Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioscience ; 70(4): 330-342, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32284631

RESUMO

Despite their limited spatial extent, freshwater ecosystems host remarkable biodiversity, including one-third of all vertebrate species. This biodiversity is declining dramatically: Globally, wetlands are vanishing three times faster than forests, and freshwater vertebrate populations have fallen more than twice as steeply as terrestrial or marine populations. Threats to freshwater biodiversity are well documented but coordinated action to reverse the decline is lacking. We present an Emergency Recovery Plan to bend the curve of freshwater biodiversity loss. Priority actions include accelerating implementation of environmental flows; improving water quality; protecting and restoring critical habitats; managing the exploitation of freshwater ecosystem resources, especially species and riverine aggregates; preventing and controlling nonnative species invasions; and safeguarding and restoring river connectivity. We recommend adjustments to targets and indicators for the Convention on Biological Diversity and the Sustainable Development Goals and roles for national and international state and nonstate actors.

2.
Ambio ; 42(5): 549-65, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23238866

RESUMO

Sustainable development in Africa is dependent on increasing use of the continent's water resources without significantly degrading ecosystem services that are also fundamental to human wellbeing. This is particularly challenging in Africa because of high spatial and temporal variability in the availability of water resources and limited amounts of total water availability across expansive semi-arid portions of the continent. The challenge is compounded by ambitious targets for increased water use and a rush of international funding to finance development activities. Balancing development with environmental sustainability requires (i) understanding the boundary conditions imposed by the continent's climate and hydrology today and into the future, (ii) estimating the magnitude and spatial distribution of water use needed to meet development goals, and (iii) understanding the environmental water requirements of affected ecosystems, their current status and potential consequences of increased water use. This article reviews recent advancements in each of these topics and highlights innovative approaches and tools available to support sustainable development. While much remains to be learned, scientific understanding and technology should not be viewed as impediments to sustainable development on the continent.


Assuntos
Conservação dos Recursos Naturais , Recursos Hídricos , África , Clima , Ecossistema , Fontes Geradoras de Energia , Abastecimento de Alimentos , Pesquisa
3.
Sci Total Environ ; 802: 149872, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34461480

RESUMO

In many high altitude river basins, the hydro-climatic regimes and the spatial and temporal distribution of precipitation are little known, complicating efforts to quantify current and future water availability. Scarce, or non-existent, gauged observations at high altitudes coupled with complex weather systems and orographic effects further prevent a realistic and comprehensive assessment of precipitation. Quantifying the contribution from seasonal snow and glacier melt to the river runoff for a high altitude, melt dependent region is especially difficult. Global scale precipitation products, in combination with precipitation-runoff modelling may provide insights to the hydro-climatic regimes for such data scarce regions. In this study two global precipitation products; the high resolution (0.1°â€¯× 0.1°), newly developed ERA5-Land, and a coarser resolution (0.55°â€¯× 0.55°) JRA-55, are used to simulate snow/glacier melts and runoff for the Gilgit Basin, a sub-basin of the Indus. A hydrological precipitation-runoff model, the Distance Distribution Dynamics (DDD), requires minimum input data and was developed for snow dominated catchments. The mean of total annual precipitation from 1995 to 2010 data was estimated at 888 mm and 951 mm by ERA5-Land and JRA-55, respectively. The daily runoff simulation obtained a Kling Gupta efficiency (KGE) of 0.78 and 0.72 with ERA5-Land and JRA-55 based simulations, respectively. The simulated snow cover area (SCA) was validated using MODIS SCA and the results are quite promising on daily, monthly and annual scales. Our result showed an overall contribution to the river flow as about 26% from rainfall, 37-38% from snow melt, 31% from glacier melt and 5% from soil moisture. These melt simulations are in good agreement with the overall hydro-climatic regimes and seasonality of the area. The proxy energy balance approach in the DDD model, used to estimate snow melt and evapotranspiration, showed robust behaviour and potential for being employed in data poor basins.


Assuntos
Monitoramento Ambiental , Neve , Hidrologia , Camada de Gelo , Rios
4.
Sci Rep ; 12(1): 21442, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509796

RESUMO

The Upper Indus Basin (UIB) heavily depends on its frozen water resources, and an accelerated melt due to the projected climate change may significantly alter future water availability. The future hydro-climatic regime and water availability of the Hunza basin (a sub-basin of UIB) were analysed using the newly released Coupled Model Intercomparison Project Phase 6 (CMIP6) climate projections. A data and parameter parsimonious precipitation-runoff model, the Distance Distribution Dynamics (DDD) model, was used with energy balance-based subroutines for snowmelt, glacier melt and evapotranspiration. The DDD model was set up for baseline (1991-2010), mid-century (2041-2060) and end-century (2081-2100) climates projections from two global circulation models (GCM), namely EC-Earth3 and MPI-ESM. The projections indicate a substantial increase in temperature (1.1-8.6 °C) and precipitation (12-32%) throughout the twenty-first century. The simulations show the future flow increase between 23-126% and the future glacier melt increase between 30-265%, depending on the scenarios and GCMs used. Moreover, the simulations suggest an increasing glacier melt contribution from all elevations with a significant increase from the higher elevations. The findings provide a basis for planning and modifying reservoir operation strategies with respect to hydropower generation, irrigation withdrawals, flood control, and drought management.


Assuntos
Mudança Climática , Rios , Inundações , Camada de Gelo , Água
5.
Environ Manage ; 37(6): 802-15, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16555027

RESUMO

Investigations of land use/land cover (LULC) change and forest management are limited by a lack of understanding of how socioeconomic factors affect land use. This lack also constrains the predictions of future deforestation, which is especially important in the Amazon basin, where large tracts of natural forest are being converted to managed uses. Research presented in this article was conducted to address this lack of understanding. Its objectives are (a) to quantify deforestation in the Northern Ecuadorian Amazon (NEA) during the periods 1986-1996 and 1996-2002; and (b) to determine the significance and magnitude of the effects of socioeconomic factors on deforestation rates at both the parroquia (parish) and finca (farm) levels. Annual deforestation rates were quantified via satellite image processing and geographic information systems. Linear spatial lag regression analyses were then used to explore relationships between socioeconomic factors and deforestation. Socioeconomic factors were obtained, at the finca level, from a detailed household survey carried out in 1990 and 1999, and at the parroquia level from data in the 1990 and 2001 Ecuadorian censuses of population. We found that the average annual deforestation rate was 2.5% and 1.8%/year for 1986-1996 and 1996-2002, respectively. At the parroquia level, variables representing demographic factors (i.e., population density) and accessibility factors (i.e., road density), among others, were found to be significantly related to deforestation. At the farm level, the factors related to deforestation were household size, distance by road to main cities, education, and hired labor. The findings of this research demonstrate both the severity of deforestation in the Northern Ecuadorian Amazon and the array of factors affecting deforestation in the tropics.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais , Monitoramento Ambiental/métodos , Árvores , Coleta de Dados , Países em Desenvolvimento , Equador , Sistemas de Informação Geográfica , Humanos , Densidade Demográfica , Dinâmica Populacional , Análise de Regressão , Fatores Socioeconômicos
6.
Oecologia ; 137(4): 485-501, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14505024

RESUMO

Although biogeochemistry is an integrative discipline, terrestrial and aquatic subdisciplines have developed somewhat independently of each other. Physical and biological differences between aquatic and terrestrial ecosystems explain this history. In both aquatic and terrestrial biogeochemistry, key questions and concepts arise from a focus on nutrient limitation, ecosystem nutrient retention, and controls of nutrient transformations. Current understanding is captured in conceptual models for different ecosystem types, which share some features and diverge in other ways. Distinctiveness of subdisciplines has been appropriate in some respects and has fostered important advances in theory. On the other hand, lack of integration between aquatic and terrestrial biogeochemistry limits our ability to deal with biogeochemical phenomena across large landscapes in which connections between terrestrial and aquatic elements are important. Separation of the two approaches also has not served attempts to scale up or to estimate fluxes from large areas based on plot measurements. Understanding connectivity between the two system types and scaling up biogeochemical information will rely on coupled hydrologic and ecological models, and may be critical for addressing environmental problems associated with locally, regionally, and globally altered biogeochemical cycles.


Assuntos
Ecossistema , Modelos Teóricos , Nitrogênio/metabolismo , Fósforo/metabolismo , Fenômenos Geológicos , Geologia , Água/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa