Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Cell ; 84(1): 55-69, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38029753

RESUMO

Mitotic cell division is tightly monitored by checkpoints that safeguard the genome from instability. Failures in accurate chromosome segregation during mitosis can cause numerical aneuploidy, which was hypothesized by Theodor Boveri over a century ago to promote tumorigenesis. Recent interrogation of pan-cancer genomes has identified unexpected classes of chromosomal abnormalities, including complex rearrangements arising through chromothripsis. This process is driven by mitotic errors that generate abnormal nuclear structures that provoke extensive yet localized shattering of mis-segregated chromosomes. Here, we discuss emerging mechanisms underlying chromothripsis from micronuclei and chromatin bridges, as well as highlight how this mutational cascade converges on the DNA damage response. A fundamental understanding of these catastrophic processes will provide insight into how initial errors in mitosis can precipitate rapid cancer genome evolution.


Assuntos
Cromotripsia , Neoplasias , Humanos , Aberrações Cromossômicas , Mitose/genética , Instabilidade Genômica , Neoplasias/genética
2.
Nature ; 618(7967): 1041-1048, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37165191

RESUMO

Complex genome rearrangements can be generated by the catastrophic pulverization of missegregated chromosomes trapped within micronuclei through a process known as chromothripsis1-5. As each chromosome contains a single centromere, it remains unclear how acentric fragments derived from shattered chromosomes are inherited between daughter cells during mitosis6. Here we tracked micronucleated chromosomes with live-cell imaging and show that acentric fragments cluster in close spatial proximity throughout mitosis for asymmetric inheritance by a single daughter cell. Mechanistically, the CIP2A-TOPBP1 complex prematurely associates with DNA lesions within ruptured micronuclei during interphase, which poises pulverized chromosomes for clustering upon mitotic entry. Inactivation of CIP2A-TOPBP1 caused acentric fragments to disperse throughout the mitotic cytoplasm, stochastically partition into the nucleus of both daughter cells and aberrantly misaccumulate as cytoplasmic DNA. Mitotic clustering facilitates the reassembly of acentric fragments into rearranged chromosomes lacking the extensive DNA copy-number losses that are characteristic of canonical chromothripsis. Comprehensive analysis of pan-cancer genomes revealed clusters of DNA copy-number-neutral rearrangements-termed balanced chromothripsis-across diverse tumour types resulting in the acquisition of known cancer driver events. Thus, distinct patterns of chromothripsis can be explained by the spatial clustering of pulverized chromosomes from micronuclei.


Assuntos
Cromossomos Humanos , Cromotripsia , Micronúcleos com Defeito Cromossômico , Mitose , Humanos , Centrômero , Cromossomos Humanos/genética , DNA/genética , DNA/metabolismo , Variações do Número de Cópias de DNA , Interfase , Mitose/genética , Neoplasias/genética
3.
Chromosoma ; 124(2): 277-87, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25413176

RESUMO

The centromere directs the segregation of chromosomes during mitosis and meiosis. It is a distinct genetic locus whose identity is established through epigenetic mechanisms that depend on the deposition of centromere-specific centromere protein A (CENP-A) nucleosomes. This important chromatin domain has so far escaped comprehensive molecular analysis due to its typical association with highly repetitive satellite DNA. In previous work, we discovered that the centromere of horse chromosome 11 is completely devoid of satellite DNA; this peculiar feature makes it a unique model to dissect the molecular architecture of mammalian centromeres. Here, we exploited this native satellite-free centromere to determine the precise localization of its functional domains in five individuals: We hybridized DNA purified from chromatin immunoprecipitated with an anti CENP-A antibody to a high resolution array (ChIP-on-chip) of the region containing the primary constriction of horse chromosome 11. Strikingly, each individual exhibited a different arrangement of CENP-A binding domains. We then analysed the organization of each domain using a single nucleotide polymorphism (SNP)-based approach and single molecule analysis on chromatin fibres. Examination of the ten instances of chromosome 11 in the five individuals revealed seven distinct 'positional alleles', each one extending for about 80-160 kb, were found across a region of about 500 kb. Our results demonstrate that CENP-A binding domains are autonomous relative to the underlying DNA sequence and are characterized by positional instability causing the sliding of centromere position. We propose that this dynamic behaviour may be common in mammalian centromeres and may determine the establishment of epigenetic alleles.


Assuntos
Centrômero/genética , Cromossomos de Mamíferos/genética , Cavalos/genética , Alelos , Animais , Autoantígenos/genética , Linhagem Celular , Proteína Centromérica A , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Clonagem Molecular , DNA Satélite , Epigênese Genética , Feminino , Masculino , Meiose , Procedimentos Analíticos em Microchip , Mitose , Nucleossomos/genética , Polimorfismo de Nucleotídeo Único
4.
BMC Genet ; 16: 126, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26503543

RESUMO

BACKGROUND: In mammals, an important source of genomic variation is insertion polymorphism of retrotransposons. These may acquire a functional role when inserted inside genes or in their proximity. The aim of this work was to carry out a genome wide analysis of ERE1 retrotransposons in the horse and to analyze insertion polymorphism in relation to evolution and function. The effect of an ERE1 insertion in the promoter of the myostatin gene, which is involved in muscle development, was also investigated. RESULTS: In the horse population, the fraction of ERE1 polymorphic loci is related to the degree of similarity to their consensus sequence. Through the analysis of ERE1 conservation in seven equid species, we established that the level of identity to their consensus is indicative of evolutionary age of insertion. The position of ERE1s relative to genes suggests that some elements have acquired a functional role. Reporter gene assays showed that the ERE1 insertion within the horse myostatin promoter affects gene expression. The frequency of this variant promoter correlates with sport aptitude and racing performance. CONCLUSIONS: Sequence conservation and insertion polymorphism of ERE1 elements are related to the time of their appearance in the horse lineage, therefore, ERE1s are a useful tool for evolutionary and population studies. Our results suggest that the ERE1 insertion at the myostatin locus has been unwittingly selected by breeders to obtain horses with specific racing abilities. Although a complex combination of environmental and genetic factors contributes to athletic performance, breeding schemes may take into account ERE1 insertion polymorphism at the myostatin promoter.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica , Genoma , Cavalos/genética , Mutagênese Insercional/genética , Miostatina/genética , Regiões Promotoras Genéticas , Sequências Repetitivas de Ácido Nucleico/genética , Animais , Sequência de Bases , Sequência Conservada/genética , Genes Reporter , Loci Gênicos , Genótipo , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único , Retroelementos/genética
5.
Cytogenet Genome Res ; 144(2): 114-23, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25342230

RESUMO

Centromeres are the sites of kinetochore assembly and spindle fiber attachment and consist of protein-DNA complexes in which the DNA component is typically characterized by the presence of extended arrays of tandem repeats called satellite DNA. Here, we describe the isolation and characterization of a 137-bp-long new satellite DNA sequence from the horse genome (EC137), which is also present, even if less abundant, in the domestic donkey, the Grevy's zebra and the Burchelli's zebra. We investigated the chromosomal distribution of the EC137 sequence in these 4 species. Moreover, we analyzed its architectural organization by high-resolution FISH. The position of this sequence with respect to the primary constriction and in relation to the 2 major horse satellite tandem repeats (37 cen and 2PI) on horse chromosomes suggests that the new centromeric equine satellite is an accessory DNA element, presumably contributing to the organization of pericentromeric chromatin. FISH on combed DNA fibers reveals that the EC137 satellite is organized in relatively short stretches (2-8 kb) which are strictly intermingled within 37 cen or 2PI arrays. This arrangement suggests that interchanges between satellite families are a frequent occurrence in the horse genome.


Assuntos
DNA Satélite/genética , Animais , Sequência de Bases , Linhagem Celular , Centrômero/ultraestrutura , Cromossomos/ultraestrutura , DNA/genética , Equidae , Fibroblastos/citologia , Vetores Genéticos , Cavalos , Cinetocoros/ultraestrutura , Metáfase , Dados de Sequência Molecular , Sequências Repetitivas de Ácido Nucleico
6.
Nat Commun ; 15(1): 5611, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965240

RESUMO

Mitotic errors generate micronuclei entrapping mis-segregated chromosomes, which are susceptible to catastrophic fragmentation through chromothripsis. The reassembly of fragmented chromosomes by error-prone DNA double-strand break (DSB) repair generates diverse genomic rearrangements associated with human diseases. How specific repair pathways recognize and process these lesions remains poorly understood. Here we use CRISPR/Cas9 to systematically inactivate distinct DSB repair pathways and interrogate the rearrangement landscape of fragmented chromosomes. Deletion of canonical non-homologous end joining (NHEJ) components substantially reduces complex rearrangements and shifts the rearrangement landscape toward simple alterations without the characteristic patterns of chromothripsis. Following reincorporation into the nucleus, fragmented chromosomes localize within sub-nuclear micronuclei bodies (MN bodies) and undergo ligation by NHEJ within a single cell cycle. In the absence of NHEJ, chromosome fragments are rarely engaged by alternative end-joining or recombination-based mechanisms, resulting in delayed repair kinetics, persistent 53BP1-labeled MN bodies, and cell cycle arrest. Thus, we provide evidence supporting NHEJ as the exclusive DSB repair pathway generating complex rearrangements from mitotic errors.


Assuntos
Sistemas CRISPR-Cas , Cromotripsia , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Mitose , Mitose/genética , Humanos , Rearranjo Gênico , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Micronúcleos com Defeito Cromossômico
7.
bioRxiv ; 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37609143

RESUMO

Errors in mitosis can generate micronuclei that entrap mis-segregated chromosomes, which are susceptible to catastrophic fragmentation through a process termed chromothripsis. The reassembly of fragmented chromosomes by error-prone DNA double-strand break (DSB) repair generates a spectrum of simple and complex genomic rearrangements that are associated with human cancers and disorders. How specific DSB repair pathways recognize and process these lesions remains poorly understood. Here we used CRISPR/Cas9 to systematically inactivate distinct DSB processing or repair pathways and interrogated the rearrangement landscape of fragmented chromosomes from micronuclei. Deletion of canonical non-homologous end joining (NHEJ) components, including DNA-PKcs, LIG4, and XLF, substantially reduced the formation of complex rearrangements and shifted the rearrangement landscape toward simple alterations without the characteristic patterns of cancer-associated chromothripsis. Following reincorporation into the nucleus, fragmented chromosomes localize within micronuclei bodies (MN bodies) and undergo successful ligation by NHEJ within a single cell cycle. In the absence of NHEJ, chromosome fragments were rarely engaged by polymerase theta-mediated alternative end-joining or recombination-based mechanisms, resulting in delayed repair kinetics and persistent 53BP1-labeled MN bodies in the interphase nucleus. Prolonged DNA damage signaling from unrepaired fragments ultimately triggered cell cycle arrest. Thus, we provide evidence supporting NHEJ as the exclusive DSB repair pathway generating complex rearrangements following chromothripsis from mitotic errors.

8.
Genome Biol ; 23(1): 223, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266663

RESUMO

BACKGROUND: A major driver of cancer chromosomal instability is replication stress, the slowing or stalling of DNA replication. How replication stress and genomic instability are connected is not known. Aphidicolin-induced replication stress induces breakages at common fragile sites, but the exact causes of fragility are debated, and acute genomic consequences of replication stress are not fully explored. RESULTS: We characterize DNA copy number alterations (CNAs) in single, diploid non-transformed cells, caused by one cell cycle in the presence of either aphidicolin or hydroxyurea. Multiple types of CNAs are generated, associated with different genomic regions and features, and observed copy number landscapes are distinct between aphidicolin and hydroxyurea-induced replication stress. Coupling cell type-specific analysis of CNAs to gene expression and single-cell replication timing analyses pinpointed the causative large genes of the most recurrent chromosome-scale CNAs in aphidicolin. These are clustered on chromosome 7 in RPE1 epithelial cells but chromosome 1 in BJ fibroblasts. Chromosome arm level CNAs also generate acentric lagging chromatin and micronuclei containing these chromosomes. CONCLUSIONS: Chromosomal instability driven by replication stress occurs via focal CNAs and chromosome arm scale changes, with the latter confined to a very small subset of chromosome regions, potentially heavily skewing cancer genome evolution. Different inducers of replication stress lead to distinctive CNA landscapes providing the opportunity to derive copy number signatures of specific replication stress mechanisms. Single-cell CNA analysis thus reveals the impact of replication stress on the genome, providing insights into the molecular mechanisms which fuel chromosomal instability in cancer.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Humanos , Afidicolina/farmacologia , Hidroxiureia/farmacologia , Neoplasias/genética , DNA , Instabilidade Cromossômica , Cromossomos , Cromatina
10.
Genes (Basel) ; 10(6)2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226862

RESUMO

The typical vertebrate centromeres contain long stretches of highly repeated DNA sequences (satellite DNA). We previously demonstrated that the karyotypes of the species belonging to the genus Equus are characterized by the presence of satellite-free and satellite-based centromeres and represent a unique biological model for the study of centromere organization and behavior. Using horse primary fibroblasts cultured in vitro, we compared the segregation fidelity of chromosome 11, whose centromere is satellite-free, with that of chromosome 13, which has similar size and a centromere containing long stretches of satellite DNA. The mitotic stability of the two chromosomes was compared under normal conditions and under mitotic stress induced by the spindle inhibitor, nocodazole. Two independent molecular-cytogenetic approaches were used-the interphase aneuploidy analysis and the cytokinesis-block micronucleus assay. Both assays were coupled to fluorescence in situ hybridization with chromosome specific probes in order to identify chromosome 11 and chromosome 13, respectively. In addition, we tested if the lack of centromeric satellite DNA affected chromatid cohesion under normal and stress conditions. We demonstrated that, in our system, the segregation fidelity of a chromosome is not influenced by the presence of long stretches of tandem repeats at its centromere. To our knowledge, the present study is the first analysis of the mitotic behavior of a natural satellite-free centromere.


Assuntos
Centrômero/genética , Cromossomos/genética , DNA Satélite/genética , Cavalos/genética , Aneuploidia , Animais , Segregação de Cromossomos/genética , Cavalos/classificação , Humanos , Hibridização in Situ Fluorescente , Interfase/genética , Cariotipagem , Sequências de Repetição em Tandem/genética
11.
Cell Rep ; 23(11): 3366-3380, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29898405

RESUMO

A common assumption is that human chromosomes carry equal chances of mis-segregation during compromised cell division. Human chromosomes vary in multiple parameters that might generate bias, but technological limitations have precluded a comprehensive analysis of chromosome-specific aneuploidy. Here, by imaging specific centromeres coupled with high-throughput single-cell analysis as well as single-cell sequencing, we show that aneuploidy occurs non-randomly following common treatments to elevate chromosome mis-segregation. Temporary spindle disruption leads to elevated mis-segregation and aneuploidy of a subset of chromosomes, particularly affecting chromosomes 1 and 2. Unexpectedly, we find that a period of mitotic delay weakens centromeric cohesion and promotes chromosome mis-segregation and that chromosomes 1 and 2 are particularly prone to suffer cohesion fatigue. Our findings demonstrate that inherent properties of individual chromosomes can bias chromosome mis-segregation and aneuploidy rates, with implications for studies on aneuploidy in human disease.


Assuntos
Segregação de Cromossomos , Cromossomos Humanos/metabolismo , Anáfase , Aneuploidia , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Segregação de Cromossomos/efeitos dos fármacos , Cromossomos Humanos/genética , Humanos , Hibridização in Situ Fluorescente , Cinetocoros/metabolismo , Nocodazol/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Análise de Célula Única
12.
Mol Cytogenet ; 9: 35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27123044

RESUMO

BACKGROUND: The centromere is the specialized locus required for correct chromosome segregation during cell division. The DNA of most eukaryotic centromeres is composed of extended arrays of tandem repeats (satellite DNA). In the horse, we previously showed that, although the centromere of chromosome 11 is completely devoid of tandem repeat arrays, all other centromeres are characterized by the presence of satellite DNA. We isolated three horse satellite DNA sequences (37cen, 2P1 and EC137) and described their chromosomal localization in four species of the genus Equus. RESULTS: In the work presented here, using the ChIP-seq methodology, we showed that, in the horse, the 37cen satellite binds CENP-A, the centromere-specific histone-H3 variant. The 37cen sequence bound by CENP-A is GC-rich with 221 bp units organized in a head-to-tail fashion. The physical interaction of CENP-A with 37cen was confirmed through slot blot experiments. Immuno-FISH on stretched chromosomes and chromatin fibres demonstrated that the extension of satellite DNA stretches is variable and is not related to the organization of CENP-A binding domains. Finally, we proved that the centromeric satellite 37cen is transcriptionally active. CONCLUSIONS: Our data offer new insights into the organization of horse centromeres. Although three different satellite DNA families are cytogenetically located at centromeres, only the 37cen family is associated to the centromeric function. Moreover, similarly to other species, CENP-A binding domains are variable in size. The transcriptional competence of the 37cen satellite that we observed adds new evidence to the hypothesis that centromeric transcripts may be required for centromere function.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa