Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Neuroimmunomodulation ; 26(1): 19-32, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30625475

RESUMO

OBJECTIVES: Alcohol dependence leads to dysregulation of the neuroimmune system, but the effects of excessive alcohol consumption on key players of the neuroimmune response after episodic binge drinking in nondependence has not been readily assessed. These studies seek to determine how the neuroimmune system within the hippocampus responds to binge-like consumption prior to dependence or evidence of brain damage. METHODS: C57BL/6J mice underwent the drinking in the dark (DID) paradigm to recapitulate binge consumption. Immunohistochemical techniques were employed to determine the effects of ethanol on cytokine and astrocyte responses within the hippocampus. Astrocyte activation was also assessed using qRT-PCR. RESULTS: Our results indicated that binge-like ethanol consumption resulted in a 3.6-fold increase in the proinflammatory cytokine interleukin (IL)-1ß immunoreactivity in various regions of the hippocampus. The opposite effect was seen in the anti-inflammatory cytokine IL-10. Binge-like consumption resulted in a 67% decrease in IL-10 immunoreactivity but had no effect on IL-4 or IL-6 compared with the water-drinking control group. Moreover, astrocyte activation occurred following ethanol exposure as GFAP immunoreactivity was increased over 120% in mice that experienced 3 cycles of ethanol binges. PCR analyses indicated that the mRNA increased by almost 4-fold after one cycle of DID, but this effect did not persist in abstinence. CONCLUSIONS: Altogether, these findings suggest that binge-like ethanol drinking prior to dependence causes dysregulation to the neuroimmune system. This altered neuroimmune state may have an impact on behavior but could also result in a heightened neuroimmune response that is exacerbated from further ethanol exposure or other immune-modulating events.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/imunologia , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Hipocampo/efeitos dos fármacos , Interleucina-10/imunologia , Interleucina-1beta/efeitos dos fármacos , Animais , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Proteína Glial Fibrilar Ácida/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/imunologia , Hipocampo/metabolismo , Imuno-Histoquímica , Interleucina-1beta/imunologia , Interleucina-4/imunologia , Interleucina-6/imunologia , Masculino , Camundongos , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo
2.
Addict Biol ; 24(5): 874-885, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-29949228

RESUMO

Kratom, derived from the plant Mitragyna speciosa, is receiving increased attention as an alternative to traditional opiates and as a replacement therapy for opiate dependence. Mitragynine (MG) and 7-hydroxymitragynine (7-HMG) are major psychoactive constituents of kratom. While MG and 7-HMG share behavioral and analgesic properties with morphine, their reinforcing effects have not been examined to date. 7-HMG, but not MG, substituted for morphine self-administration in a dose-dependent manner in the rat self-administration paradigm. Following the substitution procedure, re-assessment of morphine self-administration revealed a significant increase following 7-HMG and a significant decrease following MG substitution. In a separate cohort, 7-HMG, but not MG, engendered and maintained intravenous self-administration in a dose-dependent manner. The effects of pretreatment with nalxonaxine (NLXZ), a µ1 opiate receptor antagonist, and naltrindole (NTI), a δ opiate receptor antagonist, on 7-HMG and morphine self-administration were also examined. Both NLXZ and NTI reduced 7-HMG self-administration, whereas only NLXZ decreased morphine intake. The present results are the first to demonstrate that 7-HMG is readily self-administered, and the reinforcing effects of 7-HMG are mediated in part by µ and δ opiate receptors. In addition, prior exposure to 7-HMG increased subsequent morphine intake whereas prior exposure to MG decreased morphine intake. The present findings indicate that MG does not have abuse potential and reduces morphine intake, desired characteristics of candidate pharmacotherapies for opiate addiction and withdrawal, whereas 7-HMG should be considered a kratom constituent with high abuse potential that may also increase the intake of other opiates.


Assuntos
Analgésicos Opioides/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Morfina/administração & dosagem , Antagonistas de Entorpecentes/farmacologia , Alcaloides de Triptamina e Secologanina/farmacologia , Analgésicos Opioides/farmacologia , Animais , Mitragyna , Naloxona/análogos & derivados , Naloxona/farmacologia , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Ratos , Receptores Opioides delta , Receptores Opioides mu , Autoadministração
3.
Synapse ; 68(10): 437-44, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24916769

RESUMO

Concurrent use of cocaine and heroin (speedball) has been shown to exert synergistic effects on dopamine neurotransmission in the nucleus accumbens (NAc), as observed by significant increases in extracellular dopamine levels and compensatory elevations in the maximal reuptake rate of dopamine. The present studies were undertaken to determine whether chronic self-administration of cocaine, heroin or a combination of cocaine:heroin led to compensatory changes in the abundance and/or affinity of high- and low-affinity DAT binding sites. Saturation binding of the cocaine analog [(125) I] 3ß-(4-iodophenyl)tropan-2ß-carboxylic acid methyl ester ([(125) I]RTI-55) in rat NAc membranes resulted in binding curves that were best fit to two-site binding models, allowing calculation of dissociation constant (Kd ) and binding density (Bmax ) values corresponding to high- and low-affinity DAT binding sites. Scatchard analysis of the saturation binding curves clearly demonstrate the presence of high- and low- affinity binding sites in the NAc, with low-affinity sites comprising 85 to 94% of the binding sites. DAT binding analyses revealed that self-administration of cocaine and a cocaine:heroin combination increased the affinity of the low-affinity site for the cocaine congener RTI-55 compared to saline. These results indicate that the alterations observed following chronic speedball self-administration are likely due to the cocaine component alone; thus further studies are necessary to elaborate upon the synergistic effect of cocaine:heroin combinations on the dopamine system in the NAc.


Assuntos
Cocaína/administração & dosagem , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/administração & dosagem , Heroína/administração & dosagem , Entorpecentes/administração & dosagem , Núcleo Accumbens/efeitos dos fármacos , Administração Intravenosa , Animais , Membrana Celular/metabolismo , Cocaína/análogos & derivados , Cocaína/farmacocinética , Combinação de Medicamentos , Drogas Ilícitas , Radioisótopos do Iodo/farmacocinética , Masculino , Núcleo Accumbens/metabolismo , Compostos Radiofarmacêuticos , Ratos Endogâmicos F344 , Autoadministração
4.
Front Psychiatry ; 14: 1054506, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816400

RESUMO

Post-mortem studies in the prefrontal cortex and hippocampal formation from schizophrenia patients have revealed significant disruptions in the expression molecules associated with cytoarchitecture, synaptic structure, function, and plasticity, known to be regulated in part by brain derived neurotrophic factor (BDNF). Interestingly, several studies using postmortem brain tissue from individuals diagnosed with schizophrenia have revealed a significant reduction in BDNF mRNA and protein levels in the dorsolateral prefrontal cortex (DLPFC), hippocampus and related areas; however, differentiating the effects of illness from antipsychotic history has remained difficult. We hypothesized that chronic antipsychotic treatment may contribute to the altered BDNF mRNA and protein expression observed in post-mortem brains of individuals diagnosed with schizophrenia. To address the influence of antipsychotic administration on BDNF expression in the primate brain, rhesus monkeys orally administered haloperidol, clozapine, or vehicle twice daily for 180 days. We found BDNF splice variants 4 and 5 in the DLPFC and variant 2 in the EC were significantly down-regulated following chronic administration of haloperidol. In addition, proBDNF and mature BDNF expression in the DLPFC, but not the EC, were significantly reduced. Based on the known regulation of BDNF expression by BDNF-AS, we assessed the expression of this lncRNA and found expression was significantly upregulated in the DLPFC, but not EC. The results of the present study provide evidence of haloperidol-induced regulation of BDNF mRNA and protein expression in the DLFPC and suggest an important role for BDNF-AS in this regulation. Given the role of BDNF in synaptic plasticity, neuronal survival and maintenance, aberrant expression induced by haloperidol likely has significant ramifications for neuronal populations and circuits in primate cortex.

5.
J Med Chem ; 66(17): 12141-12162, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37646374

RESUMO

Pharmacological targeting of the dopamine D4 receptor (D4R)─expressed in brain regions that control cognition, attention, and decision-making─could be useful for several neuropsychiatric disorders including substance use disorders (SUDs). This study focused on the synthesis and evaluation of a novel series of benzothiazole analogues designed to target D4R. We identified several compounds with high D4R binding affinity (Ki ≤ 6.9 nM) and >91-fold selectivity over other D2-like receptors (D2R, D3R) with diverse partial agonist and antagonist profiles. Novel analogue 16f is a potent low-efficacy D4R partial agonist, metabolically stable in rat and human liver microsomes, and has excellent brain penetration in rats (AUCbrain/plasma > 3). 16f (5-30 mg/kg, i.p.) dose-dependently decreased iv cocaine self-administration in rats, consistent with previous results produced by D4R-selective antagonists. Off-target antagonism of 5-HT2A or 5-HT2B may also contribute to these effects. Results with 16f support further efforts to target D4R in SUD treatment.


Assuntos
Cocaína , Transtornos Relacionados ao Uso de Substâncias , Humanos , Animais , Ratos , Serotonina , Benzotiazóis/farmacologia , Benzotiazóis/uso terapêutico , Encéfalo , Cocaína/farmacologia
6.
J Neurochem ; 122(1): 138-46, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22443145

RESUMO

Cocaine/heroin combinations (speedball) exert synergistic neurochemical and behavioral effects that are thought to contribute to the increased abuse potential and subjective effects reported by polydrug users. In vivo fast-scan cyclic voltammetry was used to examine the effects of chronic intravenous self-administration (25 consecutive sessions) of cocaine (250 µg/inf), heroin (4.95 µg/inf) and speedball (250/4.95 µg/inf cocaine/heroin) on changes in electrically evoked dopamine (DA) efflux, maximal rate of DA uptake (V(max)) and the apparent affinity (K(m)) of the DA transporter in the nucleus accumbens. The increase in electrically evoked DA was comparable following cocaine and speedball injection; however, heroin did not increase evoked DA. DA transporter K(m) values were similarly elevated following cocaine and speedball, but unaffected by heroin. However, speedball self-administration significantly increased baseline V(max), while heroin and cocaine did not change baseline V(max), compared with the baseline V(max) values of drug-naïve animals. Overall, elevated DA clearance is a likely consequence of synergistic elevations of nucleus accumbens extracellular DA concentrations by chronic speedball self-administration, as reported previously in microdialysis studies. The present results indicate neuroadaptive processes that are unique to cocaine/heroin combinations and cannot be readily explained by simple additivity of changes observed with cocaine and heroin alone.


Assuntos
Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Dopamina/metabolismo , Heroína/administração & dosagem , Entorpecentes/administração & dosagem , Núcleo Accumbens/efeitos dos fármacos , Animais , Condicionamento Operante/efeitos dos fármacos , Combinação de Medicamentos , Eletroquímica , Infusões Intraventriculares , Masculino , Microdiálise , Ratos , Ratos Endogâmicos F344 , Esquema de Reforço , Autoadministração , Fatores de Tempo
7.
J Neuroimmune Pharmacol ; 10(3): 493-505, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25749646

RESUMO

Cocaine abuse in HIV patients accelerates the progression and severity of neuropathology, motor impairment and cognitive dysfunction compared to non-drug using HIV patients. Cocaine and HIV interact with the dopamine transporter (DAT); however, the effect of their interaction on DAT binding remains understudied. The present study compared the dose-response functions for intravenous self-administration of cocaine and heroin between male HIV-1 transgenic (HIV-1 Tg) and Fischer 344 rats. The cocaine and heroin dose-response functions exhibit an inverted U-shape for both HIV-1 Tg and F344 rats. For cocaine, the number of infusions for each dose on the ascending limb was greater for HIV-1 Tg versus F344 rats. No significant changes in the heroin dose-response function were observed in HIV-1 Tg animals. Following the conclusion of self-administration experiments, DAT binding was assessed in striatal membranes. Saturation binding of the cocaine analog [(125)I] 3ß-(4-iodophenyl)tropan-2ß-carboxylic acid methyl ester ([(125)I]RTI-55) in rat striatal membranes resulted in binding curves that were best fit to a two-site binding model, allowing for calculation of dissociation constant (Kd) and binding density (Bmax) values that correspond to high- and low-affinity DAT binding sites. Control HIV-1 Tg rats exhibited a significantly greater affinity (i.e., decrease in Kd value) in the low-affinity DAT binding site compared to control F344 rats. Furthermore, cocaine self-administration in HIV-1 Tg rats increased low-affinity Kd (i.e., decreased affinity) compared to levels observed in control F344 rats. Cocaine also increased low-affinity Bmax in HIV-1 Tg rats as compared to controls, indicating an increase in the number of low-affinity DAT binding sites. F344 rats did not exhibit any change in high- or low-affinity Kd or Bmax values following cocaine or heroin self-administration. The increase in DAT affinity in cocaine HIV-1 Tg rats is consistent with the leftward shift of the ascending limb of the cocaine dose-response curve observed in HIV-1 Tg vs. F344 rats, and has major implications for the function of cocaine binding to DAT in HIV patients. The absence of HIV-related changes in heroin intake are likely due to less dopaminergic involvement in the mediation of heroin reward, further emphasizing the preferential influence of HIV on dopamine-related behaviors.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cocaína/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Infecções por HIV/metabolismo , Neostriado/metabolismo , Animais , Cocaína/administração & dosagem , Cocaína/análogos & derivados , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Inibidores da Captação de Dopamina/administração & dosagem , Relação Dose-Resposta a Droga , Heroína/administração & dosagem , Heroína/farmacologia , Masculino , Entorpecentes/administração & dosagem , Entorpecentes/farmacologia , Neostriado/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Ratos Transgênicos , Autoadministração
8.
Neurosci Lett ; 563: 1-5, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24440617

RESUMO

The anterior hippocampus is associated with emotional functioning and hippocampal volume is reduced in depression. We reported reduced neuropil volume and number of glia in the dentate gyrus (DG) and cornu ammonis (CA)1 of the anterior hippocampus in behaviorally depressed adult female cynomolgus macaques. To determine the biochemical correlates of morphometric and behavioral differences between behaviorally depressed and nondepressed adult female monkeys, glial and synaptic transcripts and protein levels were assessed in the DG, CA3 and CA1 of the anterior hippocampus. Glial fibrillary acidic protein (GFAP) was increased whereas spinophilin and postsynaptic density (PSD)-95 protein were decreased in the CA1 of depressed monkeys. GFAP was reciprocally related to spinophilin and PSD-95 protein in the CA1. Gene expression of GFAP paralleled the protein changes observed in the CA1 and was inversely related to serum estradiol levels in depressed monkeys. These results suggest that behavioral depression in female primates is accompanied by astrocytic and synaptic protein alterations in the CA1. Moreover, these findings indicate a potential role for estrogen in modulating astrocyte-mediated impairments in synaptic plasticity.


Assuntos
Comportamento Animal , Região CA1 Hipocampal/metabolismo , Giro Denteado/metabolismo , Depressão/metabolismo , Neuroglia/metabolismo , Sinapses/metabolismo , Animais , Biomarcadores/metabolismo , Depressão/psicologia , Estradiol/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Macaca fascicularis , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo
9.
Front Psychiatry ; 4: 88, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23970867

RESUMO

Chronic cocaine administration regulates the expression of several proteins related to dopaminergic signaling and synaptic function in the mesocorticolimbic pathway, including the prefrontal cortex. Functional abnormalities in the prefrontal cortex are hypothesized to be due in part to the expression of proteins involved in dopamine signaling and plasticity. Adult male rhesus monkeys self-administered cocaine (i.v.) under limited (n = 4) and extended access conditions (n = 6). The abundance of surrogate markers of dopamine signaling and plasticity in the dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), and anterior cingulate cortex (ACC) were examined: glycosylated and non-glycosylated forms of the dopamine transporter (efficiency of dopamine transport), tyrosine hydroxylase (TH; marker of dopamine synthesis) and phosphorylated TH at Serine 30 and 40 (markers of enzyme activity), extracellular signal-regulated kinase 1 and 2 (ERK1 and ERK 2), and phosphorylated ERK1 and ERK2 (phosphorylates TH Serine 31; markers of synaptic plasticity), and markers of synaptic integrity, spinophilin and post-synaptic density protein 95 (roles in dopamine signaling and response to cocaine). Extended cocaine access increased non-glycosylated and glycosylated DAT in DLPFC and OFC. While no differences in TH expression were observed between groups for any of the regions, extended access induced significant elevations in pTH(Ser31) in all regions. In addition, a slight but significant reduction in phosphorylated pTH(Ser40) was found in the DLPFC. Phosphorylated ERK2 was increased in all regions; however, pERK1 was decreased in ACC and OFC but increased in DLPFC. PSD-95 was increased in the OFC but not in DLPFC or ACC. Furthermore, extended cocaine self-administration elicited significant increases in spinophilin protein expression in all regions. Results from the study provide insight into the biochemical alterations occurring in primate prefrontal cortex.

10.
Synapse ; 60(5): 384-91, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16847946

RESUMO

Subtypes of the delta opioid receptor (Oprd1) have been suggested based on pharmacology studies. However, these subtypes have not been confirmed biochemically using either receptor binding assays or molecular cloning. Naltrindole-5'-isothiocyanate (5'-NTII) is an irreversible opioid antagonist that appears to selectively inhibit the actions of a subset of delta opioid agonists in vivo, referred to as putative delta-2 agonists. The biochemical and anatomical selectivity of wash-resistant inhibition of binding of [(3)H]DAMGO (Oprm1), [(3)H]DPDPE (Oprd1, putative subtype 1 agonist), or [(3)H]deltorphin II (Oprd1, putative subytpe 2 agonist) in coronal sections was assessed using quantitative in vitro autoradiography following injection of 5'-NTII into the nucleus accumbens in rats. 5'-NTII decreased [(3)H]deltorphin II to a greater extent than the binding of the other two radioligands following administration of 0.05-2.5 nmol. The effects of 5'-NTII were largely confined to the nucleus accumbens; however, some loss in the ventral caudate was also noted. In contrast, administration of the nonselective opioid receptor alkylating antagonist beta-chlornaltexamine (beta-CNA) over a similar range of doses was found to be nonselective for either delta radioligand, and produced greater inhibition of Oprm1 relative to Oprd1 binding, consistent with the nonselective pharmacological activity of this antagonist. Although 5'-NTII inhibited [(3)H]deltorphin II binding to a greater extent, the binding of the other two radioligands was decreased over a similar range of doses. Absolute conclusions regarding the involvement of delta-2 opioid receptors in pharmacological or physiological effects based on studies with 5'-NTII should therefore be tempered, and for site-directed studies it would be best to employ doses of 0.5 nmol or lower.


Assuntos
Isotiocianatos/farmacologia , Naltrexona/análogos & derivados , Antagonistas de Entorpecentes/farmacologia , Núcleo Accumbens/metabolismo , Receptores Opioides delta/metabolismo , Transferases/metabolismo , Alquilação/efeitos dos fármacos , Animais , Autorradiografia/métodos , Ligação Competitiva/efeitos dos fármacos , Ligação Competitiva/fisiologia , Relação Dose-Resposta a Droga , Interações Medicamentosas/fisiologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/metabolismo , Masculino , Naltrexona/metabolismo , Naltrexona/farmacologia , Entorpecentes/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Oligopeptídeos/metabolismo , Fosfatidiletanolaminas/metabolismo , Ensaio Radioligante , Ratos , Ratos Endogâmicos F344 , Receptores Opioides delta/efeitos dos fármacos , Transferases/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa