Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 109(7): 2319-24, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22308425

RESUMO

Deamination of nucleobases in DNA and RNA results in the formation of xanthine (X), hypoxanthine (I), oxanine, and uracil, all of which are miscoding and mutagenic in DNA and can interfere with RNA editing and function. Among many forms of nucleic acid damage, deamination arises from several unrelated mechanisms, including hydrolysis, nitrosative chemistry, and deaminase enzymes. Here we present a fourth mechanism contributing to the burden of nucleobase deamination: incorporation of hypoxanthine and xanthine into DNA and RNA caused by defects in purine nucleotide metabolism. Using Escherichia coli and Saccharomyces cerevisiae with defined mutations in purine metabolism in conjunction with analytical methods for quantifying deaminated nucleobases in DNA and RNA, we observed large increases (up to 600-fold) in hypoxanthine in both DNA and RNA in cells unable to convert IMP to XMP or AMP (IMP dehydrogenase, guaB; adenylosuccinate synthetase, purA, and ADE12), and unable to remove dITP/ITP and dXTP/XTP from the nucleotide pool (dITP/XTP pyrophosphohydrolase, rdgB and HAM1). Conversely, modest changes in xanthine levels were observed in RNA (but not DNA) from E. coli lacking purA and rdgB and the enzyme converting XMP to GMP (GMP synthetase, guaA). These observations suggest that disturbances in purine metabolism caused by known genetic polymorphisms could increase the burden of mutagenic deaminated nucleobases in DNA and interfere with gene expression and RNA function, a situation possibly exacerbated by the nitrosative stress of concurrent inflammation. The results also suggest a mechanistic basis for the pathophysiology of human inborn errors of purine nucleotide metabolism.


Assuntos
DNA/metabolismo , Hipoxantina/metabolismo , Nucleotídeos de Purina/metabolismo , RNA/metabolismo , Xantina/metabolismo
2.
Proc Natl Acad Sci U S A ; 109(27): E1820-9, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22689960

RESUMO

Helicobacter hepaticus-infected Rag2(-/-) mice emulate many aspects of human inflammatory bowel disease, including the development of colitis and colon cancer. To elucidate mechanisms of inflammation-induced carcinogenesis, we undertook a comprehensive analysis of histopathology, molecular damage, and gene expression changes during disease progression in these mice. Infected mice developed severe colitis and hepatitis by 10 wk post-infection, progressing into colon carcinoma by 20 wk post-infection, with pronounced pathology in the cecum and proximal colon marked by infiltration of neutrophils and macrophages. Transcriptional profiling revealed decreased expression of DNA repair and oxidative stress response genes in colon, but not in liver. Mass spectrometric analysis revealed higher levels of DNA and RNA damage products in liver compared to colon and infection-induced increases in 5-chlorocytosine in DNA and RNA and hypoxanthine in DNA. Paradoxically, infection was associated with decreased levels of DNA etheno adducts. Levels of nucleic acid damage from the same chemical class were strongly correlated in both liver and colon. The results support a model of inflammation-mediated carcinogenesis involving infiltration of phagocytes and generation of reactive species that cause local molecular damage leading to cell dysfunction, mutation, and cell death. There are strong correlations among histopathology, phagocyte infiltration, and damage chemistry that suggest a major role for neutrophils in inflammation-associated cancer progression. Further, paradoxical changes in nucleic acid damage were observed in tissue- and chemistry-specific patterns. The results also reveal features of cell stress response that point to microbial pathophysiology and mechanisms of cell senescence as important mechanistic links to cancer.


Assuntos
Colite/microbiologia , Neoplasias do Colo/microbiologia , Dano ao DNA/imunologia , Infecções por Helicobacter/complicações , Infecções por Helicobacter/imunologia , Helicobacter hepaticus/imunologia , Animais , Biomarcadores , Doença Crônica , Colite/imunologia , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Expressão Gênica/imunologia , Hepatite/imunologia , Hepatite/microbiologia , Macrófagos/imunologia , Espectrometria de Massas , Camundongos , Camundongos da Linhagem 129 , Camundongos Mutantes , Neutrófilos/imunologia , Estresse Oxidativo/imunologia , RNA/genética
3.
Chem Res Toxicol ; 26(4): 538-46, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23506120

RESUMO

One possible mechanism linking inflammation with cancer involves the generation of reactive oxygen, nitrogen, and halogen species by activated macrophages and neutrophils infiltrating sites of infection or tissue damage, with these chemical mediators causing damage that ultimately leads to cell death and mutation. To determine the most biologically deleterious chemistries of inflammation, we previously assessed products across the spectrum of DNA damage arising in inflamed tissues in the SJL mouse model nitric oxide overproduction ( Pang et al. ( 2007 ) Carcinogenesis 28 , 1807 - 1813 ). Among the anticipated DNA damage chemistries, we observed significant changes only in lipid peroxidation-derived etheno adducts. We have now developed an isotope-dilution, liquid chromatography-coupled, tandem quadrupole mass spectrometric method to quantify representative species across the spectrum of RNA damage products predicted to arise at sites of inflammation, including nucleobase deamination (xanthosine and inosine), oxidation (8-oxoguanosine), and alkylation (1,N(6)-ethenoadenosine). Application of the method to the liver, spleen, and kidney from the SJL mouse model revealed generally higher levels of oxidative background RNA damage than was observed in DNA in control mice. However, compared to control mice, RcsX treatment to induce nitric oxide overproduction resulted in significant increases only in inosine and only in the spleen. Further, the nitric oxide synthase inhibitor, N-methylarginine, did not significantly affect the levels of inosine in control and RcsX-treated mice. The differences between DNA and RNA damage in the same animal model of inflammation point to possible influences from DNA repair, RcsX-induced alterations in adenosine deaminase activity, and differential accessibility of DNA and RNA to reactive oxygen and nitrogen species as determinants of nucleic acid damage during inflammation.


Assuntos
Inflamação/metabolismo , RNA/metabolismo , Animais , Cromatografia Líquida , DNA/metabolismo , Dano ao DNA , Modelos Animais de Doenças , Fenômenos Genéticos , Inosina , Rim/metabolismo , Fígado/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Oxirredução , Baço/metabolismo , Espectrometria de Massas em Tandem
4.
Proc Natl Acad Sci U S A ; 106(1): 169-74, 2009 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19118192

RESUMO

Reactive oxygen species (ROS) appear to play a role in limiting both cellular and organismic lifespan. However, because of their pleiotropic effects, it has been difficult to ascribe a specific role to ROS in initiating the process of cellular senescence. We have studied the effects of oxidative DNA damage on cell proliferation, believing that such damage is of central importance to triggering senescence. To do so, we devised a strategy to decouple levels of 8-oxoguanine, a major oxidative DNA lesion, from ROS levels. Suppression of MTH1 expression, which hydrolyzes 8-oxo-dGTP, was accompanied by increased total cellular 8-oxoguanine levels and caused early-passage primary and telomerase-immortalized human skin fibroblasts to rapidly undergo senescence, doing so without altering cellular ROS levels. This senescent phenotype recapitulated several salient features of replicative senescence, notably the presence of senescence-associated beta-galactosidase (SA beta-gal) activity, apparently irreparable genomic DNA breaks, and elevation of p21(Cip1), p53, and p16(INK4A) tumor suppressor protein levels. Culturing cells under low oxygen tension (3%) largely prevented the shMTH1-dependent senescent phenotype. These results indicate that the nucleotide pool is a critical target of intracellular ROS and that oxidized nucleotides, unless continuously eliminated, can rapidly induce cell senescence through signaling pathways very similar to those activated during replicative senescence.


Assuntos
Senescência Celular , Nucleotídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas , Dano ao DNA , Enzimas Reparadoras do DNA/genética , Fibroblastos/citologia , Guanina/análogos & derivados , Humanos , Oxigênio/farmacologia , Monoéster Fosfórico Hidrolases/genética
5.
J Clin Invest ; 118(7): 2516-25, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18521188

RESUMO

Chronic inflammation increases cancer risk. While it is clear that cell signaling elicited by inflammatory cytokines promotes tumor development, the impact of DNA damage production resulting from inflammation-associated reactive oxygen and nitrogen species (RONS) on tumor development has not been directly tested. RONS induce DNA damage that can be recognized by alkyladenine DNA glycosylase (Aag) to initiate base excision repair. Using a mouse model of episodic inflammatory bowel disease by repeated administration of dextran sulfate sodium in the drinking water, we show that Aag-mediated DNA repair prevents colonic epithelial damage and reduces the severity of dextran sulfate sodium-induced colon tumorigenesis. Importantly, DNA base lesions expected to be induced by RONS and recognized by Aag accumulated to higher levels in Aag-deficient animals following stimulation of colonic inflammation. Finally, as a test of the generality of this effect we show that Aag-deficient animals display more severe gastric lesions that are precursors of gastric cancer after chronic infection with Helicobacter pylori. These data demonstrate that the repair of DNA lesions formed by RONS during chronic inflammation is important for protection against colon carcinogenesis.


Assuntos
Colo/metabolismo , Neoplasias do Colo/etiologia , Dano ao DNA , DNA Glicosilases/genética , Doenças Inflamatórias Intestinais/complicações , Animais , Colo/efeitos dos fármacos , Colo/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , DNA Glicosilases/deficiência , Reparo do DNA , Sulfato de Dextrana/administração & dosagem , Sulfato de Dextrana/toxicidade , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/crescimento & desenvolvimento , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Purinas/análise , Purinas/metabolismo , Pirimidinas/análise , Pirimidinas/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/patologia , Estômago/microbiologia , Estômago/patologia , beta Catenina/genética
6.
DNA Repair (Amst) ; 11(1): 92-8, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22133811

RESUMO

We describe a rapid method to accurately measure the cytotoxicity of mammalian cells upon exposure to various drugs. Using this assay, we obtain survival data in a fraction of the time required to perform the traditional clonogenic survival assay, considered the gold standard. The dynamic range of the assay allows sensitivity measurements on a multi-log scale allowing better resolution of comparative sensitivities. Moreover, the results obtained contain additional information on cell cycle effects of the drug treatment. Cell survival is obtained from a quantitative comparison of proliferation between drug-treated and untreated cells. During the assay, cells are treated with a drug and, following a recovery period, allowed to proliferate in the presence of bromodeoxyuridine (BrdU). Cells that synthesize DNA in the presence of BrdU exhibit quenched Hoechst fluorescence, easily detected by flow cytometry; quenching is used to determine relative proliferation in treated vs. untreated cells. Finally, this assay can be used in high-throughput format to simultaneously screen multiple cell lines and drugs for accurate measurements of cell survival and cell cycle effects after drug treatment.


Assuntos
Bioensaio/métodos , Carmustina/toxicidade , Ciclo Celular/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos
7.
Environ Health Perspect ; 120(8): 1130-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22538203

RESUMO

BACKGROUND: In the event of a nuclear accident, people are exposed to elevated levels of continuous low dose-rate radiation. Nevertheless, most of the literature describes the biological effects of acute radiation. OBJECTIVES: DNA damage and mutations are well established for their carcinogenic effects. We assessed several key markers of DNA damage and DNA damage responses in mice exposed to low dose-rate radiation to reveal potential genotoxic effects associated with low dose-rate radiation. METHODS: We studied low dose-rate radiation using a variable low dose-rate irradiator consisting of flood phantoms filled with 125Iodine-containing buffer. Mice were exposed to 0.0002 cGy/min (~ 400-fold background radiation) continuously over 5 weeks. We assessed base lesions, micronuclei, homologous recombination (HR; using fluorescent yellow direct repeat mice), and transcript levels for several radiation-sensitive genes. RESULTS: We did not observe any changes in the levels of the DNA nucleobase damage products hypoxanthine, 8-oxo-7,8-dihydroguanine, 1,N6-ethenoadenine, or 3,N4-ethenocytosine above background levels under low dose-rate conditions. The micronucleus assay revealed no evidence that low dose-rate radiation induced DNA fragmentation, and there was no evidence of double strand break-induced HR. Furthermore, low dose-rate radiation did not induce Cdkn1a, Gadd45a, Mdm2, Atm, or Dbd2. Importantly, the same total dose, when delivered acutely, induced micronuclei and transcriptional responses. CONCLUSIONS: These results demonstrate in an in vivo animal model that lowering the dose-rate suppresses the potentially deleterious impact of radiation and calls attention to the need for a deeper understanding of the biological impact of low dose-rate radiation.


Assuntos
Dano ao DNA , Animais , Relação Dose-Resposta à Radiação , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL
8.
Mol Biosyst ; 4(9): 902-8, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18704228

RESUMO

Epidemiological evidence points to a cause and effect relationship between chronic inflammation and human maladies such as cancer, atherosclerosis and autoimmune disease. A critical link between inflammation and disease may lie in the secretion of highly reactive oxygen and nitrogen species by macrophages and neutrophils, including hypohalous acids, nitrous anhydride, and nitrosoperoxycarbonate. Exposure of host epithelial cells to the resulting oxidation, nitration, nitrosation and halogenation chemistries leads to damage of all types of cellular molecules. Since nucleic acids sustain damage representative of the full spectrum of different chemistries and the damage likely plays a causative role in disease etiology, DNA and RNA damage products can serve as surrogates for the short-lived chemical mediators of inflammation, and as markers that provide both mechanistic understanding of the disease process and a means to quantify risk of disease. However, the very small quantities of the damaged molecules pose a challenge to the simultaneous quantification of the spectrum of lesions in the manner of proteomics or metabolomics. The goal of this Highlight is to provide an update on the chemistry of inflammation and the development of biomarkers of inflammation in the age of -omics technologies.


Assuntos
Dano ao DNA , DNA/química , Inflamação/metabolismo , RNA/química , Animais , Biomarcadores/química , Biomarcadores/metabolismo , DNA/metabolismo , Humanos , Inflamação/genética , Modelos Biológicos , Estresse Oxidativo , Proteômica , RNA/metabolismo , Espécies Reativas de Nitrogênio/metabolismo
9.
Nat Protoc ; 3(8): 1287-98, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18714297

RESUMO

The analysis of damage products as biomarkers of inflammation has been hampered by a poor understanding of the chemical biology of inflammation, the lack of sensitive analytical methods and a focus on single chemicals as surrogates for inflammation. To overcome these problems, we developed a general and sensitive liquid chromatographic tandem mass spectrometry (LC/MS-MS) method to quantify, in a single DNA sample, the nucleoside forms of seven DNA lesions reflecting the range of chemistries associated with inflammation: 2'-deoxyuridine, 2'-deoxyxanthosine and 2'-deoxyinosine from nitrosative deamination; 8-oxo-2'-deoxyguanosine from oxidation; and 1,N(2)-etheno-2'-deoxyguanosine, 1,N(6)-etheno-2'-deoxyadenosine and 3,N(4)-etheno-2'-deoxycytidine arising from reaction of DNA with lipid peroxidation products. Using DNA purified from cells or tissues under conditions that minimize artifacts, individual nucleosides are purified by HPLC and quantified by isotope-dilution, electrospray ionization LC/MS-MS. The method can be applied to other DNA damage products and requires 4-6 d to complete depending upon the number of samples.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Dano ao DNA , DNA/química , Espectrometria de Massas em Tandem/métodos , Animais , Biomarcadores/análise , Calibragem , Adutos de DNA/química , Desaminação , Humanos , Hidrólise , Peroxidação de Lipídeos , Camundongos , Oxirredução , Fosforilação
10.
Biomark Med ; 1(2): 293-312, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20477404

RESUMO

Inflammation is now a proven cause of human diseases such as cancer and cardiovascular disease. One potential link between inflammation and disease involves secretion of reactive chemical species by immune cells, with chronic damage to host epithelial cells leading to disease. This suggests pathophysiologically that DNA and RNA damage products are candidate biomarkers of inflammation, both for mechanistic understanding of the process and for risk assessment. Of the current approaches to quantifying DNA damage products, mass spectrometry-based methods provide the most rigorous quantification needed for biomarker development, while antibody-based approaches provide the most practical way to implement biomarkers in a clinical setting. Nonetheless, all approaches are biased by adventitious formation of DNA and RNA damage products during sample processing. Recent studies of tissue-derived DNA biomarkers in mouse models of inflammation reveal significant changes only in DNA adducts derived from lipid peroxidation. These and other observations raise the question of the most appropriate sampling compartment for DNA biomarker studies and highlight the emerging role of lipid damage in inflammation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa