RESUMO
Clonal expansions driven by somatic mutations become pervasive across human tissues with age, including in the haematopoietic system, where the phenomenon is termed clonal haematopoiesis1-4. The understanding of how and when clonal haematopoiesis develops, the factors that govern its behaviour, how it interacts with ageing and how these variables relate to malignant progression remains limited5,6. Here we track 697 clonal haematopoiesis clones from 385 individuals 55 years of age or older over a median of 13 years. We find that 92.4% of clones expanded at a stable exponential rate over the study period, with different mutations driving substantially different growth rates, ranging from 5% (DNMT3A and TP53) to more than 50% per year (SRSF2P95H). Growth rates of clones with the same mutation differed by approximately ±5% per year, proportionately affecting slow drivers more substantially. By combining our time-series data with phylogenetic analysis of 1,731 whole-genome sequences of haematopoietic colonies from 7 individuals from an older age group, we reveal distinct patterns of lifelong clonal behaviour. DNMT3A-mutant clones preferentially expanded early in life and displayed slower growth in old age, in the context of an increasingly competitive oligoclonal landscape. By contrast, splicing gene mutations drove expansion only later in life, whereas TET2-mutant clones emerged across all ages. Finally, we show that mutations driving faster clonal growth carry a higher risk of malignant progression. Our findings characterize the lifelong natural history of clonal haematopoiesis and give fundamental insights into the interactions between somatic mutation, ageing and clonal selection.
Assuntos
Hematopoiese Clonal , Células Clonais , Idoso , Envelhecimento , Hematopoiese Clonal/genética , Células Clonais/citologia , Genoma Humano , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade , Mutação , FilogeniaRESUMO
Selective IgA deficiency (SIgAD) is the most common inborn error of immunity (IEI). Unlike many IEIs, evidence of a role for highly penetrant rare variants in SIgAD is lacking. Previous SIgAD studies have had limited power to identify common variants due to their small sample size. We overcame this problem first through meta-analysis of two existing GWAS. This identified four novel common-variant associations and enrichment of SIgAD-associated variants in genes linked to Mendelian IEIs. SIgAD showed evidence of shared genetic architecture with serum IgA and a number of immune-mediated diseases. We leveraged this pleiotropy through the conditional false discovery rate procedure, conditioning our SIgAD meta-analysis on large GWAS of asthma and rheumatoid arthritis, and our own meta-analysis of serum IgA. This identified an additional 18 variants, increasing the number of known SIgAD-associated variants to 27 and strengthening the evidence for a polygenic, common-variant aetiology for SIgAD.
RESUMO
Rationale: Autoimmunity is believed to play a role in idiopathic pulmonary arterial hypertension (IPAH). It is not clear whether this is causative or a bystander of disease and if it carries any prognostic or treatment significance. Objectives: To study autoimmunity in IPAH using a large cross-sectional cohort. Methods: Assessment of the circulating immune cell phenotype was undertaken using flow cytometry, and the profile of serum immunoglobulins was generated using a standardized multiplex array of 19 clinically validated autoantibodies in 473 cases and 946 control subjects. Additional glutathione S-transferase fusion array and ELISA data were used to identify a serum autoantibody to BMPR2 (bone morphogenetic protein receptor type 2). Clustering analyses and clinical correlations were used to determine associations between immunogenicity and clinical outcomes. Measurements and Main Results: Flow cytometric immune profiling demonstrates that IPAH is associated with an altered humoral immune response in addition to raised IgG3. Multiplexed autoantibodies were significantly raised in IPAH, and clustering demonstrated three distinct clusters: "high autoantibody," "low autoantibody," and a small "intermediate" cluster exhibiting high concentrations of ribonucleic protein complex. The high-autoantibody cluster had worse hemodynamics but improved survival. A small subset of patients demonstrated immunoglobulin reactivity to BMPR2. Conclusions: This study establishes aberrant immune regulation and presence of autoantibodies as key features in the profile of a significant proportion of patients with IPAH and is associated with clinical outcomes.
Assuntos
Autoimunidade , Hipertensão Pulmonar , Autoanticorpos , Estudos Transversais , Hipertensão Pulmonar Primária Familiar , Humanos , Hipertensão Pulmonar/genéticaRESUMO
The clinical course of autoimmune and infectious disease varies greatly, even between individuals with the same condition. An understanding of the molecular basis for this heterogeneity could lead to significant improvements in both monitoring and treatment. During chronic infection the process of T-cell exhaustion inhibits the immune response, facilitating viral persistence. Here we show that a transcriptional signature reflecting CD8 T-cell exhaustion is associated with poor clearance of chronic viral infection, but conversely predicts better prognosis in multiple autoimmune diseases. The development of CD8 T-cell exhaustion during chronic infection is driven both by persistence of antigen and by a lack of accessory 'help' signals. In autoimmunity, we find that where evidence of CD4 T-cell co-stimulation is pronounced, that of CD8 T-cell exhaustion is reduced. We can reproduce the exhaustion signature by modifying the balance of persistent stimulation of T-cell antigen receptors and specific CD2-induced co-stimulation provided to human CD8 T cells in vitro, suggesting that each process plays a role in dictating outcome in autoimmune disease. The 'non-exhausted' T-cell state driven by CD2-induced co-stimulation is reduced by signals through the exhaustion-associated inhibitory receptor PD-1, suggesting that induction of exhaustion may be a therapeutic strategy in autoimmune and inflammatory disease. Using expression of optimal surrogate markers of co-stimulation/exhaustion signatures in independent data sets, we confirm an association with good clinical outcome or response to therapy in infection (hepatitis C virus) and vaccination (yellow fever, malaria, influenza), but poor outcome in autoimmune and inflammatory disease (type 1 diabetes, anti-neutrophil cytoplasmic antibody-associated vasculitis, systemic lupus erythematosus, idiopathic pulmonary fibrosis and dengue haemorrhagic fever). Thus, T-cell exhaustion plays a central role in determining outcome in autoimmune disease and targeted manipulation of this process could lead to new therapeutic opportunities.
Assuntos
Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Infecções/imunologia , Animais , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/genética , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/imunologia , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/patologia , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Autoimunidade/genética , Autoimunidade/imunologia , Antígenos CD2/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Humanos , Infecções/genética , Infecções/patologia , Infecções/virologia , Inflamação/imunologia , Inflamação/patologia , Inflamação/virologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Camundongos , Fenótipo , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Interleucina-7/imunologia , Receptores de Interleucina-7/metabolismo , TranscriptomaRESUMO
OBJECTIVE: We have previously described a prognostic transcriptional signature in CD8 T cells that separates patients with IBD into two phenotypically distinct subgroups, termed IBD1 and IBD2. Here we sought to develop a blood-based test that could identify these subgroups without cell separation, and thus be suitable for clinical use in Crohn's disease (CD) and ulcerative colitis (UC). DESIGN: Patients with active IBD were recruited before treatment. Transcriptomic analyses were performed on purified CD8 T cells and/or whole blood. Phenotype data were collected prospectively. IBD1/IBD2 patient subgroups were identified by consensus clustering of CD8 T cell transcriptomes. In a training cohort, machine learning was used to identify groups of genes ('classifiers') whose differential expression in whole blood recreated the IBD1/IBD2 subgroups. Genes from the best classifiers were quantitative (q)PCR optimised, and further machine learning was used to identify the optimal qPCR classifier, which was locked down for further testing. Independent validation was sought in separate cohorts of patients with CD (n=66) and UC (n=57). RESULTS: In both validation cohorts, a 17-gene qPCR-based classifier stratified patients into two distinct subgroups. Irrespective of the underlying diagnosis, IBDhi patients (analogous to the poor prognosis IBD1 subgroup) experienced significantly more aggressive disease than IBDlo patients (analogous to IBD2), with earlier need for treatment escalation (hazard ratio=2.65 (CD), 3.12 (UC)) and more escalations over time (for multiple escalations within 18 months: sensitivity=72.7% (CD), 100% (UC); negative predictive value=90.9% (CD), 100% (UC)). CONCLUSION: This is the first validated prognostic biomarker that can predict prognosis in newly diagnosed patients with IBD and represents a step towards personalised therapy.
Assuntos
Linfócitos T CD8-Positivos/metabolismo , Colite Ulcerativa , Doença de Crohn , Adulto , Biomarcadores/sangue , Colite Ulcerativa/sangue , Colite Ulcerativa/diagnóstico , Doença de Crohn/sangue , Doença de Crohn/diagnóstico , Diagnóstico Diferencial , Feminino , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Fenótipo , Valor Preditivo dos Testes , Prognóstico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Índice de Gravidade de DoençaRESUMO
During acute viral infection CD8 T cells rapidly expand before contracting down to a persistent memory population that confers long-lasting immunity. However when the antigen persists, such as during chronic viral infection, a dysfunctional process termed 'exhaustion' limits the antiviral response, facilitating ongoing viraemia and poor clinical outcome. CD8 T-cell exhaustion was originally identified in lymphocytic choriomeningitis virus infection of mice; however, new evidence has shown that exhaustion is associated with the control of a wide range of human chronic inflammatory states, including chronic viral infection, autoimmunity and cancer. Consequently, an understanding of the mechanisms controlling exhaustion during chronic infection may also indicate new strategies for controlling other chronic inflammatory diseases. In particular, the success of immune checkpoint blockade as a form of cancer immunotherapy has prompted renewed efforts to understand how T-cell immunity to chronic antigenic stimulation might similarly be measured or modulated in autoimmune diseases. Here we summarise the mechanisms controlling T-cell exhaustion and how they relate to the control of autoimmune responses, providing a future perspective on measuring or manipulating exhaustion to personalise therapy.
Assuntos
Autoimunidade/imunologia , Inflamação/imunologia , Inflamação/patologia , Linfócitos T/imunologia , Viroses/imunologia , Animais , Doença Crônica , Humanos , Receptores Imunológicos/metabolismoRESUMO
PURPOSE OF REVIEW: Antineutrophil cytoplasmic antibodies (ANCAs) remain central to our current understanding of the pathogenesis of ANCA-associated vasculitis (AAV), and this review considers recent developments in the context of four key questions: are there targets for ANCA beyond myeloperoxidase (MPO) and proteinase 3 (PR3); are all ANCA pathogenic; how are ANCAs generated; and how do ANCA cause disease? RECENT FINDINGS: B-cell epitope mapping raises the possibility that only a subset of ANCA may be pathogenic. Anti-lysosomal-associated membrane protein 2 autoantibodies have recently emerged as a novel form of ANCA and can be found in anti-MPO and anti-PR3 negative disease. These also provide recent evidence for molecular mimicry in the pathogenesis of AAV, but a definitive proof in human AAV remains elusive. Neutrophil extracellular traps may represent an important mechanism by which MPO and PR3 are taken up by dendritic cells for presentation to the adaptive immune system, and the role of the alternative pathway of complement in AAV has recently been emphasized, with therapeutic implications. SUMMARY: Our current understanding of the pathogenesis of AAV not only reinforces the central role of neutrophils but also provides a sound rationale for B-cell and complement-directed therapies.
Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/imunologia , Anticorpos Anticitoplasma de Neutrófilos/imunologia , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Proteínas do Sistema Complemento/imunologia , Armadilhas Extracelulares/imunologia , Humanos , Mieloblastina/imunologia , Neutrófilos/imunologia , Peroxidase/imunologiaRESUMO
BACKGROUND: Although numerous investigations have compared gene expression microarray platforms, preprocessing methods and batch correction algorithms using constructed spike-in or dilution datasets, there remains a paucity of studies examining the properties of microarray data using diverse biological samples. Most microarray experiments seek to identify subtle differences between samples with variable background noise, a scenario poorly represented by constructed datasets. Thus, microarray users lack important information regarding the complexities introduced in real-world experimental settings. The recent development of a multiplexed, digital technology for nucleic acid measurement enables counting of individual RNA molecules without amplification and, for the first time, permits such a study. RESULTS: Using a set of human leukocyte subset RNA samples, we compared previously acquired microarray expression values with RNA molecule counts determined by the nCounter Analysis System (NanoString Technologies) in selected genes. We found that gene measurements across samples correlated well between the two platforms, particularly for high-variance genes, while genes deemed unexpressed by the nCounter generally had both low expression and low variance on the microarray. Confirming previous findings from spike-in and dilution datasets, this "gold-standard" comparison demonstrated signal compression that varied dramatically by expression level and, to a lesser extent, by dataset. Most importantly, examination of three different cell types revealed that noise levels differed across tissues. CONCLUSIONS: Microarray measurements generally correlate with relative RNA molecule counts within optimal ranges but suffer from expression-dependent accuracy bias and precision that varies across datasets. We urge microarray users to consider expression-level effects in signal interpretation and to evaluate noise properties in each dataset independently.
Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA/genética , Estatística como Assunto/métodos , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/genética , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/imunologia , Estudos de Casos e Controles , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Leucócitos/metabolismo , Especificidade de ÓrgãosRESUMO
BACKGROUND: Management strategies and clinical outcomes vary substantially in patients newly diagnosed with Crohn's disease. We evaluated the use of a putative prognostic biomarker to guide therapy by assessing outcomes in patients randomised to either top-down (ie, early combined immunosuppression with infliximab and immunomodulator) or accelerated step-up (conventional) treatment strategies. METHODS: PROFILE (PRedicting Outcomes For Crohn's disease using a moLecular biomarker) was a multicentre, open-label, biomarker-stratified, randomised controlled trial that enrolled adults with newly diagnosed active Crohn's disease (Harvey-Bradshaw Index ≥7, either elevated C-reactive protein or faecal calprotectin or both, and endoscopic evidence of active inflammation). Potential participants had blood drawn to be tested for a prognostic biomarker derived from T-cell transcriptional signatures (PredictSURE-IBD assay). Following testing, patients were randomly assigned, via a secure online platform, to top-down or accelerated step-up treatment stratified by biomarker subgroup (IBDhi or IBDlo), endoscopic inflammation (mild, moderate, or severe), and extent (colonic or other). Blinding to biomarker status was maintained throughout the trial. The primary endpoint was sustained steroid-free and surgery-free remission to week 48. Remission was defined by a composite of symptoms and inflammatory markers at all visits. Flare required active symptoms (HBI ≥5) plus raised inflammatory markers (CRP >upper limit of normal or faecal calprotectin ≥200 µg/g, or both), while remission was the converse-ie, quiescent symptoms (HBI <5) or resolved inflammatory markers (both CRP ≤ the upper limit of normal and calprotectin <200 µg/g) or both. Analyses were done in the full analysis (intention-to-treat) population. The trial has completed and is registered (ISRCTN11808228). FINDINGS: Between Dec 29, 2017, and Jan 5, 2022, 386 patients (mean age 33·6 years [SD 13·2]; 179 [46%] female, 207 [54%] male) were randomised: 193 to the top-down group and 193 to the accelerated step-up group. Median time from diagnosis to trial enrolment was 12 days (range 0-191). Primary outcome data were available for 379 participants (189 in the top-down group; 190 in the accelerated step-up group). There was no biomarker-treatment interaction effect (absolute difference 1 percentage points, 95% CI -15 to 15; p=0·944). Sustained steroid-free and surgery-free remission was significantly more frequent in the top-down group than in the accelerated step-up group (149 [79%] of 189 patients vs 29 [15%] of 190 patients, absolute difference 64 percentage points, 95% CI 57 to 72; p<0·0001). There were fewer adverse events (including disease flares) and serious adverse events in the top-down group than in the accelerated step-up group (adverse events: 168 vs 315; serious adverse events: 15 vs 42), with fewer complications requiring abdominal surgery (one vs ten) and no difference in serious infections (three vs eight). INTERPRETATION: Top-down treatment with combination infliximab plus immunomodulator achieved substantially better outcomes at 1 year than accelerated step-up treatment. The biomarker did not show clinical utility. Top-down treatment should be considered standard of care for patients with newly diagnosed active Crohn's disease. FUNDING: Wellcome and PredictImmune Ltd.
Assuntos
Doença de Crohn , Adulto , Humanos , Masculino , Feminino , Doença de Crohn/diagnóstico , Doença de Crohn/tratamento farmacológico , Doença de Crohn/complicações , Infliximab/uso terapêutico , Azatioprina/uso terapêutico , Biomarcadores , Fatores Imunológicos/uso terapêutico , Inflamação , Complexo Antígeno L1 LeucocitárioRESUMO
The involvement of autoantibodies to human lysosome-associated membrane protein-2 (hLAMP-2) in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis is controversial because of the absence of confirmatory data subsequent to the initial reports of their high prevalence in this disease. We characterized three assays for anti-hLAMP-2 antibodies: ELISA and Western blotting assays using unglycosylated recombinant hLAMP-2 expressed in Escherichia coli, and an indirect immunofluorescence assay using stably transfected ldlD cells that expressed glycosylated full-length hLAMP-2 on the plasma membrane. The assays detected autoantibodies to hLAMP-2 in human sera reproducibly and with comparable sensitivity and the assays gave the same results in 80.5% of the test panel of 40 selected positive and negative sera. In untreated patients at presentation, the frequencies of autoantibodies to LAMP-2 were 89%, 91%, and 80%, respectively, among three groups of patients with ANCA-associated vasculitis from Vienna, Austria (n=19); Groningen, the Netherlands (n=50) and Cambridge, United Kingdom (n=53). Prevalence of LAMP-2 autoantibodies was similar in both those with myeloperoxidase-ANCA and proteinase 3-ANCA. Furthermore, we detected LAMP-2 autoantibodies in two ANCA-negative patients. LAMP-2 autoantibodies rapidly became undetectable after the initiation of immunosuppressive treatment and frequently became detectable again during clinical relapse. We conclude that when robust assays are used, circulating autoantibodies to hLAMP-2 can be detected in most European patients with ANCA-associated vasculitis. Large-scale prospective studies are now needed to determine whether they are pathogenic or merely an epiphenomenon.
Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/sangue , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/imunologia , Autoanticorpos/sangue , Proteínas de Membrana Lisossomal/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Áustria , Western Blotting , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Proteína 2 de Membrana Associada ao Lisossomo , Pessoa de Meia-Idade , Mieloblastina/imunologia , Países Baixos , Peroxidase/imunologia , Prevalência , Sensibilidade e Especificidade , Reino UnidoRESUMO
Diagnostic and prognostic models are increasingly important in medicine and inform many clinical decisions. Recently, machine learning approaches have shown improvement over conventional modeling techniques by better capturing complex interactions between patient covariates in a data-driven manner. However, the use of machine learning introduces technical and practical challenges that have thus far restricted widespread adoption of such techniques in clinical settings. To address these challenges and empower healthcare professionals, we present an open-source machine learning framework, AutoPrognosis 2.0, to facilitate the development of diagnostic and prognostic models. AutoPrognosis leverages state-of-the-art advances in automated machine learning to develop optimized machine learning pipelines, incorporates model explainability tools, and enables deployment of clinical demonstrators, without requiring significant technical expertise. To demonstrate AutoPrognosis 2.0, we provide an illustrative application where we construct a prognostic risk score for diabetes using the UK Biobank, a prospective study of 502,467 individuals. The models produced by our automated framework achieve greater discrimination for diabetes than expert clinical risk scores. We have implemented our risk score as a web-based decision support tool, which can be publicly accessed by patients and clinicians. By open-sourcing our framework as a tool for the community, we aim to provide clinicians and other medical practitioners with an accessible resource to develop new risk scores, personalized diagnostics, and prognostics using machine learning techniques. Software: https://github.com/vanderschaarlab/AutoPrognosis.
RESUMO
MicroRNAs are critical regulators of gene expression controlling cellular processes including inflammation. We explored their role in the pathogenesis of inflammatory bowel disease (IBD) and identified reduced expression of miR-374a-5p in IBD monocytes that correlated with a module of up-regulated genes related to the inflammatory response. Key proinflammatory module genes, including for example TNFα, IL1A, IL6, and OSM, were inversely correlated with miR-374a-5p and were validated in vitro. In colonic biopsies, miR-374a-5p was again reduced in expression and inversely correlated with the same inflammatory module, and its levels predicted subsequent response to anti-TNF therapy. Increased miR-374a-5p expression was shown to control macrophage-driven inflammation by suppressing proinflammatory mediators and to reduce the capacity of monocytes to migrate and activate T cells. Our findings suggest that miR-374a-5p reduction is a central driver of inflammation in IBD, and its therapeutic supplementation could reduce monocyte-driven inflammation in IBD or other immune-mediated diseases.
Assuntos
Colite , Doenças Inflamatórias Intestinais , MicroRNAs , Humanos , Doenças Inflamatórias Intestinais/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Monócitos/metabolismo , Inibidores do Fator de Necrose TumoralRESUMO
B cells are important in immunity to both severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and vaccination, but B cell receptor (BCR) repertoire development in these contexts has not been compared. We analyze serial samples from 171 SARS-CoV-2-infected individuals and 63 vaccine recipients and find the global BCR repertoire differs between them. Following infection, immunoglobulin (Ig)G1/3 and IgA1 BCRs increase, somatic hypermutation (SHM) decreases, and, in severe disease, IgM and IgA clones are expanded. In contrast, after vaccination, the proportion of IgD/M BCRs increase, SHM is unchanged, and expansion of IgG clones is prominent. VH1-24, which targets the N-terminal domain (NTD) and contributes to neutralization, is expanded post infection except in the most severe disease. Infection generates a broad distribution of SARS-CoV-2-specific clones predicted to target the spike protein, while a more focused response after vaccination mainly targets the spike's receptor-binding domain. Thus, the nature of SARS-CoV-2 exposure differentially affects BCR repertoire development, potentially informing vaccine strategies.
Assuntos
COVID-19/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Vacinação , Linfócitos B/imunologia , Vacina BNT162/imunologia , COVID-19/prevenção & controle , Evolução Clonal , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Isotipos de Imunoglobulinas/genética , Isotipos de Imunoglobulinas/imunologia , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Cinética , Receptores de Antígenos de Linfócitos B/genética , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Hipermutação Somática de Imunoglobulina/imunologia , Glicoproteína da Espícula de Coronavírus/imunologiaRESUMO
Type 1 diabetes (T1D) is an autoimmune disease characterised by T cell-mediated destruction of the insulin-producing ß cells in the pancreas. Similar to other autoimmune diseases, the incidence of T1D is increasing globally. The discovery of insulin 100 years ago dramatically changed the outlook for people with T1D, preventing this from being a fatal condition. As we celebrate the centenary of this milestone, therapeutic options for T1D are once more at a turning point. Years of effort directed at developing immunotherapies are finally starting to pay off, with signs of progress in new onset and even preventative settings. Here, we review a selection of immunotherapies that have shown promise in preserving ß cell function and highlight future considerations for immunotherapy in the T1D setting.
RESUMO
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) with the majority of cases characterised by relapsing/remitting (RRMS) attacks of neurologic dysfunction followed by variable resolution. Improving clinical outcomes in RRMS requires both a better understanding of the immunological mechanisms driving recurrent demyelination and better means of predicting future disease course to facilitate early targeted therapy. Here, we apply hypothesis-generating network transcriptomics to CD8+ cells isolated from patients in RRMS, identifying a signature reflecting expansion of a subset of CD8+ natural killer cells (NK8+) associated with favourable outcome. NK8+ are capable of regulating CD4+ T cell activation and proliferation in vitro, with reduced expression of HLA-G binding inhibitory receptors and consequent reduced sensitivity to HLA-G-mediated suppression. We identify surrogate markers of the NK8+ signature in peripheral blood leucocytes and validate their association with clinical outcome in an independent cohort, suggesting their measurement may facilitate early, targeted therapy in RRMS.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Matadoras Naturais/imunologia , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/imunologia , Transcriptoma/genética , Linfócitos T CD8-Positivos/ultraestrutura , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Antígenos HLA-G/metabolismo , Humanos , Células Matadoras Naturais/ultraestrutura , Ativação Linfocitária/genética , Reprodutibilidade dos Testes , Fatores de Risco , Resultado do TratamentoRESUMO
Type 1 diabetes (T1D) is a disease of insulin deficiency that results from autoimmune destruction of pancreatic islet ß cells. The exact cause of T1D remains unknown, although asymptomatic islet autoimmunity lasting from weeks to years before diagnosis raises the possibility of intervention before the onset of clinical disease. The number, type, and titer of islet autoantibodies are associated with long-term disease risk but do not cause disease, and robust early predictors of individual progression to T1D onset remain elusive. The Environmental Determinants of Diabetes in the Young (TEDDY) consortium is a prospective cohort study aiming to determine genetic and environmental interactions causing T1D. Here, we analyzed longitudinal blood transcriptomes of 2013 samples from 400 individuals in the TEDDY study before both T1D and islet autoimmunity. We identified and interpreted age-associated gene expression changes in healthy infancy and age-independent changes tracking with progression to both T1D and islet autoimmunity, beginning before other evidence of islet autoimmunity was present. We combined multivariate longitudinal data in a Bayesian joint model to predict individual risk of T1D onset and validated the association of a natural killer cell signature with progression and the model's predictive performance on an additional 356 samples from 56 individuals in the independent Type 1 Diabetes Prediction and Prevention study. Together, our results indicate that T1D is characterized by early and longitudinal changes in gene expression, informing the immunopathology of disease progression and facilitating prediction of its course.
Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Autoanticorpos , Autoimunidade/genética , Teorema de Bayes , Diabetes Mellitus Tipo 1/genética , Progressão da Doença , Redes Reguladoras de Genes , Predisposição Genética para Doença , Humanos , Estudos ProspectivosRESUMO
OBJECTIVE: To optimise a strategy for identifying gene expression signatures differentiating systemic lupus erythematosus (SLE) and antineutrophil cytoplasmic antibody-associated vasculitis that provide insight into disease pathogenesis and identify biomarkers. METHODS: 44 vasculitis patients, 13 SLE patients and 25 age and sex-matched controls were enrolled. CD4 and CD8 T cells, B cells, monocytes and neutrophils were isolated from each patient and, together with unseparated peripheral blood mononuclear cells (PBMC), were hybridised to spotted oligonucleotide microarrays. RESULTS: Using expression data obtained from purified cells a substantial number of differentially expressed genes were identified that were not detectable in the analysis of PBMC. Analysis of purified T cells identified a SLE-associated, CD4 T-cell signature consistent with type 1 interferon signalling driving the generation and survival of tissue homing T cells and thereby contributing to disease pathogenesis. Moreover, hierarchical clustering using expression data from purified monocytes provided significantly improved discrimination between the patient groups than that obtained using PBMC data, presumably because the differentially expressed genes reflect genuine differences in processes underlying disease pathogenesis. CONCLUSION: Analysis of leucocyte subsets enabled the identification of gene signatures of both pathogenic relevance and with better disease discrimination than those identified in PBMC. This approach thus provides substantial advantages in the search for diagnostic and prognostic biomarkers in autoimmune disease.
Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/diagnóstico , Leucócitos/imunologia , Lúpus Eritematoso Sistêmico/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/genética , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/imunologia , Linfócitos T CD4-Positivos/imunologia , Diagnóstico Diferencial , Feminino , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Prognóstico , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/imunologia , Transcrição Gênica , Adulto JovemRESUMO
The clinical diagnosis of new-onset type 1 diabetes has, for many years, been considered relatively straightforward. Recently, however, there is increasing awareness that within this single clinical phenotype exists considerable heterogeneity: disease onset spans the complete age range; genetic susceptibility is complex; rates of progression differ markedly, as does insulin secretory capacity; and complication rates, glycemic control, and therapeutic intervention efficacy vary widely. Mechanistic and immunopathological studies typically show considerable patchiness across subjects, undermining conclusions regarding disease pathways. Without better understanding, type 1 diabetes heterogeneity represents a major barrier both to deciphering pathogenesis and to the translational effort of designing, conducting, and interpreting clinical trials of disease-modifying agents. This realization comes during a period of unprecedented change in clinical medicine, with increasing emphasis on greater individualization and precision. For complex disorders such as type 1 diabetes, the option of maintaining the "single disease" approach appears untenable, as does the notion of individualizing each single patient's care, obliging us to conceptualize type 1 diabetes less in terms of phenotypes (observable characteristics) and more in terms of disease endotypes (underlying biological mechanisms). Here, we provide our view on an approach to dissect heterogeneity in type 1 diabetes. Using lessons from other diseases and the data gathered to date, we aim to delineate a roadmap through which the field can incorporate the endotype concept into laboratory and clinical practice. We predict that such an effort will accelerate the implementation of precision medicine and has the potential for impact on our approach to translational research, trial design, and clinical management.
Assuntos
Variação Biológica da População/fisiologia , Diabetes Mellitus Tipo 1/classificação , Diabetes Mellitus Tipo 1/patologia , Fenótipo , Glicemia/metabolismo , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/terapia , Progressão da Doença , Humanos , Insulina/metabolismo , Medicina de Precisão/métodos , Medicina de Precisão/tendênciasRESUMO
For over a decade the term "Big data" has been used to describe the rapid increase in volume, variety and velocity of information available, not just in medical research but in almost every aspect of our lives. As scientists, we now have the capacity to rapidly generate, store and analyse data that, only a few years ago, would have taken many years to compile. However, "Big data" no longer means what it once did. The term has expanded and now refers not to just large data volume, but to our increasing ability to analyse and interpret those data. Tautologies such as "data analytics" and "data science" have emerged to describe approaches to the volume of available information as it grows ever larger. New methods dedicated to improving data collection, storage, cleaning, processing and interpretation continue to be developed, although not always by, or for, medical researchers. Exploiting new tools to extract meaning from large volume information has the potential to drive real change in clinical practice, from personalized therapy and intelligent drug design to population screening and electronic health record mining. As ever, where new technology promises "Big Advances," significant challenges remain. Here we discuss both the opportunities and challenges posed to biomedical research by our increasing ability to tackle large datasets. Important challenges include the need for standardization of data content, format, and clinical definitions, a heightened need for collaborative networks with sharing of both data and expertise and, perhaps most importantly, a need to reconsider how and when analytic methodology is taught to medical researchers. We also set "Big data" analytics in context: recent advances may appear to promise a revolution, sweeping away conventional approaches to medical science. However, their real promise lies in their synergy with, not replacement of, classical hypothesis-driven methods. The generation of novel, data-driven hypotheses based on interpretable models will always require stringent validation and experimental testing. Thus, hypothesis-generating research founded on large datasets adds to, rather than replaces, traditional hypothesis driven science. Each can benefit from the other and it is through using both that we can improve clinical practice.