Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(29): 10732-7, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25002524

RESUMO

It has been hypothesized that α-synuclein (αS) misfolding may begin in peripheral nerves and spread to the central nervous system (CNS), leading to Parkinson disease and related disorders. Although recent data suggest that αS pathology can spread within the mouse brain, there is no direct evidence for spread of disease from a peripheral site. In the present study, we show that hind limb intramuscular (IM) injection of αS can induce pathology in the CNS in the human Ala53Thr (M83) and wild-type (M20) αS transgenic (Tg) mouse models. Within 2-3 mo after IM injection in αS homozygous M83 Tg mice and 3-4 mo for hemizygous M83 Tg mice, these animals developed a rapid, synchronized, and predictable induction of widespread CNS αS inclusion pathology, accompanied by astrogliosis, microgliosis, and debilitating motor impairments. In M20 Tg mice, starting at 4 mo after IM injection, we observed αS inclusion pathology in the spinal cord, but motor function remained intact. Transection of the sciatic nerve in the M83 Tg mice significantly delayed the appearance of CNS pathology and motor symptoms, demonstrating the involvement of retrograde transport in inducing αS CNS inclusion pathology. Outside of scrapie-mediated prion disease, to our knowledge, this findiing is the first evidence that an entire neurodegenerative proteinopathy associated with a robust, lethal motor phenotype can be initiated by peripheral inoculation with a pathogenic protein. Furthermore, this facile, synchronized rapid-onset model of α-synucleinopathy will be highly valuable in testing disease-modifying therapies and dissecting the mechanism(s) that drive αS-induced neurodegeneration.


Assuntos
Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Atividade Motora , alfa-Sinucleína/administração & dosagem , alfa-Sinucleína/metabolismo , Animais , Sistema Nervoso Central/fisiopatologia , Humanos , Injeções Intramusculares , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Análise de Sobrevida
2.
J Neurosci ; 34(37): 12368-78, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25209277

RESUMO

Intracerebral injection of amyloidogenic α-synuclein (αS) has been shown to induce αS pathology in the CNS of nontransgenic mice and αS transgenic mice, albeit with varying efficiencies. In this study, using wild-type human αS transgenic mice (line M20), we demonstrate that intracerebral injection of recombinant amyloidogenic or soluble αS induces extensive αS intracellular inclusion pathology that is associated with robust gliosis. Near the injection site, a significant portion of αS inclusions are detected in neurons but also in astrocytes and microglia. Aberrant induction of expression of the intermediate filament protein peripherin, which is associated with CNS neuronal injury, was also observed predominantly near the site of injection. In addition, many pSer129 αS-induced inclusions colocalize with the low-molecular-mass neurofilament subunit (NFL) or peripherin staining. αS inclusion pathology was also induced in brain regions distal from the injection site, predominantly in neurons. Unexpectedly, we also find prominent p62-immunoreactive, αS-, NFL-, and peripherin-negative inclusions. These findings provide evidence that exogenous αS challenge induces αS pathology but also results in the following: (1) a broader disruption of proteostasis; (2) glial activation; and (3) a marker of a neuronal injury response. Such data suggest that induction of αS pathology after exogenous seeding may involve multiple interdependent mechanisms.


Assuntos
Gliose/induzido quimicamente , Gliose/patologia , Neurônios/patologia , Síndromes Neurotóxicas/patologia , Proteinopatias TDP-43/induzido quimicamente , Proteinopatias TDP-43/patologia , alfa-Sinucleína/toxicidade , Animais , Camundongos , Microinjeções/métodos , Neurônios/efeitos dos fármacos , alfa-Sinucleína/administração & dosagem
3.
Acta Neuropathol ; 127(5): 645-65, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24659240

RESUMO

In order to further evaluate the parameters whereby intracerebral administration of recombinant α-synuclein (αS) induces pathological phenotypes in mice, we conducted a series of studies where αS fibrils were injected into the brains of M83 (A53T) and M47 (E46K) αS transgenic (Tg) mice, and non-transgenic (nTg) mice. Using multiple markers to assess αS inclusion formation, we find that injected fibrillar human αS induced widespread cerebral αS inclusion formation in the M83 Tg mice, but in both nTg and M47 Tg mice, induced αS inclusion pathology is largely restricted to the site of injection. Furthermore, mouse αS fibrils injected into nTg mice brains also resulted in inclusion pathology restricted to the site of injection with no evidence for spread. We find no compelling evidence for extensive spread of αS pathology within white matter tracts, and we attribute previous reports of white matter tract spreading to cross-reactivity of the αS pSer129/81A antibody with phosphorylated neurofilament subunit L. These studies suggest that, with the exception of the M83 Tg mice which appear to be uniquely susceptible to induction of inclusion pathology by exogenous forms of αS, there are significant barriers in mice to widespread induction of αS pathology following intracerebral administration of amyloidogenic αS.


Assuntos
Amiloidose/metabolismo , Amiloidose/patologia , Encéfalo/metabolismo , Encéfalo/patologia , alfa-Sinucleína/metabolismo , Animais , Células Cultivadas , Escherichia coli , Técnicas de Transferência de Genes , Humanos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/patologia , Vias Neurais/metabolismo , Vias Neurais/patologia , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , alfa-Sinucleína/genética
4.
Acta Neuropathol Commun ; 1: 38, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24252149

RESUMO

BACKGROUND: α-Synuclein (αS) is the major component of several types of brain inclusions including Lewy bodies, a hallmark of Parkinson's disease. Aberrant aggregation of αS also is associated with cellular demise in multiple neurologic disorders collectively referred to as synucleinopathies. Recent studies demonstrate the induction of αS pathology by a single intracerebral injection of exogenous amyloidogenic αS in adult non-transgenic and transgenic mice expressing human αS. To further investigate the mechanism of pathology induction and evaluate an experimental paradigm with potential for higher throughput, we performed similar studies in neonatal mice injected with αS. RESULTS: In non-transgenic mice, we observed limited induction of neuronal αS inclusions predominantly 8 months after brain injection of aggregated, amyloidogenic human αS. More robust inclusion pathology was induced in transgenic mice expressing wild-type human αS (line M20), and inclusion pathology was observed at earlier time points. Injection of a non-amyloidogenic (Δ71-82) deletion protein of αS was also able to induce similar pathology in a subset of M20 transgenic mice. M20 transgenic mice injected with amyloidogenic or non-amyloidogenic αS demonstrated a delayed and robust induction of brain neuroinflammation that occurs in mice with or without αS pathological inclusions implicating this mechanism in aggregate formation. CONCLUSIONS: The finding that a non-amyloidogenic Δ71-82 αS can induce pathology calls into question the simple interpretation that exogenous αS catalyzes aggregation and spread of intracellular αS pathology solely through a nucleation dependent conformational templating mechanism. These results indicate that several mechanisms may act synergistically or independently to promote the spread of αS pathology.


Assuntos
Encéfalo/imunologia , Neurônios/fisiologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/patologia , Astrócitos/fisiologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Gliose/patologia , Gliose/fisiopatologia , Humanos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Microglia/fisiologia , Neuroimunomodulação/fisiologia , Neurônios/patologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa