Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Evol Biol ; 31(9): 1386-1399, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29938863

RESUMO

The paradox of high genetic variation observed in traits under stabilizing selection is a long-standing problem in evolutionary theory, as mutation rates appear too low to explain observed levels of standing genetic variation under classic models of mutation-selection balance. Spatially or temporally heterogeneous environments can maintain more standing genetic variation within populations than homogeneous environments, but it is unclear whether such conditions can resolve the above discrepancy between theory and observation. Here, we use individual-based simulations to explore the effect of various types of environmental heterogeneity on the maintenance of genetic variation (VA ) for a quantitative trait under stabilizing selection. We find that VA is maximized at intermediate migration rates in spatially heterogeneous environments and that the observed patterns are robust to changes in population size. Spatial environmental heterogeneity increased variation by as much as 10-fold over mutation-selection balance alone, whereas pure temporal environmental heterogeneity increased variance by only 45% at max. Our results show that some combinations of spatial heterogeneity and migration can maintain considerably more variation than mutation-selection balance, potentially reconciling the discrepancy between theoretical predictions and empirical observations. However, given the narrow regions of parameter space required for this effect, this is unlikely to provide a general explanation for the maintenance of variation. Nonetheless, our results suggest that habitat fragmentation may affect the maintenance of VA and thereby reduce the adaptive capacity of populations.


Assuntos
Migração Animal , Simulação por Computador , Variação Genética , Modelos Genéticos , Animais , Meio Ambiente , Taxa de Mutação , Densidade Demográfica , Seleção Genética
2.
Mol Ecol Resour ; 22(7): 2524-2533, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35510784

RESUMO

The use of next-generation sequencing (NGS) data sets has increased dramatically over the last decade, but there have been few systematic analyses quantifying the accuracy of the commonly used variant caller programs. Here we used a familial design consisting of diploid tissue from a single lodgepole pine (Pinus contorta) parent and the maternally derived haploid tissue from 106 full-sibling offspring, where mismatches could only arise due to mutation or bioinformatic error. Given the rarity of mutation, we used the rate of mismatches between parent and offspring genotype calls to infer the single nucleotide polymorphism (SNP) genotyping error rates of FreeBayes, HaplotypeCaller, SAMtools, UnifiedGenotyper, and VarScan. With baseline filtering HaplotypeCaller and UnifiedGenotyper yielded more SNPs and higher error rates by one to two orders of magnitude, whereas FreeBayes, SAMtools and VarScan yielded lower numbers of SNPs and more modest error rates. To facilitate comparison between variant callers we standardized each SNP set to the same number of SNPs using additional filtering, where UnifiedGenotyper consistently produced the smallest proportion of genotype errors, followed by HaplotypeCaller, VarScan, SAMtools, and FreeBayes. Additionally, we found that error rates were minimized for SNPs called by more than one variant caller. Finally, we evaluated the performance of various commonly used filtering metrics on SNP calling. Our analysis provides a quantitative assessment of the accuracy of five widely used variant calling programs and offers valuable insights into both the choice of variant caller program and the choice of filtering metrics, especially for researchers using non-model study systems.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Biologia Computacional , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Software
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa