Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Cell ; 166(2): 314-327, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27345367

RESUMO

Antigen presentation is essential for establishing immune tolerance and for immune responses against infectious disease and cancer. Although antigen presentation can be mediated by autophagy, here we demonstrate a pathway for mitochondrial antigen presentation (MitAP) that relies on the generation and trafficking of mitochondrial-derived vesicles (MDVs) rather than on autophagy/mitophagy. We find that PINK1 and Parkin, two mitochondrial proteins linked to Parkinson's disease (PD), actively inhibit MDV formation and MitAP. In absence of PINK1 or Parkin, inflammatory conditions trigger MitAP in immune cells, both in vitro and in vivo. MitAP and the formation of MDVs require Rab9 and Sorting nexin 9, whose recruitment to mitochondria is inhibited by Parkin. The identification of PINK1 and Parkin as suppressors of an immune-response-eliciting pathway provoked by inflammation suggests new insights into PD pathology.


Assuntos
Apresentação de Antígeno , Mitocôndrias/imunologia , Doença de Parkinson/imunologia , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células Dendríticas/patologia , Modelos Animais de Doenças , Inflamação/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Doença de Parkinson/patologia , Proteínas Quinases/genética , Vesículas Transportadoras/metabolismo , Ubiquitina-Proteína Ligases/genética
2.
Mol Cell ; 81(18): 3670-3671, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34547230

RESUMO

Schuler et al. (2021) demonstrate that mitochondrial-derived compartments protect cells from amino acid toxicity by activation of amino acid catabolism through the Ehrlich pathway, thus highlighting the incredible plasticity of mitochondria in rewiring cellular metabolism.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Álcoois , Mitocôndrias , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
EMBO Rep ; 24(12): e57972, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37962001

RESUMO

Mitochondrial and peroxisomal anchored protein ligase (MAPL) is a dual ubiquitin and small ubiquitin-like modifier (SUMO) ligase with roles in mitochondrial quality control, cell death and inflammation in cultured cells. Here, we show that MAPL function in the organismal context converges on metabolic control, as knockout mice are viable, insulin-sensitive, and protected from diet-induced obesity. MAPL loss leads to liver-specific activation of the integrated stress response, inducing secretion of stress hormone FGF21. MAPL knockout mice develop fully penetrant spontaneous hepatocellular carcinoma. Mechanistically, the peroxisomal bile acid transporter ABCD3 is a primary MAPL interacting partner and SUMOylated in a MAPL-dependent manner. MAPL knockout leads to increased bile acid production coupled with defective regulatory feedback in liver in vivo and in isolated primary hepatocytes, suggesting cell-autonomous function. Together, our findings establish MAPL function as a regulator of bile acid synthesis whose loss leads to the disruption of bile acid feedback mechanisms. The consequences of MAPL loss in liver, along with evidence of tumor suppression through regulation of cell survival pathways, ultimately lead to hepatocellular carcinogenesis.


Assuntos
Bile , Proteínas Mitocondriais , Ubiquitina-Proteína Ligases , Animais , Camundongos , Bile/metabolismo , Ácidos e Sais Biliares , Fígado/metabolismo , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas
4.
Nature ; 571(7766): 565-569, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31316206

RESUMO

Parkinson's disease is a neurodegenerative disorder with motor symptoms linked to the loss of dopaminergic neurons in the substantia nigra compacta. Although the mechanisms that trigger the loss of dopaminergic neurons are unclear, mitochondrial dysfunction and inflammation are thought to have key roles1,2. An early-onset form of Parkinson's disease is associated with mutations in the PINK1 kinase and PRKN ubiquitin ligase genes3. PINK1 and Parkin (encoded by PRKN) are involved in the clearance of damaged mitochondria in cultured cells4, but recent evidence obtained using knockout and knockin mouse models have led to contradictory results regarding the contributions of PINK1 and Parkin to mitophagy in vivo5-8. It has previously been shown that PINK1 and Parkin have a key role in adaptive immunity by repressing presentation of mitochondrial antigens9, which suggests that autoimmune mechanisms participate in the aetiology of Parkinson's disease. Here we show that intestinal infection with Gram-negative bacteria in Pink1-/- mice engages mitochondrial antigen presentation and autoimmune mechanisms that elicit the establishment of cytotoxic mitochondria-specific CD8+ T cells in the periphery and in the brain. Notably, these mice show a sharp decrease in the density of dopaminergic axonal varicosities in the striatum and are affected by motor impairment that is reversed after treatment with L-DOPA. These data support the idea that PINK1 is a repressor of the immune system, and provide a pathophysiological model in which intestinal infection acts as a triggering event in Parkinson's disease, which highlights the relevance of the gut-brain axis in the disease10.


Assuntos
Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/fisiopatologia , Intestinos/microbiologia , Doença de Parkinson/genética , Doença de Parkinson/microbiologia , Proteínas Quinases/deficiência , Proteínas Quinases/genética , Animais , Apresentação de Antígeno/imunologia , Autoantígenos/imunologia , Axônios/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Citrobacter rodentium/imunologia , Citrobacter rodentium/patogenicidade , Modelos Animais de Doenças , Neurônios Dopaminérgicos/imunologia , Neurônios Dopaminérgicos/patologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/patologia , Feminino , Intestinos/imunologia , Intestinos/patologia , Levodopa/uso terapêutico , Masculino , Camundongos , Mitocôndrias/imunologia , Mitocôndrias/patologia , Neostriado/imunologia , Neostriado/microbiologia , Neostriado/patologia , Neostriado/fisiopatologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Proteínas Quinases/imunologia , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia
5.
Mol Cell ; 67(6): 922-935.e5, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28918902

RESUMO

The mechanisms that link environmental and intracellular stimuli to mitochondrial functions, including fission/fusion, ATP production, metabolite biogenesis, and apoptosis, are not well understood. Here, we demonstrate that the nutrient-sensing mechanistic/mammalian target of rapamycin complex 1 (mTORC1) stimulates translation of mitochondrial fission process 1 (MTFP1) to control mitochondrial fission and apoptosis. Expression of MTFP1 is coupled to pro-fission phosphorylation and mitochondrial recruitment of the fission GTPase dynamin-related protein 1 (DRP1). Potent active-site mTOR inhibitors engender mitochondrial hyperfusion due to the diminished translation of MTFP1, which is mediated by translation initiation factor 4E (eIF4E)-binding proteins (4E-BPs). Uncoupling MTFP1 levels from the mTORC1/4E-BP pathway upon mTOR inhibition blocks the hyperfusion response and leads to apoptosis by converting mTOR inhibitor action from cytostatic to cytotoxic. These data provide direct evidence for cell survival upon mTOR inhibition through mitochondrial hyperfusion employing MTFP1 as a critical effector of mTORC1 to govern cell fate decisions.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/enzimologia , Dinâmica Mitocondrial , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Apoptose , Sistemas CRISPR-Cas , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Dinaminas/genética , Dinaminas/metabolismo , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial/efeitos dos fármacos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Transfecção
6.
Nature ; 542(7640): 251-254, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28146471

RESUMO

Peroxisomes function together with mitochondria in a number of essential biochemical pathways, from bile acid synthesis to fatty acid oxidation. Peroxisomes grow and divide from pre-existing organelles, but can also emerge de novo in the cell. The physiological regulation of de novo peroxisome biogenesis remains unclear, and it is thought that peroxisomes emerge from the endoplasmic reticulum in both mammalian and yeast cells. However, in contrast to the yeast system, a number of integral peroxisomal membrane proteins are imported into mitochondria in mammalian cells in the absence of peroxisomes, including Pex3, Pex12, Pex13, Pex14, Pex26, PMP34 and ALDP. Overall, the mitochondrial localization of peroxisomal membrane proteins in mammalian cells has largely been considered a mis-targeting artefact in which de novo biogenesis occurs exclusively from endoplasmic reticulum-targeted peroxins. Here, in following the generation of new peroxisomes within human patient fibroblasts lacking peroxisomes, we show that the essential import receptors Pex3 and Pex14 target mitochondria, where they are selectively released into vesicular pre-peroxisomal structures. Maturation of pre-peroxisomes containing Pex3 and Pex14 requires fusion with endoplasmic reticulum-derived vesicles carrying Pex16, thereby providing full import competence. These findings demonstrate the hybrid nature of newly born peroxisomes, expanding their functional links to mitochondria.


Assuntos
Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Biogênese de Organelas , Peroxissomos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Fibroblastos/citologia , Humanos , Membranas Intracelulares/metabolismo , Lipoproteínas/deficiência , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peroxinas , Transporte Proteico , Proteínas Repressoras/metabolismo , Síndrome de Zellweger/genética , Síndrome de Zellweger/patologia
7.
Mol Cell ; 59(6): 941-55, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26384664

RESUMO

There has been evidence that mitochondrial fragmentation is required for apoptosis, but the molecular links between the machinery regulating dynamics and cell death have been controversial. Indeed, activated BAX and BAK can form functional channels in liposomes, bringing into question the contribution of mitochondrial dynamics in apoptosis. We now demonstrate that the activation of apoptosis triggers MAPL/MUL1-dependent SUMOylation of the fission GTPase Drp1, a process requisite for cytochrome c release. SUMOylated Drp1 functionally stabilizes ER/mitochondrial contact sites that act as hotspots for mitochondrial constriction, calcium flux, cristae remodeling, and cytochrome c release. The loss of MAPL does not alter the activation and assembly of BAX/BAK oligomers, indicating that MAPL is activated downstream of BAX/BAK. This work demonstrates how interorganellar contacts are dynamically regulated through active SUMOylation during apoptosis, creating a stabilized platform that signals cytochrome c release.


Assuntos
Apoptose , GTP Fosfo-Hidrolases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mitocondriais/metabolismo , Sumoilação , Ubiquitina-Proteína Ligases/metabolismo , Sinalização do Cálcio , Cisteína Endopeptidases/metabolismo , Dinaminas , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Mitocôndrias/metabolismo , Peptídeo Hidrolases/metabolismo , Transporte Proteico , Transdução de Sinais , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
8.
J Biol Chem ; 295(12): 3808-3825, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32029478

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal disease, characterized by the selective loss of motor neurons leading to paralysis. Mutations in the gene encoding superoxide dismutase 1 (SOD1) are the second most common cause of familial ALS, and considerable evidence suggests that these mutations result in an increase in toxicity due to protein misfolding. We previously demonstrated in the SOD1G93A rat model that misfolded SOD1 exists as distinct conformers and forms deposits on mitochondrial subpopulations. Here, using SOD1G93A rats and conformation-restricted antibodies specific for misfolded SOD1 (B8H10 and AMF7-63), we identified the interactomes of the mitochondrial pools of misfolded SOD1. This strategy identified binding proteins that uniquely interacted with either AMF7-63 or B8H10-reactive SOD1 conformers as well as a high proportion of interactors common to both conformers. Of this latter set, we identified the E3 ubiquitin ligase TNF receptor-associated factor 6 (TRAF6) as a SOD1 interactor, and we determined that exposure of the SOD1 functional loops facilitates this interaction. Of note, this conformational change was not universally fulfilled by all SOD1 variants and differentiated TRAF6 interacting from TRAF6 noninteracting SOD1 variants. Functionally, TRAF6 stimulated polyubiquitination and aggregation of the interacting SOD1 variants. TRAF6 E3 ubiquitin ligase activity was required for the former but was dispensable for the latter, indicating that TRAF6-mediated polyubiquitination and aggregation of the SOD1 variants are independent events. We propose that the interaction between misfolded SOD1 and TRAF6 may be relevant to the etiology of ALS.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Superóxido Dismutase-1/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Anticorpos/imunologia , Linhagem Celular , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Mutagênese Sítio-Dirigida , NF-kappa B/metabolismo , Agregados Proteicos , Dobramento de Proteína , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Transgênicos , Superóxido Dismutase-1/química , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/imunologia , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Fator 6 Associado a Receptor de TNF/genética , Ubiquitinação
9.
Glia ; 69(2): 392-412, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32910475

RESUMO

Mitochondria are dynamic organelles that produce energy and molecular precursors that are essential for myelin synthesis. Unlike in neurons, mitochondria in oligodendrocytes increase intracellular movement in response to glutamatergic activation and are more susceptible to oxidative stress than in astrocytes or microglia. The signaling pathways that regulate these cell type-specific mitochondrial responses in oligodendrocytes are not understood. Here, we visualized mitochondria migrating through thin cytoplasmic channels crossing myelin basic protein-positive compacted membranes and localized within paranodal loop cytoplasm. We hypothesized that local extracellular enrichment of netrin-1 might regulate the recruitment and function of paranodal proteins and organelles, including mitochondria. We identified rapid recruitment of mitochondria and paranodal proteins, including neurofascin 155 (NF155) and the netrin receptor deleted in colorectal carcinoma (DCC), to sites of contact between oligodendrocytes and netrin-1-coated microbeads in vitro. We provide evidence that Src-family kinase activation and Rho-associated protein kinase (ROCK) inhibition downstream of netrin-1 induces mitochondrial elongation, hyperpolarization of the mitochondrial inner membrane, and increases glycolysis. Our findings identify a signaling mechanism in oligodendrocytes that is sufficient to locally recruit paranodal proteins and regulate the subcellular localization, morphology, and function of mitochondria.


Assuntos
Dinâmica Mitocondrial , Receptor DCC , Metabolismo Energético , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Netrina-1 , Oligodendroglia/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Quinases Associadas a rho/metabolismo
10.
Mol Cell ; 51(1): 20-34, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23727017

RESUMO

The mitochondrial ubiquitin ligase MITOL regulates mitochondrial dynamics. We report here that MITOL regulates mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) domain formation through mitofusin2 (Mfn2). MITOL interacts with and ubiquitinates mitochondrial Mfn2, but not ER-associated Mfn2. Mutation analysis identified a specific interaction between MITOL C-terminal domain and Mfn2 HR1 domain. MITOL mediated lysine-63-linked polyubiquitin chain addition to Mfn2, but not its proteasomal degradation. MITOL knockdown inhibited Mfn2 complex formation and caused Mfn2 mislocalization and MAM dysfunction. Sucrose-density gradient centrifugation and blue native PAGE retardation assay demonstrated that MITOL is required for GTP-dependent Mfn2 oligomerization. MITOL knockdown reduced Mfn2 GTP binding, resulting in reduced GTP hydrolysis. We identified K192 in the GTPase domain of Mfn2 as a major ubiquitination site for MITOL. A K192R mutation blocked oligomerization even in the presence of GTP. Taken together, these results suggested that MITOL regulates ER tethering to mitochondria by activating Mfn2 via K192 ubiquitination.


Assuntos
Retículo Endoplasmático/metabolismo , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , GTP Fosfo-Hidrolases/análise , Células HeLa , Humanos , Proteínas de Membrana , Camundongos , Proteínas Mitocondriais/análise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
11.
J Biol Chem ; 293(30): 11809-11822, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29853636

RESUMO

Dynamin-related protein 1 (Drp1) constricts mitochondria as a mechanochemical GTPase during mitochondrial division. The Drp1 gene contains several alternative exons and produces multiple isoforms through RNA splicing. Here we performed a systematic analysis of Drp1 transcripts in different mouse tissues and identified a previously uncharacterized isoform that is highly enriched in the brain. This Drp1 isoform is termed Drp1ABCD because it contains four alterative exons: A, B, C, and D. Remarkably, Drp1ABCD is located at lysosomes, late endosomes, and the plasma membrane in addition to mitochondria. Furthermore, Drp1ABCD is concentrated at the interorganelle interface between mitochondria and lysosomes/late endosomes. The localizations of Drp1ABCD at lysosomes, late endosomes, and the plasma membrane require two exons, A and B, that are present in the GTPase domain. Drp1ABCD assembles onto these membranes in a manner that is regulated by its oligomerization and GTP hydrolysis. Experiments using lysosomal inhibitors show that the association of Drp1ABCD with lysosomes/late endosomes depends on lysosomal pH but not their protease activities. Thus, Drp1 may connect mitochondria to endosomal-lysosomal pathways in addition to mitochondrial division.


Assuntos
Encéfalo/metabolismo , Membrana Celular/metabolismo , Dinaminas/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Animais , Dinaminas/análise , Camundongos , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Isoformas de Proteínas/análise , Isoformas de Proteínas/metabolismo
12.
EMBO J ; 33(19): 2142-56, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25107473

RESUMO

The last decade has been marked by tremendous progress in our understanding of the cell biology of mitochondria, with the identification of molecules and mechanisms that regulate their fusion, fission, motility, and the architectural transitions within the inner membrane. More importantly, the manipulation of these machineries in tissues has provided links between mitochondrial dynamics and physiology. Indeed, just as the proteins required for fusion and fission were identified, they were quickly linked to both rare and common human diseases. This highlighted the critical importance of this emerging field to medicine, with new hopes of finding drugable targets for numerous pathologies, from neurodegenerative diseases to inflammation and cancer. In the midst of these exciting new discoveries, an unexpected new aspect of mitochondrial cell biology has been uncovered; the generation of small vesicular carriers that transport mitochondrial proteins and lipids to other intracellular organelles. These mitochondrial-derived vesicles (MDVs) were first found to transport a mitochondrial outer membrane protein MAPL to a subpopulation of peroxisomes. However, other MDVs did not target peroxisomes and instead fused with the late endosome, or multivesicular body. The Parkinson's disease-associated proteins Vps35, Parkin, and PINK1 are involved in the biogenesis of a subset of these MDVs, linking this novel trafficking pathway to human disease. In this review, we outline what has been learned about the mechanisms and functional importance of MDV transport and speculate on the greater impact of these pathways in cellular physiology.


Assuntos
Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Organelas/fisiologia , Vesículas Transportadoras/metabolismo , Animais , Humanos
13.
EMBO J ; 33(4): 282-95, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24446486

RESUMO

Mitochondrial dysfunction has long been associated with Parkinson's disease (PD). Parkin and PINK1, two genes associated with familial PD, have been implicated in the degradation of depolarized mitochondria via autophagy (mitophagy). Here, we describe the involvement of parkin and PINK1 in a vesicular pathway regulating mitochondrial quality control. This pathway is distinct from canonical mitophagy and is triggered by the generation of oxidative stress from within mitochondria. Wild-type but not PD-linked mutant parkin supports the biogenesis of a population of mitochondria-derived vesicles (MDVs), which bud off mitochondria and contain a specific repertoire of cargo proteins. These MDVs require PINK1 expression and ultimately target to lysosomes for degradation. We hypothesize that loss of this parkin- and PINK1-dependent trafficking mechanism impairs the ability of mitochondria to selectively degrade oxidized and damaged proteins leading, over time, to the mitochondrial dysfunction noted in PD.


Assuntos
Autofagia/fisiologia , Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Doença de Parkinson/metabolismo , Proteínas Quinases/fisiologia , Vesículas Transportadoras/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Antimicina A/farmacologia , Transporte Biológico , Dinaminas , GTP Fosfo-Hidrolases/antagonistas & inibidores , GTP Fosfo-Hidrolases/genética , Genes Reporter , Células HeLa , Humanos , Lisossomos/fisiologia , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Modelos Biológicos , Oxirredução , Estresse Oxidativo , Doença de Parkinson/genética , Proteólise , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Ubiquitina-Proteína Ligases/genética
14.
EMBO J ; 33(22): 2676-91, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25298396

RESUMO

Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which these dynamic changes are regulated and the consequences thereof are largely unknown. Optic atrophy 1 (OPA1) is the mitochondrial GTPase responsible for inner membrane fusion and maintenance of cristae structure. Here, we report that OPA1 responds dynamically to changes in energetic conditions to regulate cristae structure. This cristae regulation is independent of OPA1's role in mitochondrial fusion, since an OPA1 mutant that can still oligomerize but has no fusion activity was able to maintain cristae structure. Importantly, OPA1 was required for resistance to starvation-induced cell death, for mitochondrial respiration, for growth in galactose media and for maintenance of ATP synthase assembly, independently of its fusion activity. We identified mitochondrial solute carriers (SLC25A) as OPA1 interactors and show that their pharmacological and genetic blockade inhibited OPA1 oligomerization and function. Thus, we propose a novel way in which OPA1 senses energy substrate availability, which modulates its function in the regulation of mitochondrial architecture in a SLC25A protein-dependent manner.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/enzimologia , Dinâmica Mitocondrial/fisiologia , Membranas Mitocondriais/enzimologia , Proteínas Mitocondriais/metabolismo , Animais , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , GTP Fosfo-Hidrolases/genética , Células HeLa , Humanos , Camundongos , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/genética , Consumo de Oxigênio/fisiologia , Multimerização Proteica/fisiologia
15.
BMC Biol ; 15(1): 102, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089042

RESUMO

Discoveries spanning several decades have pointed to vital membrane lipid trafficking pathways involving both vesicular and non-vesicular carriers. But the relative contributions for distinct membrane delivery pathways in cell growth and organelle biogenesis continue to be a puzzle. This is because lipids flow from many sources and across many paths via transport vesicles, non-vesicular transfer proteins, and dynamic interactions between organelles at membrane contact sites. This forum presents our latest understanding, appreciation, and queries regarding the lipid transport mechanisms necessary to drive membrane expansion during organelle biogenesis and cell growth.


Assuntos
Ciclo Celular , Metabolismo dos Lipídeos , Biogênese de Organelas , Transporte Biológico , Membrana Celular/metabolismo
17.
J Physiol ; 594(18): 5343-62, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27311616

RESUMO

KEY POINTS: Mitochondrial-derived vesicle (MDV) formation occurs under baseline conditions and is rapidly upregulated in response to stress-inducing conditions in H9c2 cardiac myoblasts. In mice formation of MDVs occurs readily in the heart under normal healthy conditions while mitophagy is comparatively less prevalent. In response to acute stress induced by doxorubicin, mitochondrial dysfunction develops in the heart, triggering MDV formation and mitophagy. MDV formation is thus active in the cardiac system, where it probably constitutes a baseline housekeeping mechanism and a first line of defence against stress. ABSTRACT: The formation of mitochondrial-derived vesicles (MDVs), a process inherited from bacteria, has emerged as a potentially important mitochondrial quality control (QC) mechanism to selectively deliver damaged material to lysosomes for degradation. However, the existence of this mechanism in various cell types, and its physiological relevance, remains unknown. Our aim was to investigate the dynamics of MDV formation in the cardiac system in vitro and in vivo. Immunofluorescence in cell culture, quantitative transmission electron microscopy and electron tomography in vivo were used to study MDV production in the cardiac system. We show that in cardiac cells MDV production occurs at baseline, is commensurate with the dependence of cells on oxidative metabolism, is more frequent than mitophagy and is up-regulated on the time scale of minutes to hours in response to prototypical mitochondrial stressors (antimycin-A, xanthine/xanthine oxidase). We further show that MDV production is up-regulated together with mitophagy in response to doxorubicin-induced mitochondrial and cardiac dysfunction. Here we provide the first quantitative data demonstrating that MDV formation is a mitochondrial QC operating in the heart.


Assuntos
Coração/fisiologia , Mitocôndrias Cardíacas/fisiologia , Animais , Cardiotoxinas/farmacologia , Linhagem Celular , DNA Mitocondrial/genética , Doxorrubicina/farmacologia , Tomografia com Microscopia Eletrônica , Coração/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Doenças Mitocondriais/genética , Músculo Esquelético/diagnóstico por imagem , Miocárdio/ultraestrutura , Ratos
18.
BMC Biol ; 13: 8, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25651813

RESUMO

In addition to their role as energy generators, mitochondria play critical and active roles in diverse signalling pathways, from immunity to cell survival and cell fate decisions. However, there remain many open questions and challenges as we work towards integrating this mighty organelle into established paradigms of cellular physiology.


Assuntos
Mitocôndrias/metabolismo , Pesquisa , Metabolômica
19.
Biochim Biophys Acta ; 1833(2): 417-24, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22683990

RESUMO

One of the critical problems with the combustion of sugar and fat is the generation of cellular oxidation. The ongoing consumption of oxygen results in damage to lipids, protein and mtDNA, which must be repaired through essential pathways in mitochondrial quality control. It has long been established that intrinsic protease pathways within the matrix and intermembrane space actively degrade unfolded and oxidized mitochondrial proteins. However, more recent work into the field of quality control has established distinct roles for both mitochondrial fragmentation and hyperfusion in different aspects of quality control and survival. In addition, mitochondrial derived vesicles have recently been shown to carry cargo directly to the lysosome, adding further insight into the integration of mitochondrial dynamics in cellular homeostasis. This review will focus on the mechanisms and emerging questions concerning the links between mitochondrial dynamics and quality control. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.


Assuntos
Dinâmica Mitocondrial/fisiologia , Estresse Fisiológico/fisiologia , Animais , Homeostase , Humanos , Controle de Qualidade
20.
EMBO Rep ; 13(10): 909-15, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22945481

RESUMO

Mitochondrial hyperfusion has recently been shown to function as a cellular stress response, providing transient protection against apoptosis and mitophagy. However, the mechanisms that mediate this response remain poorly understood. In this study, we demonstrate that oxidized glutathione (GSSG), the core cellular stress indicator, strongly induces mitochondrial fusion. Biochemical and functional experiments show that GSSG induces the generation of disulphide-mediated mitofusin oligomers, in a process that also requires GTP hydrolysis. Our data outline the molecular events that prime the fusion machinery, providing new insights into the coupling of mitochondrial fusion with the cellular stress response.


Assuntos
Dissulfeto de Glutationa/metabolismo , Dinâmica Mitocondrial , Estresse Oxidativo , Citosol/enzimologia , Citosol/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Hidrólise , Proteínas Mitocondriais/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa