Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 619(7968): 160-166, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37258666

RESUMO

KRAS is one of the most commonly mutated proteins in cancer, and efforts to directly inhibit its function have been continuing for decades. The most successful of these has been the development of covalent allele-specific inhibitors that trap KRAS G12C in its inactive conformation and suppress tumour growth in patients1-7. Whether inactive-state selective inhibition can be used to therapeutically target non-G12C KRAS mutants remains under investigation. Here we report the discovery and characterization of a non-covalent inhibitor that binds preferentially and with high affinity to the inactive state of KRAS while sparing NRAS and HRAS. Although limited to only a few amino acids, the evolutionary divergence in the GTPase domain of RAS isoforms was sufficient to impart orthosteric and allosteric constraints for KRAS selectivity. The inhibitor blocked nucleotide exchange to prevent the activation of wild-type KRAS and a broad range of KRAS mutants, including G12A/C/D/F/V/S, G13C/D, V14I, L19F, Q22K, D33E, Q61H, K117N and A146V/T. Inhibition of downstream signalling and proliferation was restricted to cancer cells harbouring mutant KRAS, and drug treatment suppressed KRAS mutant tumour growth in mice, without having a detrimental effect on animal weight. Our study suggests that most KRAS oncoproteins cycle between an active state and an inactive state in cancer cells and are dependent on nucleotide exchange for activation. Pan-KRAS inhibitors, such as the one described here, have broad therapeutic implications and merit clinical investigation in patients with KRAS-driven cancers.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Transdução de Sinais , Animais , Camundongos , Peso Corporal , Ativação Enzimática , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Nucleotídeos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Especificidade por Substrato
2.
J Biomol NMR ; 78(1): 1-8, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37816933

RESUMO

In this study, we present the synthesis and incorporation of a metabolic isoleucine precursor compound for selective methylene labeling. The utility of this novel α-ketoacid isotopologue is shown by incorporation into the protein Brd4-BD1, which regulates gene expression by binding to acetylated histones. High quality single quantum 13C-1 H-HSQC were obtained, as well as triple quantum HTQC spectra, which are superior in terms of significantly increased 13C-T2 times. Additionally, large chemical shift perturbations upon ligand binding were observed. Our study thus proves the great sensitivity of this precursor as a reporter for side-chain dynamic studies and for investigations of CH-π interactions in protein-ligand complexes.


Assuntos
Isoleucina , Fatores de Transcrição , Fatores de Transcrição/química , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligantes , Ressonância Magnética Nuclear Biomolecular
3.
Chembiochem ; 25(6): e202300762, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38294275

RESUMO

Precise information regarding the interaction between proteins and ligands at molecular resolution is crucial for effectively guiding the optimization process from initial hits to lead compounds in early stages of drug development. In this study, we introduce a novel aliphatic side chain isotope-labeling scheme to directly probe interactions between ligands and aliphatic sidechains using NMR techniques. To demonstrate the applicability of this method, we selected a set of Brd4-BD1 binders and analyzed 1 H chemical shift perturbation resulting from CH-π interaction of Hß -Val and Hγ -Leu as CH donors with corresponding ligand aromatic moieties as π acceptors.


Assuntos
Proteínas Nucleares , Valina , Leucina/química , Valina/química , Ligantes , Fatores de Transcrição
4.
Chemphyschem ; 25(1): e202300636, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37955910

RESUMO

The availability of high-resolution 3D structural information is crucial for investigating guest-host systems across a wide range of fields. In the context of drug discovery, the information is routinely used to establish and validate structure-activity relationships, grow initial hits from screening campaigns, and to guide molecular docking. For the generation of protein-ligand complex structural information, X-ray crystallography is the experimental method of choice, however, with limited information on protein flexibility. An experimentally verified structural model of the binding interface in the native solution-state would support medicinal chemists in their molecular design decisions. Here we demonstrate that protein-bound ligand 1 H NMR chemical shifts are highly sensitive and accurate probes for the immediate chemical environment of protein-ligand interfaces. By comparing the experimental ligand 1 H chemical shift values with those computed from the X-ray structure using quantum mechanics methodology, we identify significant disagreements for parts of the ligand between the two experimental techniques. We show that quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) ensembles can be used to refine initial X-ray co-crystal structures resulting in a better agreement with experimental 1 H ligand chemical shift values. Overall, our findings highlight the usefulness of ligand 1 H NMR chemical shift information in combination with a QM/MM MD workflow for generating protein-ligand ensembles that accurately reproduce solution structural data.


Assuntos
Imageamento por Ressonância Magnética , Proteínas , Simulação de Acoplamento Molecular , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Proteínas/química
5.
Proc Natl Acad Sci U S A ; 116(32): 15823-15829, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31332011

RESUMO

The 3 human RAS genes, KRAS, NRAS, and HRAS, encode 4 different RAS proteins which belong to the protein family of small GTPases that function as binary molecular switches involved in cell signaling. Activating mutations in RAS are among the most common oncogenic drivers in human cancers, with KRAS being the most frequently mutated oncogene. Although KRAS is an excellent drug discovery target for many cancers, and despite decades of research, no therapeutic agent directly targeting RAS has been clinically approved. Using structure-based drug design, we have discovered BI-2852 (1), a KRAS inhibitor that binds with nanomolar affinity to a pocket, thus far perceived to be "undruggable," between switch I and II on RAS; 1 is mechanistically distinct from covalent KRASG12C inhibitors because it binds to a different pocket present in both the active and inactive forms of KRAS. In doing so, it blocks all GEF, GAP, and effector interactions with KRAS, leading to inhibition of downstream signaling and an antiproliferative effect in the low micromolar range in KRAS mutant cells. These findings clearly demonstrate that this so-called switch I/II pocket is indeed druggable and provide the scientific community with a chemical probe that simultaneously targets the active and inactive forms of KRAS.


Assuntos
Descoberta de Drogas , Preparações Farmacêuticas/química , Proteínas Proto-Oncogênicas p21(ras)/química , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Nanopartículas/química
6.
Nat Chem Biol ; 15(8): 846, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31267096

RESUMO

In the version of this article originally published, several lines of text in the last paragraph of the right column on page 1 of the PDF were transposed into the bottom paragraph of the left column. The affected text of the left column should read "The ATP-dependent activities of the BAF (SWI/SNF) chromatin remodeling complexes affect the positioning of nucleosomes on DNA and thereby many cellular processes related to chromatin structure, including transcription, DNA repair and decatenation of chromosomes during mitosis12,13." The affected text of the right column should read "SMARCA2/4BD inhibitors are thus precluded from use for the treatment of SMARCA4 mutant cancers but could provide attractive ligands for PROTAC conjugation. Small molecules binding to other bromodomains have been successfully converted into PROTACs by conjugating them with structures capable of binding to the E3 ligases von Hippel-Lindau (VHL) or cereblon5,6,10,11,25,26,27." The errors have been corrected in the PDF version of the paper.

7.
Nat Chem Biol ; 15(7): 672-680, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31178587

RESUMO

Targeting subunits of BAF/PBAF chromatin remodeling complexes has been proposed as an approach to exploit cancer vulnerabilities. Here, we develop proteolysis targeting chimera (PROTAC) degraders of the BAF ATPase subunits SMARCA2 and SMARCA4 using a bromodomain ligand and recruitment of the E3 ubiquitin ligase VHL. High-resolution ternary complex crystal structures and biophysical investigation guided rational and efficient optimization toward ACBI1, a potent and cooperative degrader of SMARCA2, SMARCA4 and PBRM1. ACBI1 induced anti-proliferative effects and cell death caused by SMARCA2 depletion in SMARCA4 mutant cancer cells, and in acute myeloid leukemia cells dependent on SMARCA4 ATPase activity. These findings exemplify a successful biophysics- and structure-based PROTAC design approach to degrade high profile drug targets, and pave the way toward new therapeutics for the treatment of tumors sensitive to the loss of BAF complex ATPases.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/genética , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/genética , Proliferação de Células , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Estrutura Molecular , Proteínas Nucleares/metabolismo
8.
Nat Chem Biol ; 15(8): 822-829, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285596

RESUMO

Here, we report the fragment-based discovery of BI-9321, a potent, selective and cellular active antagonist of the NSD3-PWWP1 domain. The human NSD3 protein is encoded by the WHSC1L1 gene located in the 8p11-p12 amplicon, frequently amplified in breast and squamous lung cancer. Recently, it was demonstrated that the PWWP1 domain of NSD3 is required for the viability of acute myeloid leukemia cells. To further elucidate the relevance of NSD3 in cancer biology, we developed a chemical probe, BI-9321, targeting the methyl-lysine binding site of the PWWP1 domain with sub-micromolar in vitro activity and cellular target engagement at 1 µM. As a single agent, BI-9321 downregulates Myc messenger RNA expression and reduces proliferation in MOLM-13 cells. This first-in-class chemical probe BI-9321, together with the negative control BI-9466, will greatly facilitate the elucidation of the underexplored biological function of PWWP domains.


Assuntos
Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Proteínas Nucleares/antagonistas & inibidores , Sistemas CRISPR-Cas , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Domínios Proteicos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
9.
Am J Med Genet A ; 182(3): 597-606, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31825160

RESUMO

The RASopathies are a group of genetic disorders that result from germline pathogenic variants affecting RAS-mitogen activated protein kinase (MAPK) pathway genes. RASopathies share RAS/MAPK pathway dysregulation and share phenotypic manifestations affecting numerous organ systems, causing lifelong and at times life-limiting medical complications. RASopathies may benefit from precision medicine approaches. For this reason, the Sixth International RASopathies Symposium focused on exploring precision medicine. This meeting brought together basic science researchers, clinicians, clinician scientists, patient advocates, and representatives from pharmaceutical companies and the National Institutes of Health. Novel RASopathy genes, variants, and animal models were discussed in the context of medication trials and drug development. Attempts to define and measure meaningful endpoints for treatment trials were discussed, as was drug availability to patients after trial completion.


Assuntos
Doenças Genéticas Inatas/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas ras/genética , Doenças Genéticas Inatas/patologia , Mutação em Linhagem Germinativa/genética , Humanos , Transdução de Sinais/genética
10.
Angew Chem Int Ed Engl ; 59(35): 14861-14868, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32421895

RESUMO

While CH-π interactions with target proteins are crucial determinants for the affinity of arguably every drug molecule, no method exists to directly measure the strength of individual CH-π interactions in drug-protein complexes. Herein, we present a fast and reliable methodology called PI (π interactions) by NMR, which can differentiate the strength of protein-ligand CH-π interactions in solution. By combining selective amino-acid side-chain labeling with 1 H-13 C NMR, we are able to identify specific protein protons of side-chains engaged in CH-π interactions with aromatic ring systems of a ligand, based solely on 1 H chemical-shift values of the interacting protein aromatic ring protons. The information encoded in the chemical shifts induced by such interactions serves as a proxy for the strength of each individual CH-π interaction. PI by NMR changes the paradigm by which chemists can optimize the potency of drug candidates: direct determination of individual π interactions rather than averaged measures of all interactions.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Proteínas/química , Humanos , Modelos Moleculares
11.
Chemistry ; 25(52): 12037-12041, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31231840

RESUMO

Natural products have proven to be a rich source of molecular architectures for drugs. Here, an integrated approach to natural product screening is proposed, which uncovered eight new natural product scaffolds for KRAS-the most frequently mutated oncogenic driver in human cancers, which has remained thus far undrugged. The approach combines aspects of virtual screening, fragment-based screening, structure-activity relationships (SAR) by NMR, and structure-based drug discovery to overcome the limitations in traditional natural product approaches. By using our approach, a new "snugness of fit" scoring function and the first crystal-soaking system of the active form of KRASG12D , the protein-ligand X-ray structures of a tricyclic indolopyrrole fungal alkaloid and an indoloisoquinolinone have been successfully elucidated. The natural product KRAS hits discovered provide fruitful ground for the optimization of highly potent natural-product-based inhibitors of the active form of oncogenic RAS. This integrated approach for screening natural products also holds promise for other "undruggable" targets.

12.
Nat Chem Biol ; 12(9): 672-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27376689

RESUMO

Here we show that acute myeloid leukemia (AML) cells require the BRD9 subunit of the SWI-SNF chromatin-remodeling complex to sustain MYC transcription, rapid cell proliferation and a block in differentiation. Based on these observations, we derived small-molecule inhibitors of the BRD9 bromodomain that selectively suppress the proliferation of mouse and human AML cell lines. To establish these effects as on-target, we engineered a bromodomain-swap allele of BRD9 that retains functionality despite a radically altered bromodomain pocket. Expression of this allele in AML cells confers resistance to the antiproliferative effects of our compound series, thus establishing BRD9 as the relevant cellular target. Furthermore, we used an analogous domain-swap strategy to generate an inhibitor-resistant allele of EZH2. To our knowledge, our study provides the first evidence for a role of BRD9 in cancer and reveals a simple genetic strategy for constructing resistance alleles to demonstrate on-target activity of chemical probes in cells.


Assuntos
Antineoplásicos/farmacologia , Engenharia Celular , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Fatores de Transcrição/antagonistas & inibidores , Alelos , Animais , Antineoplásicos/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leucemia Mieloide Aguda/metabolismo , Camundongos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
J Med Chem ; 67(14): 11701-11711, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39009041

RESUMO

Identifying promising chemical starting points for small molecule inhibitors of active, GTP-loaded KRAS "on" remains of great importance to clinical oncology and represents a significant challenge in medicinal chemistry. Here, we describe broadly applicable learnings from a KRAS hit finding campaign: While we initially identified KRAS inhibitors in a biochemical high-throughput screen, we later discovered that compound potencies were all but assay artifacts linked to metal salts interfering with KRAS AlphaScreen assay technology. The source of the apparent biochemical KRAS inhibition was ultimately traced to unavoidable palladium impurities from chemical synthesis. This discovery led to the development of a Metal Ion Interference Set (MIIS) for up-front assay development and testing. Profiling of the MIIS across 74 assays revealed a reduced interference liability of label-free biophysical assays and, as a result, provided general estimates for luminescence- and fluorescence-based assay susceptibility to metal salt interference.


Assuntos
Paládio , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Paládio/química , Ensaios de Triagem em Larga Escala/métodos , Sais/química
16.
J Med Chem ; 65(21): 14614-14629, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36300829

RESUMO

Activating mutations in KRAS are the most frequent oncogenic alterations in cancer. The oncogenic hotspot position 12, located at the lip of the switch II pocket, offers a covalent attachment point for KRASG12C inhibitors. To date, KRASG12C inhibitors have been discovered by first covalently binding to the cysteine at position 12 and then optimizing pocket binding. We report on the discovery of the in vivo active KRASG12C inhibitor BI-0474 using a different approach, in which small molecules that bind reversibly to the switch II pocket were identified and then optimized for non-covalent binding using structure-based design. Finally, the Michael acceptor containing warhead was attached. Our approach offers not only an alternative approach to discovering KRASG12C inhibitors but also provides a starting point for the discovery of inhibitors against other oncogenic KRAS mutants.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Genes ras , Mutação , Neoplasias/genética , Cisteína
17.
Nat Cancer ; 3(7): 821-836, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35883003

RESUMO

Oncogenic alterations in human epidermal growth factor receptor 2 (HER2) occur in approximately 2% of patients with non-small cell lung cancer and predominantly affect the tyrosine kinase domain and cluster in exon 20 of the ERBB2 gene. Most clinical-grade tyrosine kinase inhibitors are limited by either insufficient selectivity against wild-type (WT) epidermal growth factor receptor (EGFR), which is a major cause of dose-limiting toxicity or by potency against HER2 exon 20 mutant variants. Here we report the discovery of covalent tyrosine kinase inhibitors that potently inhibit HER2 exon 20 mutants while sparing WT EGFR, which reduce tumor cell survival and proliferation in vitro and result in regressions in preclinical xenograft models of HER2 exon 20 mutant non-small cell lung cancer, concomitant with inhibition of downstream HER2 signaling. Our results suggest that HER2 exon 20 insertion-driven tumors can be effectively treated by a potent and highly selective HER2 inhibitor while sparing WT EGFR, paving the way for clinical translation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/genética , Éxons/genética , Genes erbB-2 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/genética
18.
J Med Chem ; 64(22): 16319-16327, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34784474

RESUMO

At the heart of drug design is the discovery of molecules that bind with high affinity to their drug targets. Biotin forms the strongest known noncovalent ligand-protein interactions with avidin and streptavidin, achieving femtomolar and picomolar affinities, respectively. This is made even more exceptional because biotin achieves this with a meagre molecular weight of 240 Da. Surprisingly, the approaches by which biotin achieves this are not in the standard repertoire of current medicinal chemistry practice. Biotin's biggest lesson is the importance of nonclassical H-bonds in protein-ligand complexes. Most of biotin's affinity stems from its flexible valeric acid side chain that forms CH-π, CH-O, and classical H-bonds with the lipophilic region of the binding pocket. Biotin also utilizes an oxyanion hole, a sulfur-centered H-bond, and water solvation in the bound state to achieve its potency. The facets and advantages of biotin's approach to binding should be more widely adopted in drug design.


Assuntos
Biotina/química , Desenho de Fármacos , Sítios de Ligação , Ligação de Hidrogênio , Estrutura Molecular , Ácidos Pentanoicos/química , Estreptavidina/química
19.
Curr Opin Pharmacol ; 57: 175-183, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33799000

RESUMO

Small-molecule targeted protein degraders have in recent years made a great impact on the strategies of many industry and academic cancer research endeavours. We seek here to provide a concise perspective on the opportunities and challenges that lie ahead for bifunctional degrader molecules, so-called 'Proteolysis Targeting Chimeras (PROTACs),' in the context of cancer therapy. We highlight high-profile studies that support the potential for PROTAC approaches to broaden drug target scope, address drug resistance, enhance target selectivity and provide tissue specificity, but also assess where the modality is yet to fully deliver in these contexts. Future opportunities presented by the unique bifunctional nature of these molecules are also discussed.


Assuntos
Reagentes de Ligações Cruzadas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Proteólise , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia
20.
Curr Opin Chem Biol ; 62: 109-118, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33848766

RESUMO

Son of Sevenless (SOS) is a guanine nucleotide exchange factor that activates the important cell signaling switch KRAS. SOS acts as a pacemaker for KRAS, the beating heart of cancer, by catalyzing the "beating" from the KRAS(off) to the KRAS(on) conformation. Activating mutations in SOS1 are common in Noonan syndrome and oncogenic alterations in KRAS drive 1 in seven human cancers. Promising clinical efficacy has been observed for selective KRASG12C inhibitors, but the vast majority of oncogenic KRAS alterations remain undrugged. The discovery of a druggable pocket on SOS1 has led to potent SOS1 inhibitors such as BI-3406. SOS1 inhibition leads to antiproliferative effects against all major KRAS mutants. The first SOS1 inhibitor has entered clinical trials for KRAS-mutated cancers. In this review, we provide an overview of SOS1 function, its association with cancer and RASopathies, known SOS1 activators and inhibitors, and a future perspective is provided.


Assuntos
Antineoplásicos/química , Proteínas Mutantes/química , Neoplasias/terapia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína SOS1/antagonistas & inibidores , Acetonitrilas/farmacologia , Antineoplásicos/farmacologia , Regulação da Expressão Gênica , Humanos , Mutação , Marca-Passo Artificial , Piperazinas/farmacologia , Conformação Proteica , Piridinas/farmacologia , Pirimidinas/farmacologia , Proteína SOS1/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa