-derived xenografts from primary LUSCs containing NSD3 amplification or the NSD3(T1232A)-encoding variant attenuated neoplastic growth in mice. Finally, NSD3-regulated LUSC-derived xenografts were hypersensitive to bromodomain inhibition. Thus, our work identifies NSD3 as a principal 8p11-12 amplicon-associated oncogenic driver in LUSC, and suggests that NSD3-dependency renders LUSC therapeutically vulnerable to bromodomain inhibition.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Histonas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Nucleares/metabolismo , Animais , Biocatálise , Carcinogênese/genética , Carcinoma de Células Escamosas/genética , Feminino , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Humanos , Neoplasias Pulmonares/genética , Masculino , Metilação , Camundongos , Modelos Moleculares , Mutação , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/deficiência , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Proc Natl Acad Sci U S A ; 120(10): e2211937120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848578

RESUMO

The vast majority of human pancreatic ductal adenocarcinomas (PDACs) harbor TP53 mutations, underscoring p53's critical role in PDAC suppression. PDAC can arise when pancreatic acinar cells undergo acinar-to-ductal metaplasia (ADM), giving rise to premalignant pancreatic intraepithelial neoplasias (PanINs), which finally progress to PDAC. The occurrence of TP53 mutations in late-stage PanINs has led to the idea that p53 acts to suppress malignant transformation of PanINs to PDAC. However, the cellular basis for p53 action during PDAC development has not been explored in detail. Here, we leverage a hyperactive p53 variant-p5353,54-which we previously showed is a more robust PDAC suppressor than wild-type p53, to elucidate how p53 acts at the cellular level to dampen PDAC development. Using both inflammation-induced and KRASG12D-driven PDAC models, we find that p5353,54 both limits ADM accumulation and suppresses PanIN cell proliferation and does so more effectively than wild-type p53. Moreover, p5353,54 suppresses KRAS signaling in PanINs and limits effects on the extracellular matrix (ECM) remodeling. While p5353,54 has highlighted these functions, we find that pancreata in wild-type p53 mice similarly show less ADM, as well as reduced PanIN cell proliferation, KRAS signaling, and ECM remodeling relative to Trp53-null mice. We find further that p53 enhances chromatin accessibility at sites controlled by acinar cell identity transcription factors. These findings reveal that p53 acts at multiple stages to suppress PDAC, both by limiting metaplastic transformation of acini and by dampening KRAS signaling in PanINs, thus providing key new understanding of p53 function in PDAC.


Assuntos
Neoplasias Pancreáticas , Lesões Pré-Cancerosas , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Supressora de Tumor p53/genética , Neoplasias Pancreáticas/genética , Pâncreas , Metaplasia , Camundongos Knockout
4.
Genes Dev ; 31(11): 1095-1108, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28698299

RESUMO

The p53 gene is mutated in over half of all cancers, reflecting its critical role as a tumor suppressor. Although p53 is a transcriptional activator that induces myriad target genes, those p53-inducible genes most critical for tumor suppression remain elusive. Here, we leveraged p53 ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) and RNA-seq (RNA sequencing) data sets to identify new p53 target genes, focusing on the noncoding genome. We identify Neat1, a noncoding RNA (ncRNA) constituent of paraspeckles, as a p53 target gene broadly induced by mouse and human p53 in different cell types and by diverse stress signals. Using fibroblasts derived from Neat1-/- mice, we examined the functional role of Neat1 in the p53 pathway. We found that Neat1 is dispensable for cell cycle arrest and apoptosis in response to genotoxic stress. In sharp contrast, Neat1 plays a crucial role in suppressing transformation in response to oncogenic signals. Neat1 deficiency enhances transformation in oncogene-expressing fibroblasts and promotes the development of premalignant pancreatic intraepithelial neoplasias (PanINs) and cystic lesions in KrasG12D-expressing mice. Neat1 loss provokes global changes in gene expression, suggesting a mechanism by which its deficiency promotes neoplasia. Collectively, these findings identify Neat1 as a p53-regulated large intergenic ncRNA (lincRNA) with a key role in suppressing transformation and cancer initiation, providing fundamental new insight into p53-mediated tumor suppression.


Assuntos
Transformação Celular Neoplásica/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Carcinoma Ductal Pancreático/fisiopatologia , Células Cultivadas , Reparo do DNA/genética , Fibroblastos/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Humanos , Camundongos
5.
J Biol Chem ; 299(6): 104747, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37094697

RESUMO

Protein synthesis is a fundamental step in gene expression, with modulation of mRNA translation at the elongation step emerging as an important regulatory node in shaping cellular proteomes. In this context, five distinct lysine methylation events on eukaryotic elongation factor 1A (eEF1A), a fundamental nonribosomal elongation factor, are proposed to influence mRNA translation elongation dynamics. However, a lack of affinity tools has hindered progress in fully understanding how eEF1A lysine methylation impacts protein synthesis. Here we develop and characterize a suite of selective antibodies to investigate eEF1A methylation and provide evidence that methylation levels decline in aged tissue. Determination of the methyl state and stoichiometry on eEF1A in various cell lines by mass spectrometry shows modest cell-to-cell variability. We also find by Western blot analysis that knockdown of individual eEF1A-specific lysine methyltransferases leads to depletion of the cognate lysine methylation event and indicates active crosstalk between different sites. Further, we find that the antibodies are specific in immunohistochemistry applications. Finally, application of the antibody toolkit suggests that several eEF1A methylation events decrease in aged muscle tissue. Together, our study provides a roadmap for leveraging methyl state and sequence-selective antibody reagents to accelerate discovery of eEF1A methylation-related functions and suggests a role for eEF1A methylation, via protein synthesis regulation, in aging biology.


Assuntos
Lisina , Elongação Traducional da Cadeia Peptídica , Fator 1 de Elongação de Peptídeos , Anticorpos/metabolismo , Lisina/metabolismo , Metilação , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/metabolismo
6.
Genes Dev ; 30(7): 772-85, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26988419

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a lethal form of cancer with few therapeutic options. We found that levels of the lysine methyltransferase SMYD2 (SET and MYND domain 2) are elevated in PDAC and that genetic and pharmacological inhibition of SMYD2 restricts PDAC growth. We further identified the stress response kinase MAPKAPK3 (MK3) as a new physiologic substrate of SMYD2 in PDAC cells. Inhibition of MAPKAPK3 impedes PDAC growth, identifying a potential new kinase target in PDAC. Finally, we show that inhibition of SMYD2 cooperates with standard chemotherapy to treat PDAC cells and tumors. These findings uncover a pivotal role for SMYD2 in promoting pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático/enzimologia , Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias Pancreáticas/enzimologia , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Inibidores Enzimáticos/farmacologia , Células HEK293 , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Estresse Fisiológico
7.
Nature ; 510(7504): 283-7, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24847881

RESUMO

Deregulation of lysine methylation signalling has emerged as a common aetiological factor in cancer pathogenesis, with inhibitors of several histone lysine methyltransferases (KMTs) being developed as chemotherapeutics. The largely cytoplasmic KMT SMYD3 (SET and MYND domain containing protein 3) is overexpressed in numerous human tumours. However, the molecular mechanism by which SMYD3 regulates cancer pathways and its relationship to tumorigenesis in vivo are largely unknown. Here we show that methylation of MAP3K2 by SMYD3 increases MAP kinase signalling and promotes the formation of Ras-driven carcinomas. Using mouse models for pancreatic ductal adenocarcinoma and lung adenocarcinoma, we found that abrogating SMYD3 catalytic activity inhibits tumour development in response to oncogenic Ras. We used protein array technology to identify the MAP3K2 kinase as a target of SMYD3. In cancer cell lines, SMYD3-mediated methylation of MAP3K2 at lysine 260 potentiates activation of the Ras/Raf/MEK/ERK signalling module and SMYD3 depletion synergizes with a MEK inhibitor to block Ras-driven tumorigenesis. Finally, the PP2A phosphatase complex, a key negative regulator of the MAP kinase pathway, binds to MAP3K2 and this interaction is blocked by methylation. Together, our results elucidate a new role for lysine methylation in integrating cytoplasmic kinase-signalling cascades and establish a pivotal role for SMYD3 in the regulation of oncogenic Ras signalling.


Assuntos
Transformação Celular Neoplásica/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Lisina/metabolismo , MAP Quinase Quinase Quinase 2/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Proteína Oncogênica p21(ras)/metabolismo , Adenocarcinoma/enzimologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , MAP Quinase Quinase Quinase 2/química , MAP Quinase Quinase Quinases/química , Metilação , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Oncogênica p21(ras)/genética , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas A-raf/metabolismo , Transdução de Sinais
8.
Proc Natl Acad Sci U S A ; 113(16): 4464-9, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27035983

RESUMO

Pancreatic neuroendocrine tumors (PanNETs) are a type of pancreatic cancer with limited therapeutic options. Consequently, most patients with advanced disease die from tumor progression. Current evidence indicates that a subset of cancer cells is responsible for tumor development, metastasis, and recurrence, and targeting these tumor-initiating cells is necessary to eradicate tumors. However, tumor-initiating cells and the biological processes that promote pathogenesis remain largely uncharacterized in PanNETs. Here we profile primary and metastatic tumors from an index patient and demonstrate that MET proto-oncogene activation is important for tumor growth in PanNET xenograft models. We identify a highly tumorigenic cell population within several independent surgically acquired PanNETs characterized by increased cell-surface protein CD90 expression and aldehyde dehydrogenase A1 (ALDHA1) activity, and provide in vitro and in vivo evidence for their stem-like properties. We performed proteomic profiling of 332 antigens in two cell lines and four primary tumors, and showed that CD47, a cell-surface protein that acts as a "don't eat me" signal co-opted by cancers to evade innate immune surveillance, is ubiquitously expressed. Moreover, CD47 coexpresses with MET and is enriched in CD90(hi)cells. Furthermore, blocking CD47 signaling promotes engulfment of tumor cells by macrophages in vitro and inhibits xenograft tumor growth, prevents metastases, and prolongs survival in vivo.


Assuntos
Tumores Neuroendócrinos , Neoplasias Pancreáticas , Evasão Tumoral , Família Aldeído Desidrogenase 1 , Animais , Antígeno CD47/imunologia , Feminino , Humanos , Isoenzimas/imunologia , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Proteínas de Neoplasias/imunologia , Tumores Neuroendócrinos/imunologia , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/terapia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Proto-Oncogene Mas , Retinal Desidrogenase/imunologia , Antígenos Thy-1/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Sci Rep ; 14(1): 8510, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609433

RESUMO

Pancreatic neuroendocrine tumors (PanNETs) are a heterogeneous group of tumors that exhibit an unpredictable and broad spectrum of clinical presentations and biological aggressiveness. Surgical resection is still the only curative therapeutic option for localized PanNET, but the majority of patients are diagnosed at an advanced and metastatic stage with limited therapeutic options. Key factors limiting the development of new therapeutics are the extensive heterogeneity of PanNETs and the lack of appropriate clinically relevant models. In that context, genomic sequencing of human PanNETs revealed recurrent mutations and structural alterations in several tumor suppressors. Here, we demonstrated that combined loss of MEN1, ATRX, and PTEN, tumor suppressors commonly mutated in human PanNETs, triggers the development of high-grade pancreatic neuroendocrine tumors in mice. Histopathological evaluation and gene expression analyses of the developed tumors confirm the presence of PanNET hallmarks and significant overlap in gene expression patterns found in human disease. Thus, we postulate that the presented novel genetically defined mouse model is the first clinically relevant immunocompetent high-grade PanNET mouse model.


Assuntos
Tumores Neuroendócrinos , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Agressão , Mapeamento Cromossômico , Modelos Animais de Doenças , Tumores Neuroendócrinos/genética , Neoplasias Pancreáticas/genética , PTEN Fosfo-Hidrolase/genética , Proteína Nuclear Ligada ao X/genética
10.
Cell Discov ; 10(1): 12, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296970

RESUMO

Malignant forms of breast cancer refractory to existing therapies remain a major unmet health issue, primarily due to metastatic spread. A better understanding of the mechanisms at play will provide better insights for alternative treatments to prevent breast cancer cell dispersion. Here, we identify the lysine methyltransferase SMYD2 as a clinically actionable master regulator of breast cancer metastasis. While SMYD2 is overexpressed in aggressive breast cancers, we notice that it is not required for primary tumor growth. However, mammary-epithelium specific SMYD2 ablation increases mouse overall survival by blocking the primary tumor cell ability to metastasize. Mechanistically, we identify BCAR3 as a genuine physiological substrate of SMYD2 in breast cancer cells. BCAR3 monomethylated at lysine K334 (K334me1) is recognized by a novel methyl-binding domain present in FMNLs proteins. These actin cytoskeleton regulators are recruited at the cell edges by the SMYD2 methylation signaling and modulate lamellipodia properties. Breast cancer cells with impaired BCAR3 methylation lose migration and invasiveness capacity in vitro and are ineffective in promoting metastases in vivo. Remarkably, SMYD2 pharmacologic inhibition efficiently impairs the metastatic spread of breast cancer cells, PDX and aggressive mammary tumors from genetically engineered mice. This study provides a rationale for innovative therapeutic prevention of malignant breast cancer metastatic progression by targeting the SMYD2-BCAR3-FMNL axis.

11.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38464291

RESUMO

Lung cancer, the leading cause of cancer mortality, exhibits diverse histological subtypes and genetic complexities. Numerous preclinical mouse models have been developed to study lung cancer, but data from these models are disparate, siloed, and difficult to compare in a centralized fashion. Here we established the Lung Cancer Mouse Model Database (LCMMDB), an extensive repository of 1,354 samples from 77 transcriptomic datasets covering 974 samples from genetically engineered mouse models (GEMMs), 368 samples from carcinogen-induced models, and 12 samples from a spontaneous model. Meticulous curation and collaboration with data depositors have produced a robust and comprehensive database, enhancing the fidelity of the genetic landscape it depicts. The LCMMDB aligns 859 tumors from GEMMs with human lung cancer mutations, enabling comparative analysis and revealing a pressing need to broaden the diversity of genetic aberrations modeled in GEMMs. Accompanying this resource, we developed a web application that offers researchers intuitive tools for in-depth gene expression analysis. With standardized reprocessing of gene expression data, the LCMMDB serves as a powerful platform for cross-study comparison and lays the groundwork for future research, aiming to bridge the gap between mouse models and human lung cancer for improved translational relevance.

12.
J Pathol ; 226(5): 723-34, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21984419

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) and its precursor lesions, pancreatic intraepithelial neoplasia (PanIN), display a ductal phenotype. However, there is evidence in genetically defined mouse models for PDAC harbouring a mutated kras under the control of a pancreas-specific promoter that ductal cancer might arise in the centroacinar-acinar region, possibly through a process of acinar-ductal metaplasia (ADM). In order to further elucidate this model of PDAC development, an extensive expression analysis and molecular characterization of the putative and already established (PanIN) precursor lesions were performed in the Kras(G12D/+) ; Ptf1a-Cre(ex1/+) mouse model and in human tissues, focusing on lineage markers, developmental pathways, cell cycle regulators, apomucins, and stromal activation markers. The results of this study show that areas of ADM are very frequent in the murine and human pancreas and represent regions of increased proliferation of cells with precursor potential. Moreover, atypical flat lesions originating in areas of ADM are the most probable precursors of PDAC in the Kras(G12D/+); Ptf1a-Cre(ex1/+) mice and similar lesions were also found in the pancreas of three patients with a strong family history of PDAC. In conclusion, PDAC development in Kras(G12D/+); Ptf1a-Cre(ex1/+) mice starts from ADM and a similar process might also take place in patients with a strong family history of PDAC.


Assuntos
Carcinoma in Situ/patologia , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/patologia , Neoplasias Experimentais/patologia , Neoplasias Pancreáticas/patologia , Lesões Pré-Cancerosas/patologia , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma in Situ/genética , Carcinoma in Situ/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Diferenciação Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes ras , Predisposição Genética para Doença , Hereditariedade , Humanos , Imuno-Histoquímica , Metaplasia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Linhagem , Fenótipo , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Fatores de Transcrição/genética
13.
Proc Natl Acad Sci U S A ; 107(30): 13438-43, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20624967

RESUMO

Pancreatic cancer is one of the most fatal malignancies lacking effective therapies. Notch signaling is a key regulator of cell fate specification and pancreatic cancer development; however, the role of individual Notch receptors and downstream signaling is largely unknown. Here, we show that Notch2 is predominantly expressed in ductal cells and pancreatic intraepithelial neoplasia (PanIN) lesions. Using genetically engineered mice, we demonstrate the effect of conditional Notch receptor ablation in KrasG12D-driven pancreatic carcinogenesis. Deficiency of Notch2 but not Notch1 stops PanIN progression, prolongs survival, and leads to a phenotypical switch toward anaplastic pancreatic cancer with epithelial-mesenchymal transition. By expression profiling, we identified increased Myc signaling regulated by Notch2 during tumor development, placing Notch2 as a central regulator of PanIN progression and malignant transformation. Our study supports the concept of distinctive roles of individual Notch receptors in cancer development.


Assuntos
Adenocarcinoma/patologia , Carcinoma in Situ/patologia , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Receptor Notch2/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Western Blotting , Carcinoma in Situ/genética , Carcinoma in Situ/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Knockout , Pâncreas/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptor Notch2/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
14.
Gut ; 61(10): 1488-500, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21873467

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains a devastating disease despite tremendous scientific efforts. Numerous trials have failed to improve the outcome on this deadliest of all major cancers. Potential causes include a still insufficient understanding of key features of this cancer and imperfect preclinical models for identification of active agents and mechanisms of therapeutic responses and resistance. Modern genetically engineered mouse models of PDAC faithfully recapitulate the genetic and biological evolution of human PDAC, thereby providing a potentially powerful tool for addressing tumour biological issues as well as strategies for early detection and assessment of responses to therapeutic interventions. Here, the authors will discuss opportunities and challenges in the application of genetically engineered mouse models for translational approaches in pancreatic cancer and provide a non-exhaustive list of examples with already existing or future clinical relevance.


Assuntos
Carcinoma Ductal Pancreático , Camundongos Transgênicos , Neoplasias Experimentais , Neoplasias Pancreáticas , Pesquisa Translacional Biomédica , Animais , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/terapia , Marcadores Genéticos , Humanos , Camundongos , Neoplasias Experimentais/diagnóstico , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/terapia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia
15.
Nat Biomed Eng ; 7(9): 1170-1187, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37652986

RESUMO

The design of chimeric antigen receptor (CAR) T cells would benefit from knowledge of the fate of the cells in vivo. This requires the permanent labelling of CAR T cell products and their pooling in the same microenvironment. Here, we report a cell-barcoding method for the multiplexed longitudinal profiling of cells in vivo using single-cell RNA sequencing (scRNA-seq). The method, which we named shielded-small-nucleotide-based scRNA-seq (SSN-seq), is compatible with both 3' and 5' single-cell profiling, and enables the recording of cell identity, from cell infusion to isolation, by leveraging the ubiquitous Pol III U6 promoters to robustly express small-RNA barcodes modified with direct-capture sequences. By using SSN-seq to track the dynamics of the states of CAR T cells in a tumour-rechallenge mouse model of leukaemia, we found that a combination of cytokines and small-molecule inhibitors that are used in the ex vivo manufacturing of CAR T cells promotes the in vivo expansion of persistent populations of CD4+ memory T cells. By facilitating the probing of cell-state dynamics in vivo, SSN-seq may aid the development of adoptive cell therapies.


Assuntos
Linfócitos T CD4-Positivos , Transcriptoma , Humanos , Animais , Camundongos , Terapia Baseada em Transplante de Células e Tecidos , Citocinas , Nucleotídeos
16.
Nat Commun ; 14(1): 363, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690626

RESUMO

The coactivator associated arginine methyltransferase (CARM1) promotes transcription, as its name implies. It does so by modifying histones and chromatin bound proteins. We identified nuclear factor I B (NFIB) as a CARM1 substrate and show that this transcription factor utilizes CARM1 as a coactivator. Biochemical studies reveal that tripartite motif 29 (TRIM29) is an effector molecule for methylated NFIB. Importantly, NFIB harbors both oncogenic and metastatic activities, and is often overexpressed in small cell lung cancer (SCLC). Here, we explore the possibility that CARM1 methylation of NFIB is important for its transforming activity. Using a SCLC mouse model, we show that both CARM1 and the CARM1 methylation site on NFIB are critical for the rapid onset of SCLC. Furthermore, CARM1 and methylated NFIB are responsible for maintaining similar open chromatin states in tumors. Together, these findings suggest that CARM1 might be a therapeutic target for SCLC.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Animais , Camundongos , Fatores de Transcrição NFI , Proteína-Arginina N-Metiltransferases/metabolismo , Cromatina
17.
bioRxiv ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37790557

RESUMO

Malignant forms of breast cancer refractory to existing therapies remain a major unmet health issue, primarily due to metastatic spread. A better understanding of the mechanisms at play will provide better insights for alternative treatments to prevent breast cancer cells dispersion. Here, we identify the lysine methyltransferase SMYD2 as a clinically actionable master regulator of breast cancer metastasis. While SMYD2 is overexpressed in aggressive breast cancers, we notice that it is not required for primary tumor growth. However, mammary-epithelium specific SMYD2 ablation increases mouse overall survival by blocking the primary tumor cells ability to metastasize. Mechanistically, we identify BCAR3 as a genuine physiological substrate of SMYD2 in breast cancer cells. BCAR3 monomethylated at lysine K334 (K334me1) is recognized by a novel methyl-binding domain present in FMNLs proteins. These actin cytoskeleton regulators are recruited at the cell edges by the SMYD2 methylation signaling and modulates lamellipodia properties. Breast cancer cells with impaired BCAR3 methylation loose migration and invasiveness capacity in vitro and are ineffective in promoting metastases in vivo . Remarkably, SMYD2 pharmacologic inhibition efficiently impairs the metastatic spread of breast cancer cells, PDX and aggressive mammary tumors from genetically engineered mice. This study provides a rationale for innovative therapeutic prevention of malignant breast cancer metastatic progression by targeting the SMYD2-BCAR3-FMNL axis.

18.
Gastroenterology ; 141(2): 719-30, 730.e1-7, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21684285

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease without effective chemopreventive or therapeutic approaches. Although the role of oncogenic Kras in initiating development of PDAC is well established, downstream targets of aberrant Ras signaling are poorly understood. Acinar-ductal metaplasia (ADM) appears to be an important prerequisite for development of pancreatic intraepithelial neoplasia (PanIN), a common precursor to PDAC. RAS-related C3 botulinum substrate 1 (Rac1), which controls actin reorganization, can be activated by Ras, is up-regulated in several human cancers, and is required for cerulein-induced morphologic changes in acini. We investigated effects of loss of Rac1 in Kras-induced pancreatic carcinogenesis in mice. METHODS: Using a Cre/lox approach, we deleted Rac1 from pancreatic progenitor cells in different mouse models of PDAC and in mice with cerulein-induced acute pancreatitis. Acinar epithelial explants of mutant mice were used to investigate the role of Rac1 in vitro. RESULTS: Rac1 expression increased in mouse and human pancreatic tumors, particularly in the stroma. Deletion of Rac1 in Kras(G12D)-induced PDAC in mice reduced formation of ADM, PanIN, and tumors and significantly prolonged survival. Pancreatic epithelial metaplasia was accompanied by apical-basolateral redistribution of F-actin, along with basal expression of Rac1. Acinar epithelial explants that lacked Rac1 or that were incubated with inhibitors of actin polymerization had a reduced ability to undergo ADM in 3-dimensional cultures. CONCLUSIONS: In mice, Rac1 is required for early metaplastic changes and neoplasia-associated actin rearrangements in development of pancreatic cancer. Rac1 might be developed as a diagnostic marker or therapeutic target for PDAC.


Assuntos
Carcinoma in Situ/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Transformação Celular Neoplásica/metabolismo , Metaplasia/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Carcinoma in Situ/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Ceruletídeo , Genes ras , Humanos , Estimativa de Kaplan-Meier , Queratina-19/metabolismo , Metaplasia/genética , Metaplasia/patologia , Camundongos , Modelos Animais , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Pancreatite/induzido quimicamente , Pancreatite/metabolismo , Pancreatite/patologia , Taxa de Sobrevida , Proteínas rac1 de Ligação ao GTP/deficiência , Proteínas rac1 de Ligação ao GTP/genética
19.
Am J Gastroenterol ; 107(1): 126-35, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21931375

RESUMO

OBJECTIVES: Biliary tract cancer (BTC) is a fatal cancer originating from epithelial cells of the intra- and extra-hepatic biliary duct system and the gallbladder. Genes and pathways regulating stem and progenitor cells as well as cell-fate decisions are increasingly recognized in tumorigenesis. We evaluated the expression of Notch1, Notch2, and HES1 (hairy and enhancer of split 1), as well as the biliary cell-fate regulators SOX9 (SRY (sex determining region Y)-box 9) and HNF1ß (hepatocyte nuclear factor 1ß), in BTC for correlation with clinicopathological parameters. METHODS: Tissue microarrays including normal bile ducts and 111 BTCs consisting of 17 intrahepatic cholangiocarcinomas, 58 extrahepatic cholangiocarcinomas, and 36 gallbladder carcinomas were analyzed using immunohistochemistry. RESULTS: Lack of cytoplasmic SOX9 expression was associated with a higher tumor grade (P=0.010) and a significantly reduced overall survival (P=0.002; median 6 months vs. 24 months) in univariate survival analysis, whereas lack of nuclear SOX9 expression was associated with a higher tumor stage (P=0.003). Notch pathway members showed high expression in BTC. However, no correlation was found between cytoplasmic or nuclear Notch1, Notch2, and HES1, as well as HNF1ß expression, and any of the clinicopathological parameters. In multivariate analysis, cytoplasmic SOX9 expression was an independent prognostic factor for overall survival (P=0.031, relative risk=0.571). CONCLUSIONS: We show strong Notch pathway activation and identify SOX9 as a prognostic marker in BTC. These results substantiate diagnostic and therapeutic approaches targeting developmentally active genes and pathways.


Assuntos
Neoplasias do Sistema Biliar/genética , Carcinoma/genética , Regulação Neoplásica da Expressão Gênica , Adulto , Idoso , Idoso de 80 Anos ou mais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Feminino , Fator 1-beta Nuclear de Hepatócito/genética , Proteínas de Homeodomínio/genética , Humanos , Masculino , Pessoa de Meia-Idade , Receptor Notch1/genética , Receptor Notch2/genética , Estudos Retrospectivos , Fatores de Transcrição SOX9/genética , Fatores de Transcrição HES-1
20.
Cancer Discov ; 12(9): 2158-2179, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35819319

RESUMO

Small cell lung cancer (SCLC) is the most fatal form of lung cancer, with dismal survival, limited therapeutic options, and rapid development of chemoresistance. We identified the lysine methyltransferase SMYD3 as a major regulator of SCLC sensitivity to alkylation-based chemotherapy. RNF113A methylation by SMYD3 impairs its interaction with the phosphatase PP4, controlling its phosphorylation levels. This cross-talk between posttranslational modifications acts as a key switch in promoting and maintaining RNF113A E3 ligase activity, essential for its role in alkylation damage response. In turn, SMYD3 inhibition restores SCLC vulnerability to alkylating chemotherapy. Our study sheds light on a novel role of SMYD3 in cancer, uncovering this enzyme as a mediator of alkylation damage sensitivity and providing a rationale for small-molecule SMYD3 inhibition to improve responses to established chemotherapy. SIGNIFICANCE: SCLC rapidly becomes resistant to conventional chemotherapy, leaving patients with no alternative treatment options. Our data demonstrate that SMYD3 upregulation and RNF113A methylation in SCLC are key mechanisms that control the alkylation damage response. Notably, SMYD3 inhibition sensitizes cells to alkylating agents and promotes sustained SCLC response to chemotherapy. This article is highlighted in the In This Issue feature, p. 2007.


Assuntos
Proteínas de Ligação a DNA , Histona-Lisina N-Metiltransferase , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Alquilação , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Metilação , Fosforilação , Processamento de Proteína Pós-Traducional , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa