Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 291(35): 18058-18071, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27382057

RESUMO

We show how enhancers of macrophage-specific genes are rendered accessible in differentiating macrophages to allow their induction in mature cells in response to an appropriate stimulus. Using a lentiviral knockdown approach in primary differentiating macrophages from mouse bone marrow, we demonstrate that enhancers of Il12b and Il1a are kept relatively lowly occupied by nucleosomes and accessible through recruitment of the nucleosome remodeler BAF/PBAF. Our results using an inducible cell line that expresses an estrogen receptor fusion of the macrophage-specific transcription factor PU.1 (PUER) show that BAF/PBAF recruitment to these enhancers is a consequence of translocation of PUER to the nucleus in the presence of tamoxifen, and we speculate that remodeler recruitment may be directly mediated by PU.1. In the absence of BAF/PBAF recruitment, nucleosome occupancy at the enhancer of Il12b (and to a lesser extent at Il1a) reaches high levels in bone marrow-derived macrophages (BMDMs), and the enhancers are not fully cleared of nucleosomes upon LPS induction, resulting in impaired gene expression. Analysis of Il12b expression in single cells suggests that recruitment of the remodeler is necessary for high levels of transcription from the same promoter, and we propose that remodelers function by increasing nucleosome turnover to facilitate transcription factor over nucleosome binding in a process we have termed "remodeler-assisted competition."


Assuntos
Diferenciação Celular/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Elementos Facilitadores Genéticos/fisiologia , Macrófagos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores de Estrogênio/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas Cromossômicas não Histona/genética , Humanos , Camundongos , Nucleossomos/genética , Nucleossomos/metabolismo , Proteínas Proto-Oncogênicas/genética , Receptores de Estrogênio/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transativadores/genética , Fatores de Transcrição/genética
2.
Front Genet ; 14: 1272964, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028620

RESUMO

Digital PCR (dPCR) is a powerful tool for research and diagnostic applications that require absolute quantification of target molecules or detection of rare events, but the number of nucleic acid targets that can be distinguished within an assay has limited its usefulness. For most dPCR systems, one target is detected per optical channel and the total number of targets is limited by the number of optical channels on the platform. Higher-order multiplexing has the potential to dramatically increase the usefulness of dPCR, especially in scenarios with limited sample. Other potential benefits of multiplexing include lower cost, additional information generated by more probes, and higher throughput. To address this unmet need, we developed a novel melt-based hairpin probe design to provide a robust option for multiplexing digital PCR. A prototype multiplex digital PCR (mdPCR) assay using three melt-based hairpin probes per optical channel in a 16-well microfluidic digital PCR platform accurately distinguished and quantified 12 nucleic acid targets per well. For samples with 10,000 human genome equivalents, the probe-specific ranges for limit of blank were 0.00%-0.13%, and those for analytical limit of detection were 0.00%-0.20%. Inter-laboratory reproducibility was excellent (r 2 = 0.997). Importantly, this novel melt-based hairpin probe design has potential to achieve multiplexing beyond the 12 targets/well of this prototype assay. This easy-to-use mdPCR technology with excellent performance characteristics has the potential to revolutionize the use of digital PCR in research and diagnostic settings.

3.
Cancers (Basel) ; 13(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34503086

RESUMO

Usp22 overexpression is observed in several human cancers and is correlated with poor patient outcomes. The molecular basis underlying this correlation is not clear. Usp22 is the catalytic subunit of the deubiquitylation module in the SAGA histone-modifying complex, which regulates gene transcription. Our previous work demonstrated that the loss of Usp22 in mice leads to decreased expression of several components of receptor tyrosine kinase and TGFß signaling pathways. To determine whether these pathways are upregulated when Usp22 is overexpressed, we created a mouse model that expresses high levels of Usp22 in all tissues. Phenotypic characterization of these mice revealed over-branching of the mammary glands in females. Transcriptomic analyses indicate the upregulation of key pathways involved in mammary gland branching in mammary epithelial cells derived from the Usp22-overexpressing mice, including estrogen receptor, ERK/MAPK, and TGFß signaling. However, Usp22 overexpression did not lead to increased tumorigenesis in any tissue. Our findings indicate that elevated levels of Usp22 are not sufficient to induce tumors, but it may enhance signaling abnormalities associated with oncogenesis.

4.
Mol Cell Biol ; 35(15): 2610-25, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26012552

RESUMO

Lineage-specific transcription factors (TFs) are important determinants of cellular identity, but their exact mode of action has remained unclear. Here we show using a macrophage differentiation system that the lineage-specific TF PU.1 keeps macrophage-specific genes accessible during differentiation by preventing Polycomb repressive complex 2 (PRC2) binding to transcriptional regulatory elements. We demonstrate that the distal enhancer of a gene becomes bound by PRC2 as cells differentiate in the absence of PU.1 binding and that the gene is wrapped into heterochromatin, which is characterized by increased nucleosome occupancy and H3K27 trimethylation. This renders the gene inaccessible to the transcriptional machinery and prevents induction of the gene in response to an external signal in mature cells. In contrast, if PU.1 is bound at the transcriptional regulatory region of a gene during differentiation, PRC2 is not recruited, nucleosome occupancy is kept low, and the gene can be induced in mature macrophages. Similar results were obtained at the enhancers of other macrophage-specific genes that fail to bind PU.1 as an estrogen receptor fusion (PUER) in this system. These results show that one role of PU.1 is to exclude PRC2 and to prevent heterochromatin formation at macrophage-specific genes.


Assuntos
Heterocromatina/genética , Macrófagos/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Transcrição Gênica/genética , Animais , Diferenciação Celular , Linhagem Celular , Feminino , Histonas/metabolismo , Subunidade p40 da Interleucina-12/biossíntese , Subunidade p40 da Interleucina-12/genética , Interleucina-1alfa/biossíntese , Interleucina-1alfa/genética , Lipopolissacarídeos , Macrófagos/citologia , Metilação , Camundongos , Camundongos Endogâmicos BALB C , Nucleossomos/genética , Células-Tronco Pluripotentes/citologia , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno , Receptores de Estrogênio/genética , Proteínas Recombinantes de Fusão/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tamoxifeno/farmacologia
5.
PLoS One ; 9(4): e93971, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24705533

RESUMO

Chromatin is thought to act as a barrier for binding of cis-regulatory transcription factors (TFs) to their sites on DNA and recruitment of the transcriptional machinery. Here we have analyzed changes in nucleosome occupancy at the enhancers as well as at the promoters of three pro-inflammatory genes when they are induced by bacterial lipopolysaccharides (LPS) in primary mouse macrophages. We find that nucleosomes are removed from the distal enhancers of IL12B and IL1A, as well as from the distal and proximal enhancers of IFNB1, and that clearance of enhancers correlates with binding of various cis-regulatory TFs. We further show that for IFNB1 the degree of nucleosome removal correlates well with the level of induction of the gene under different conditions. Surprisingly, we find that nucleosome occupancy at the promoters of IL12B and IL1A does not change significantly when the genes are induced, and that a considerably fraction of the cells is occupied by nucleosomes at any given time. We hypothesize that competing nucleosomes at the promoters of IL12B and IL1A may play a role in limiting the size of transcriptional bursts in individual cells, which may be important for controlling cytokine production in a population of immune cells.


Assuntos
Elementos Facilitadores Genéticos , Inflamação/genética , Inflamação/metabolismo , Macrófagos/metabolismo , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Animais , Histonas/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Subunidade p40 da Interleucina-12/genética , Subunidade p40 da Interleucina-12/metabolismo , Interleucina-1alfa/genética , Lipopolissacarídeos , Camundongos , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo
6.
Biotechniques ; 57(2): 72-80, 2014 08.
Artigo em Inglês | MEDLINE | ID: mdl-25109292

RESUMO

Protein acetylation and phosphorylation are key modifications that regulate both normal and pathological protein functions. The gel systems currently used for analyzing modified proteins require either expensive reagents or time-consuming second dimension electrophoresis. Here we present a neutral pH gel system that allows the analysis of acetylated and phosphorylated proteins. The neutral pH urea Triton-polyacrylamide gel electrophoresis (NUT-PAGE) system separates proteins based on their charge at pH 7.0 and generates discrete bands from each acetylated and/or phosphorylated species. In addition, the gel is composed of common and inexpensive laboratory reagents and requires only a single dimension of electrophoresis. We demonstrate the effectiveness of this system by analyzing the phosphorylated species of an acidic protein, α-synuclein, and both acetylated and phosphorylated species of a basic protein, histone H3. NUT-PAGE thus provides a cost-effective alternative for resolving acetylated and phosphorylated proteins, and potentially proteins with other post-translational modifications that alter net charge.


Assuntos
Eletroforese em Gel de Poliacrilamida/métodos , Histonas/análise , Processamento de Proteína Pós-Traducional/genética , alfa-Sinucleína/análise , Acetilação , Células HeLa , Histonas/química , Humanos , Concentração de Íons de Hidrogênio , Octoxinol/química , Fosforilação/genética , Ureia/química , alfa-Sinucleína/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa