Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(3): e1011931, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483975

RESUMO

Plasmodium vivax is one of the most geographically widespread malaria parasites in the world, primarily found across South-East Asia, Latin America, and parts of Africa. One of the significant characteristics of the P. vivax parasite is its ability to remain dormant in the human liver as hypnozoites and subsequently reactivate after the initial infection (i.e. relapse infections). Mathematical modelling approaches have been widely applied to understand P. vivax dynamics and predict the impact of intervention outcomes. Models that capture P. vivax dynamics differ from those that capture P. falciparum dynamics, as they must account for relapses caused by the activation of hypnozoites. In this article, we provide a scoping review of mathematical models that capture P. vivax transmission dynamics published between January 1988 and May 2023. The primary objective of this work is to provide a comprehensive summary of the mathematical models and techniques used to model P. vivax dynamics. In doing so, we aim to assist researchers working on mathematical epidemiology, disease transmission, and other aspects of P. vivax malaria by highlighting best practices in currently published models and highlighting where further model development is required. We categorise P. vivax models according to whether a deterministic or agent-based approach was used. We provide an overview of the different strategies used to incorporate the parasite's biology, use of multiple scales (within-host and population-level), superinfection, immunity, and treatment interventions. In most of the published literature, the rationale for different modelling approaches was driven by the research question at hand. Some models focus on the parasites' complicated biology, while others incorporate simplified assumptions to avoid model complexity. Overall, the existing literature on mathematical models for P. vivax encompasses various aspects of the parasite's dynamics. We recommend that future research should focus on refining how key aspects of P. vivax dynamics are modelled, including spatial heterogeneity in exposure risk and heterogeneity in susceptibility to infection, the accumulation of hypnozoite variation, the interaction between P. falciparum and P. vivax, acquisition of immunity, and recovery under superinfection.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Parasitos , Superinfecção , Animais , Humanos , Plasmodium vivax , Modelos Teóricos , Recidiva
2.
Emerg Infect Dis ; 30(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38190760

RESUMO

To support the ongoing management of viral respiratory diseases while transitioning out of the acute phase of the COVID-19 pandemic, many countries are moving toward an integrated model of surveillance for SARS-CoV-2, influenza virus, and other respiratory pathogens. Although many surveillance approaches catalyzed by the COVID-19 pandemic provide novel epidemiologic insight, continuing them as implemented during the pandemic is unlikely to be feasible for nonemergency surveillance, and many have already been scaled back. Furthermore, given anticipated cocirculation of SARS-CoV-2 and influenza virus, surveillance activities in place before the pandemic require review and adjustment to ensure their ongoing value for public health. In this report, we highlight key challenges for the development of integrated models of surveillance. We discuss the relative strengths and limitations of different surveillance practices and studies as well as their contribution to epidemiologic assessment, forecasting, and public health decision-making.


Assuntos
COVID-19 , Viroses , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias , Saúde Pública
3.
PLoS Comput Biol ; 19(2): e1010886, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36758109

RESUMO

Epidemiological and clinical evidence indicates that humans infected with the 1918 pandemic H1N1 influenza virus and highly pathogenic avian H5N1 influenza viruses often displayed severe lung pathology. High viral load and extensive infiltration of macrophages are the hallmarks of highly pathogenic (HP) influenza viral infections. However, it remains unclear what biological mechanisms primarily determine the observed difference in the kinetics of viral load and macrophages between HP and low pathogenic (LP) viral infections, and how the mechanistic differences are associated with viral pathogenicity. In this study, we develop a mathematical model of viral dynamics that includes the dynamics of different macrophage populations and interferon. We fit the model to in vivo kinetic data of viral load and macrophage level from BALB/c mice infected with an HP or LP strain of H1N1/H5N1 virus to estimate model parameters using Bayesian inference. Our primary finding is that HP viruses have a higher viral infection rate, a lower interferon production rate and a lower macrophage recruitment rate compared to LP viruses, which are strongly associated with more severe tissue damage (quantified by a higher percentage of epithelial cell loss). We also quantify the relative contribution of macrophages to viral clearance and find that macrophages do not play a dominant role in the direct clearance of free viruses although their role in mediating immune responses such as interferon production is crucial. Our work provides new insight into the mechanisms that convey the observed difference in viral and macrophage kinetics between HP and LP infections and establishes an improved model-fitting framework to enhance the analysis of new data on viral pathogenicity.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Viroses , Humanos , Animais , Camundongos , Virulência , Teorema de Bayes , Vírus da Influenza A/fisiologia , Interferons
4.
PLoS Comput Biol ; 19(11): e1011656, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38011267

RESUMO

The influenza pandemic of 1918-19 was the most devastating pandemic of the 20th century. It killed an estimated 50-100 million people worldwide. In late 1918, when the severity of the disease was apparent, the Australian Quarantine Service was established. Vessels returning from overseas and inter-state were intercepted, and people were examined for signs of illness and quarantined. Some of these vessels carried the infection throughout their voyage and cases were prevalent by the time the ship arrived at a Quarantine Station. We study four outbreaks that took place on board the Medic, Boonah, Devon, and Manuka in late 1918. These ships had returned from overseas and some of them were carrying troops that served in the First World War. By analysing these outbreaks under a stochastic Bayesian hierarchical modeling framework, we estimate the transmission rates among crew and passengers aboard these ships. Furthermore, we ask whether the removal of infectious, convalescent, and healthy individuals after arriving at a Quarantine Station in Australia was an effective public health response.


Assuntos
Influenza Humana , Navios , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Pandemias/prevenção & controle , Teorema de Bayes , Hospitais de Isolamento , Austrália/epidemiologia , Surtos de Doenças/prevenção & controle , Viagem
5.
J Math Biol ; 89(1): 7, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772937

RESUMO

Malaria is a vector-borne disease that exacts a grave toll in the Global South. The epidemiology of Plasmodium vivax, the most geographically expansive agent of human malaria, is characterised by the accrual of a reservoir of dormant parasites known as hypnozoites. Relapses, arising from hypnozoite activation events, comprise the majority of the blood-stage infection burden, with implications for the acquisition of immunity and the distribution of superinfection. Here, we construct a novel model for the transmission of P. vivax that concurrently accounts for the accrual of the hypnozoite reservoir, (blood-stage) superinfection and the acquisition of immunity. We begin by using an infinite-server queueing network model to characterise the within-host dynamics as a function of mosquito-to-human transmission intensity, extending our previous model to capture a discretised immunity level. To model transmission-blocking and antidisease immunity, we allow for geometric decay in the respective probabilities of successful human-to-mosquito transmission and symptomatic blood-stage infection as a function of this immunity level. Under a hybrid approximation-whereby probabilistic within-host distributions are cast as expected population-level proportions-we couple host and vector dynamics to recover a deterministic compartmental model in line with Ross-Macdonald theory. We then perform a steady-state analysis for this compartmental model, informed by the (analytic) distributions derived at the within-host level. To characterise transient dynamics, we derive a reduced system of integrodifferential equations, likewise informed by our within-host queueing network, allowing us to recover population-level distributions for various quantities of epidemiological interest. In capturing the interplay between hypnozoite accrual, superinfection and acquired immunity-and providing, to the best of our knowledge, the most complete population-level distributions for a range of epidemiological values-our model provides insights into important, but poorly understood, epidemiological features of P. vivax.


Assuntos
Malária Vivax , Conceitos Matemáticos , Mosquitos Vetores , Plasmodium vivax , Superinfecção , Humanos , Plasmodium vivax/imunologia , Plasmodium vivax/fisiologia , Superinfecção/imunologia , Superinfecção/transmissão , Superinfecção/parasitologia , Malária Vivax/transmissão , Malária Vivax/imunologia , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Animais , Mosquitos Vetores/parasitologia , Mosquitos Vetores/imunologia , Reservatórios de Doenças/parasitologia , Modelos Biológicos , Simulação por Computador , Anopheles/parasitologia , Anopheles/imunologia
6.
Proc Biol Sci ; 290(2005): 20231437, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37644838

RESUMO

Since the emergence of SARS-CoV-2 in 2019 through to mid-2021, much of the Australian population lived in a COVID-19-free environment. This followed the broadly successful implementation of a strong suppression strategy, including international border closures. With the availability of COVID-19 vaccines in early 2021, the national government sought to transition from a state of minimal incidence and strong suppression activities to one of high vaccine coverage and reduced restrictions but with still-manageable transmission. This transition is articulated in the national 're-opening' plan released in July 2021. Here, we report on the dynamic modelling study that directly informed policies within the national re-opening plan including the identification of priority age groups for vaccination, target vaccine coverage thresholds and the anticipated requirements for continued public health measures-assuming circulation of the Delta SARS-CoV-2 variant. Our findings demonstrated that adult vaccine coverage needed to be at least 60% to minimize public health and clinical impacts following the establishment of community transmission. They also supported the need for continued application of test-trace-isolate-quarantine and social measures during the vaccine roll-out phase and beyond.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , SARS-CoV-2 , Incidência , COVID-19/epidemiologia , COVID-19/prevenção & controle , Austrália/epidemiologia
7.
J Theor Biol ; 573: 111592, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37558160

RESUMO

There has been an increasing recognition of the utility of models of the spatial dynamics of viral spread within tissues. Multicellular models, where cells are represented as discrete regions of space coupled to a virus density surface, are a popular approach to capture these dynamics. Conventionally, such models are simulated by discretising the viral surface and depending on the rate of viral diffusion and other considerations, a finer or coarser discretisation may be used. The impact that this choice may have on the behaviour of the system has not been studied. Here we demonstrate that under realistic parameter regimes - where viral diffusion is small enough to support the formation of familiar ring-shaped infection plaques - the choice of spatial discretisation of the viral surface can qualitatively change key model outcomes including the time scale of infection. Importantly, we show that the choice between implementing viral spread as a cell-scale process, or as a high-resolution converged PDE can generate distinct model outcomes, which raises important conceptual questions about the strength of assumptions underpinning the spatial structure of the model. We investigate the mechanisms driving these discretisation artefacts, the impacts they may have on model predictions, and provide guidance on the design and implementation of spatial and especially multicellular models of viral dynamics. We obtain our results using the simplest TIV construct for the viral dynamics, and therefore anticipate that the important effects we describe will also influence model predictions in more complex models of virus-cell-immune system interactions. This analysis will aid in the construction of models for robust and biologically realistic modelling and inference.


Assuntos
Viroses , Vírus , Humanos , Difusão
8.
BMC Infect Dis ; 23(1): 28, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650474

RESUMO

BACKGROUND: The distribution of the duration that clinical cases of COVID-19 occupy hospital beds (the 'length of stay') is a key factor in determining how incident caseloads translate into health system burden. Robust estimation of length of stay in real-time requires the use of survival methods that can account for right-censoring induced by yet unobserved events in patient progression (e.g. discharge, death). In this study, we estimate in real-time the length of stay distributions of hospitalised COVID-19 cases in New South Wales, Australia, comparing estimates between a period where Delta was the dominant variant and a subsequent period where Omicron was dominant. METHODS: Using data on the hospital stays of 19,574 individuals who tested positive to COVID-19 prior to admission, we performed a competing-risk survival analysis of COVID-19 clinical progression. RESULTS: During the mixed Omicron-Delta epidemic, we found that the mean length of stay for individuals who were discharged directly from ward without an ICU stay was, for age groups 0-39, 40-69 and 70 +, respectively, 2.16 (95% CI: 2.12-2.21), 3.93 (95% CI: 3.78-4.07) and 7.61 days (95% CI: 7.31-8.01), compared to 3.60 (95% CI: 3.48-3.81), 5.78 (95% CI: 5.59-5.99) and 12.31 days (95% CI: 11.75-12.95) across the preceding Delta epidemic (1 July 2021-15 December 2021). We also considered data on the stays of individuals within the Hunter New England Local Health District, where it was reported that Omicron was the only circulating variant, and found mean ward-to-discharge length of stays of 2.05 (95% CI: 1.80-2.30), 2.92 (95% CI: 2.50-3.67) and 6.02 days (95% CI: 4.91-7.01) for the same age groups. CONCLUSIONS: Hospital length of stay was substantially reduced across all clinical pathways during a mixed Omicron-Delta epidemic compared to a prior Delta epidemic, contributing to a lessened health system burden despite a greatly increased infection burden. Our results demonstrate the utility of survival analysis in producing real-time estimates of hospital length of stay for assisting in situational assessment and planning of the COVID-19 response.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , New South Wales/epidemiologia , COVID-19/epidemiologia , Austrália , Hospitais
9.
Bull Math Biol ; 85(6): 43, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076740

RESUMO

Plasmodium vivax is the most geographically widespread malaria-causing parasite resulting in significant associated global morbidity and mortality. One of the factors driving this widespread phenomenon is the ability of the parasites to remain dormant in the liver. Known as 'hypnozoites', they reside in the liver following an initial exposure, before activating later to cause further infections, referred to as 'relapses'. As around 79-96% of infections are attributed to relapses from activating hypnozoites, we expect it will be highly impactful to apply treatment to target the hypnozoite reservoir (i.e. the collection of dormant parasites) to eliminate P. vivax. Treatment with radical cure, for example tafenoquine or primaquine, to target the hypnozoite reservoir is a potential tool to control and/or eliminate P. vivax. We have developed a deterministic multiscale mathematical model as a system of integro-differential equations that captures the complex dynamics of P. vivax hypnozoites and the effect of hypnozoite relapse on disease transmission. Here, we use our multiscale model to study the anticipated effect of radical cure treatment administered via a mass drug administration (MDA) program. We implement multiple rounds of MDA with a fixed interval between rounds, starting from different steady-state disease prevalences. We then construct an optimisation model with three different objective functions motivated on a public health basis to obtain the optimal MDA interval. We also incorporate mosquito seasonality in our model to study its effect on the optimal treatment regime. We find that the effect of MDA interventions is temporary and depends on the pre-intervention disease prevalence (and choice of model parameters) as well as the number of MDA rounds under consideration. The optimal interval between MDA rounds also depends on the objective (combinations of expected intervention outcomes). We find radical cure alone may not be enough to lead to P. vivax elimination under our mathematical model (and choice of model parameters) since the prevalence of infection eventually returns to pre-MDA levels.


Assuntos
Antimaláricos , Malária Vivax , Malária , Animais , Humanos , Malária Vivax/tratamento farmacológico , Malária Vivax/epidemiologia , Malária Vivax/prevenção & controle , Antimaláricos/uso terapêutico , Administração Massiva de Medicamentos , Modelos Biológicos , Conceitos Matemáticos , Recidiva
10.
J Math Biol ; 88(1): 7, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040981

RESUMO

A characteristic of malaria in all its forms is the potential for superinfection (that is, multiple concurrent blood-stage infections). An additional characteristic of Plasmodium vivax malaria is a reservoir of latent parasites (hypnozoites) within the host liver, which activate to cause (blood-stage) relapses. Here, we present a model of hypnozoite accrual and superinfection for P. vivax. To couple host and vector dynamics for a homogeneously-mixing population, we construct a density-dependent Markov population process with countably many types, for which disease extinction is shown to occur almost surely. We also establish a functional law of large numbers, taking the form of an infinite-dimensional system of ordinary differential equations that can also be recovered by coupling expected host and vector dynamics (i.e. a hybrid approximation) or through a standard compartment modelling approach. Recognising that the subset of these equations that model the infection status of the human hosts has precisely the same form as the Kolmogorov forward equations for a Markovian network of infinite server queues with an inhomogeneous batch arrival process, we use physical insight into the evolution of the latter process to write down a time-dependent multivariate generating function for the solution. We use this characterisation to collapse the infinite-compartment model into a single integrodifferential equation (IDE) governing the intensity of mosquito-to-human transmission. Through a steady state analysis, we recover a threshold phenomenon for this IDE in terms of a parameter [Formula: see text] expressible in terms of the primitives of the model, with the disease-free equilibrium shown to be uniformly asymptotically stable if [Formula: see text] and an endemic equilibrium solution emerging if [Formula: see text]. Our work provides a theoretical basis to explore the epidemiology of P. vivax, and introduces a strategy for constructing tractable population-level models of malarial superinfection that can be generalised to allow for greater biological realism in a number of directions.


Assuntos
Malária Vivax , Malária , Superinfecção , Animais , Humanos , Plasmodium vivax , Mosquitos Vetores , Malária Vivax/epidemiologia , Malária Vivax/parasitologia
11.
J Theor Biol ; 537: 111014, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35016895

RESUMO

Malaria is a mosquito-borne disease with a devastating global impact. Plasmodium vivax is a major cause of human malaria beyond sub-Saharan Africa. Relapsing infections, driven by a reservoir of liver-stage parasites known as hypnozoites, present unique challenges for the control of P. vivax malaria. Following indeterminate dormancy periods, hypnozoites may activate to trigger relapses. Clearance of the hypnozoite reservoir through drug treatment (radical cure) has been proposed as a potential tool for the elimination of P. vivax malaria. Here, we introduce a stochastic, within-host model to jointly characterise hypnozoite and infection dynamics for an individual in a general transmission setting, allowing for radical cure. We begin by extending an existing activation-clearance model for a single hypnozoite, adapted to both short- and long-latency strains, to include drug treatment. We then embed this activation-clearance model in an epidemiological framework accounting for repeated mosquito inoculation and the administration of radical cure. By constructing an open network of infinite server queues, we derive analytic expressions for several quantities of epidemiological significance, including the size of the hypnozoite reservoir; the relapse rate; the relative contribution of relapses to the infection burden; the distribution of multiple infections; the cumulative number of recurrences over time, and the time to first recurrence following drug treatment. We derive from first principles the functional dependence between within-host and transmission parameters and patterns of blood- and liver-stage infection, whilst allowing for treatment under a mass drug administration regime. To yield population-level insights, our analytic within-host distributions can be embedded in multiscale models. Our work thus contributes to the epidemiological understanding of the effects of radical cure on P. vivax malaria.


Assuntos
Antimaláricos , Malária Vivax , Malária , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Humanos , Cinética , Malária/tratamento farmacológico , Malária Vivax/tratamento farmacológico , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Plasmodium vivax/fisiologia , Recidiva
12.
Bull Math Biol ; 84(8): 81, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778540

RESUMO

Malaria is caused by Plasmodium parasites which are transmitted to humans by the bite of an infected Anopheles mosquito. Plasmodium vivax is distinct from other malaria species in its ability to remain dormant in the liver (as hypnozoites) and activate later to cause further infections (referred to as relapses). Mathematical models to describe the transmission dynamics of P. vivax have been developed, but most of them fail to capture realistic dynamics of hypnozoites. Models that do capture the complexity tend to involve many governing equations, making them difficult to extend to incorporate other important factors for P. vivax, such as treatment status, age and pregnancy. In this paper, we have developed a multiscale model (a system of integro-differential equations) that involves a minimal set of equations at the population scale, with an embedded within-host model that can capture the dynamics of the hypnozoite reservoir. In this way, we can gain key insights into dynamics of P. vivax transmission with a minimum number of equations at the population scale, making this framework readily scalable to incorporate more complexity. We performed a sensitivity analysis of our multiscale model over key parameters and found that prevalence of P. vivax blood-stage infection increases with both bite rate and number of mosquitoes but decreases with hypnozoite death rate. Since our mathematical model captures the complex dynamics of P. vivax and the hypnozoite reservoir, it has the potential to become a key tool to inform elimination strategies for P. vivax.


Assuntos
Anopheles , Malária Vivax , Malária , Animais , Humanos , Conceitos Matemáticos , Modelos Biológicos , Modelos Teóricos , Plasmodium vivax
13.
Immunol Rev ; 285(1): 168-193, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30129195

RESUMO

Malaria infection continues to be a major health problem worldwide and drug resistance in the major human parasite species, Plasmodium falciparum, is increasing in South East Asia. Control measures including novel drugs and vaccines are in development, and contributions to the rational design and optimal usage of these interventions are urgently needed. Infection involves the complex interaction of parasite dynamics, host immunity, and drug effects. The long life cycle (48 hours in the common human species) and synchronized replication cycle of the parasite population present significant challenges to modeling the dynamics of Plasmodium infection. Coupled with these, variation in immune recognition and drug action at different life cycle stages leads to further complexity. We review the development and progress of "within-host" models of Plasmodium infection, and how these have been applied to understanding and interpreting human infection and animal models of infection.


Assuntos
Interações Hospedeiro-Patógeno , Estágios do Ciclo de Vida/fisiologia , Malária Falciparum/imunologia , Modelos Imunológicos , Plasmodium falciparum/fisiologia , Animais , Biologia Computacional , Modelos Animais de Doenças , Resistência a Medicamentos , Ásia Oriental/epidemiologia , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/microbiologia , Modelos Teóricos
14.
Artigo em Inglês | MEDLINE | ID: mdl-33685888

RESUMO

Most deaths from severe falciparum malaria occur within 24 h of presentation to a hospital. Intravenous (i.v.) artesunate is the first-line treatment for severe falciparum malaria, but its efficacy may be compromised by delayed parasitological responses. In patients with severe malaria, the life-saving benefit of the artemisinin derivatives is their ability to clear circulating parasites rapidly, before they can sequester and obstruct the microcirculation. To evaluate the dosing of i.v. artesunate for the treatment of artemisinin-sensitive and reduced ring stage sensitivity to artemisinin severe falciparum malaria infections, Bayesian pharmacokinetic-pharmacodynamic modeling of data from 94 patients with severe malaria (80 children from Africa and 14 adults from Southeast Asia) was performed. Assuming that delayed parasite clearance reflects a loss of ring stage sensitivity to artemisinin derivatives, the median (95% credible interval) percentage of patients clearing ≥99% of parasites within 24 h (PC24≥99%) for standard (2.4 mg/kg body weight i.v. artesunate at 0 and 12 h) and simplified (4 mg/kg i.v. artesunate at 0 h) regimens was 65% (52.5% to 74.5%) versus 44% (25% to 61.5%) for adults, 62% (51.5% to 74.5%) versus 39% (20.5% to 58.5%) for larger children (≥20 kg), and 60% (48.5% to 70%) versus 36% (20% to 53.5%) for smaller children (<20 kg). The upper limit of the credible intervals for all regimens was below a PC24≥99% of 80%, a threshold achieved on average in clinical studies of severe falciparum malaria infections. In severe falciparum malaria caused by parasites with reduced ring stage susceptibility to artemisinin, parasite clearance is predicted to be slower with both the currently recommended and proposed simplified i.v. artesunate dosing regimens.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Adulto , África , Antimaláricos/uso terapêutico , Artesunato/uso terapêutico , Sudeste Asiático , Teorema de Bayes , Criança , Simulação por Computador , Humanos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum
15.
J Theor Biol ; 508: 110492, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-32966828

RESUMO

Human respiratory disease associated with influenza virus infection is of significant public health concern. Macrophages, as part of the front line of host innate cellular defence, have been shown to play an important role in controlling viral replication. However, fatal outcomes of infection, as evidenced in patients infected with highly pathogenic viral strains, are often associated with prompt activation and excessive accumulation of macrophages. Activated macrophages can produce a large amount of pro-inflammatory cytokines, which leads to severe symptoms and at times death. However, the mechanism for rapid activation and excessive accumulation of macrophages during infection remains unclear. It has been suggested that the phenomena may arise from complex interactions between macrophages and influenza virus. In this work, we develop a novel mathematical model to study the relationship between the level of macrophage activation and the level of viral load in influenza infection. Our model combines a dynamic model of viral infection, a dynamic model of macrophages and the essential interactions between the virus and macrophages. Our model predicts that the level of macrophage activation can be negatively correlated with the level of viral load when viral infectivity is sufficiently high. We further identify that temporary depletion of resting macrophages in response to viral infection is a major driver in our model for the negative relationship between the level of macrophage activation and viral load, providing new insight into the mechanisms that regulate macrophage activation. Our model serves as a framework to study the complex dynamics of virus-macrophage interactions and provides a mechanistic explanation for existing experimental observations, contributing to an enhanced understanding of the role of macrophages in influenza viral infection.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Humanos , Macrófagos , Replicação Viral
16.
PLoS Comput Biol ; 16(10): e1007838, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33017395

RESUMO

Prevalence of impetigo (skin sores) remains high in remote Australian Aboriginal communities, Fiji, and other areas of socio-economic disadvantage. Skin sore infections, driven primarily in these settings by Group A Streptococcus (GAS) contribute substantially to the disease burden in these areas. Despite this, estimates for the force of infection, infectious period and basic reproductive ratio-all necessary for the construction of dynamic transmission models-have not been obtained. By utilising three datasets each containing longitudinal infection information on individuals, we estimate each of these epidemiologically important parameters. With an eye to future study design, we also quantify the optimal sampling intervals for obtaining information about these parameters. We verify the estimation method through a simulation estimation study, and test each dataset to ensure suitability to the estimation method. We find that the force of infection differs by population prevalence, and the infectious period is estimated to be between 12 and 20 days. We also find that optimal sampling interval depends on setting, with an optimal sampling interval between 9 and 11 days in a high prevalence setting, and 21 and 27 days for a lower prevalence setting. These estimates unlock future model-based investigations on the transmission dynamics of skin sores.


Assuntos
Impetigo , Modelos Biológicos , Austrália/epidemiologia , Biologia Computacional , Bases de Dados Factuais , Humanos , Impetigo/epidemiologia , Impetigo/microbiologia , Impetigo/transmissão , Havaiano Nativo ou Outro Ilhéu do Pacífico/estatística & dados numéricos , Prevalência , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/transmissão , Streptococcus pyogenes/patogenicidade
17.
Bull Math Biol ; 83(1): 6, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33387082

RESUMO

Malaria is a mosquito-borne disease that, despite intensive control and mitigation initiatives, continues to pose an enormous public health burden. Plasmodium vivax is one of the principal causes of malaria in humans. Antibodies, which play a fundamental role in the host response to P. vivax, are acquired through exposure to the parasite. Here, we introduce a stochastic, within-host model of antibody responses to P. vivax for an individual in a general transmission setting. We begin by developing an epidemiological framework accounting for P. vivax infections resulting from new mosquito bites (primary infections), as well as the activation of dormant-liver stages known as hypnozoites (relapses). By constructing an infinite server queue, we obtain analytic results for the distribution of relapses in a general transmission setting. We then consider a simple model of antibody kinetics, whereby antibodies are boosted with each infection, but are subject to decay over time. By embedding this model for antibody kinetics in the epidemiological framework using a generalised shot noise process, we derive analytic expressions governing the distribution of antibody levels for a single individual in a general transmission setting. Our work provides a means to explore exposure-dependent antibody dynamics for P. vivax, with the potential to address key questions in the context of serological surveillance and acquired immunity.


Assuntos
Anticorpos Antiprotozoários , Malária Vivax , Modelos Biológicos , Anticorpos Antiprotozoários/sangue , Humanos , Malária Vivax/epidemiologia , Malária Vivax/imunologia , Malária Vivax/transmissão
18.
Emerg Infect Dis ; 26(12): 2844-2853, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32985971

RESUMO

The ability of health systems to cope with coronavirus disease (COVID-19) cases is of major concern. In preparation, we used clinical pathway models to estimate healthcare requirements for COVID-19 patients in the context of broader public health measures in Australia. An age- and risk-stratified transmission model of COVID-19 demonstrated that an unmitigated epidemic would dramatically exceed the capacity of the health system of Australia over a prolonged period. Case isolation and contact quarantine alone are insufficient to constrain healthcare needs within feasible levels of expansion of health sector capacity. Overlaid social restrictions must be applied over the course of the epidemic to ensure systems do not become overwhelmed and essential health sector functions, including care of COVID-19 patients, can be maintained. Attention to the full pathway of clinical care is needed, along with ongoing strengthening of capacity.


Assuntos
COVID-19/transmissão , Número de Leitos em Hospital/estatística & dados numéricos , Pandemias/prevenção & controle , Capacidade de Resposta ante Emergências/organização & administração , Austrália/epidemiologia , COVID-19/epidemiologia , Busca de Comunicante , Procedimentos Clínicos/normas , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Distanciamento Físico , Saúde Pública , Quarentena/métodos
20.
Proc Biol Sci ; 287(1932): 20201405, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32781946

RESUMO

Combinations of intense non-pharmaceutical interventions (lockdowns) were introduced worldwide to reduce SARS-CoV-2 transmission. Many governments have begun to implement exit strategies that relax restrictions while attempting to control the risk of a surge in cases. Mathematical modelling has played a central role in guiding interventions, but the challenge of designing optimal exit strategies in the face of ongoing transmission is unprecedented. Here, we report discussions from the Isaac Newton Institute 'Models for an exit strategy' workshop (11-15 May 2020). A diverse community of modellers who are providing evidence to governments worldwide were asked to identify the main questions that, if answered, would allow for more accurate predictions of the effects of different exit strategies. Based on these questions, we propose a roadmap to facilitate the development of reliable models to guide exit strategies. This roadmap requires a global collaborative effort from the scientific community and policymakers, and has three parts: (i) improve estimation of key epidemiological parameters; (ii) understand sources of heterogeneity in populations; and (iii) focus on requirements for data collection, particularly in low-to-middle-income countries. This will provide important information for planning exit strategies that balance socio-economic benefits with public health.


Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Imunidade Coletiva , Modelos Teóricos , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , COVID-19 , Criança , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Erradicação de Doenças , Características da Família , Humanos , Pandemias/prevenção & controle , Pneumonia Viral/imunologia , Pneumonia Viral/prevenção & controle , Instituições Acadêmicas , Estudos Soroepidemiológicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa