Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Glob Chang Biol ; 30(7): e17399, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007251

RESUMO

The ever-increasing and expanding globalisation of trade and transport underpins the escalating global problem of biological invasions. Developing biosecurity infrastructures is crucial to anticipate and prevent the transport and introduction of invasive alien species. Still, robust and defensible forecasts of potential invaders are rare, especially for species without known invasion history. Here, we aim to support decision-making by developing a quantitative invasion risk assessment tool based on invasion syndromes (i.e., generalising typical attributes of invasive alien species). We implemented a workflow based on 'Multiple Imputation with Chain Equation' to estimate invasion syndromes from imputed datasets of species' life-history and ecological traits and macroecological patterns. Importantly, our models disentangle the factors explaining (i) transport and introduction and (ii) establishment. We showcase our tool by modelling the invasion syndromes of 466 amphibians and reptile species with invasion history. Then, we project these models to amphibians and reptiles worldwide (16,236 species [c.76% global coverage]) to identify species with a risk of being unintentionally transported and introduced, and risk of establishing alien populations. Our invasion syndrome models showed high predictive accuracy with a good balance between specificity and generality. Unintentionally transported and introduced species tend to be common and thrive well in human-disturbed habitats. In contrast, those with established alien populations tend to be large-sized, are habitat generalists, thrive well in human-disturbed habitats, and have large native geographic ranges. We forecast that 160 amphibians and reptiles without known invasion history could be unintentionally transported and introduced in the future. Among them, 57 species have a high risk of establishing alien populations. Our reliable, reproducible, transferable, statistically robust and scientifically defensible quantitative invasion risk assessment tool is a significant new addition to the suite of decision-support tools needed for developing a future-proof preventative biosecurity globally.


Assuntos
Anfíbios , Previsões , Espécies Introduzidas , Répteis , Animais , Répteis/fisiologia , Anfíbios/fisiologia , Medição de Risco/métodos , Modelos Teóricos , Modelos Biológicos
2.
Conserv Biol ; 38(2): e14214, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38051018

RESUMO

The Environmental Impact Classification for Alien Taxa (EICAT) is an important tool for biological invasion policy and management and has been adopted as an International Union for Conservation of Nature (IUCN) standard to measure the severity of environmental impacts caused by organisms living outside their native ranges. EICAT has already been incorporated into some national and local decision-making procedures, making it a particularly relevant resource for addressing the impact of non-native species. Recently, some of the underlying conceptual principles of EICAT, particularly those related to the use of the precautionary approach, have been challenged. Although still relatively new, guidelines for the application and interpretation of EICAT will be periodically revisited by the IUCN community, based on scientific evidence, to improve the process. Some of the criticisms recently raised are based on subjectively selected assumptions that cannot be generalized and may harm global efforts to manage biological invasions. EICAT adopts a precautionary principle by considering a species' impact history elsewhere because some taxa have traits that can make them inherently more harmful. Furthermore, non-native species are often important drivers of biodiversity loss even in the presence of other pressures. Ignoring the precautionary principle when tackling the impacts of non-native species has led to devastating consequences for human well-being, biodiversity, and ecosystems, as well as poor management outcomes, and thus to significant economic costs. EICAT is a relevant tool because it supports prioritization and management of non-native species and meeting and monitoring progress toward the Kunming-Montreal Global Biodiversity Framework (GBF) Target 6.


Uso de la Clasificación de Impacto Ambiental de los Taxones Exóticos de la UICN para la toma de decisiones Resumen La Clasificación de Impacto Ambiental de los Taxones Exóticos (EICAT, en inglés) es una herramienta importante para las políticas y manejo de las invasiones biológicas y ha sido adoptada como un estándar de la Unión Internacional para la Conservación de la Naturaleza (UICN) para medir la seriedad del impacto ambiental causado por los organismos que viven fuera de su extensión nativa. La EICAT ya ha sido incorporada a algunos procedimientos locales y nacionales de toma de decisiones, lo que la vuelve un recurso particularmente relevante para abordar el impacto de las especies no nativas. Algunos principios conceptuales subyacentes de la EICAT han sido cuestionados recientemente, en particular aquellos relacionados con el uso del principio de precaución. Aunque todavía son relativamente nuevas, las directrices para la aplicación e interpretación de la EICAT tendrán una revisión periódica, basada en evidencia científica, por parte de la comunidad de la UICN para mejorar el proceso. Algunas de las críticas recientes están basadas en suposiciones seleccionadas subjetivamente que no pueden generalizarse y podrían perjudicar los esfuerzos globales para manejar las invasiones biológicas. La EICAT adopta un principio de precaución cuando considera el historial de impacto de una especie en cualquier otro lugar ya que algunos taxones tienen características que podrían volverlos más dañinos. Además, las especies no nativas suelen ser factores de pérdida de bidiversidad, incluso bajo otras presiones. Cuando ignoramos el principio de precaución al abordar el impacto de las especies no nativas, hay consecuencias devastadoras para el bienestar humano, la biodiversidad y los ecosistemas, así como resultados pobres de conservación, y por lo tanto con costos económicos importantes. La EICAT es una herramienta relevante porque respalda la priorización y el manejo de las especies no nativas y ayuda con el cumplimiento y monitoreo del progreso para llegar al objetivo 6 del Marco Mundial de Biodiversidad Kunming­Montreal.


Assuntos
Ecossistema , Espécies Introduzidas , Humanos , Conservação dos Recursos Naturais , Biodiversidade
3.
J Anat ; 242(2): 312-326, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36087281

RESUMO

In limbless fossorial vertebrates such as caecilians (Gymnophiona), head-first burrowing imposes severe constraints on the morphology and overall size of the head. As such, caecilians developed a unique jaw-closing system involving the large and well-developed m. interhyoideus posterior, which is positioned in such a way that it does not significantly increase head diameter. Caecilians also possess unique muscles among amphibians. Understanding the diversity in the architecture and size of the cranial muscles may provide insights into how a typical amphibian system was adapted for a head-first burrowing lifestyle. In this study, we use dissection and non-destructive contrast-enhanced micro-computed tomography (µCT) scanning to describe and compare the cranial musculature of 13 species of caecilians. Our results show that the general organization of the head musculature is rather constant across extant caecilians. However, the early-diverging Rhinatrema bivittatum mainly relies on the 'ancestral' amphibian jaw-closing mechanism dominated by the m. adductores mandibulae, whereas other caecilians switched to the use of the derived dual jaw-closing mechanism involving the additional recruitment of the m. interhyoideus posterior. Additionally, the aquatic Typhlonectes show a greater investment in hyoid musculature than terrestrial caecilians, which is likely related to greater demands for ventilating their large lungs, and perhaps also an increased use of suction feeding. In addition to three-dimensional interactive models, our study provides the required quantitative data to permit the generation of accurate biomechanical models allowing the testing of further functional hypotheses.


Assuntos
Anfíbios , Crânio , Animais , Filogenia , Microtomografia por Raio-X , Anfíbios/anatomia & histologia , Crânio/anatomia & histologia , Músculo Esquelético
4.
J Exp Biol ; 226(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37990942

RESUMO

The physical properties of the environment impose strong selection on organisms and their form-function relationships. In water and on land, selective pressures differ, with water being more viscous and denser than air, and gravity being the most important external force on land for relatively large animals such as vertebrates. These different properties of the environment could drive variation in the design and mechanics of the locomotor system of organisms. Animals that use multiple environments can consequently exhibit locomotion conflicts between the demands imposed by the media, leading to potential trade-offs. Here, we tested for the presence of such locomotor trade-offs depending on the environment (water or land) in a largely aquatic frog, Xenopus laevis. We focused on terrestrial and aquatic exertion capacity (time and distance swum or jumped until exhaustion) and aquatic and terrestrial burst capacity (maximal instantaneous swimming velocity and maximal force jump) given the ecological relevance of these traits. We tested these performance traits for trade-offs, depending on environments (water versus air) and locomotor modes (i.e. exertion and burst performance). Finally, we assessed the contribution of morphological traits to each performance trait. Our data show no trade-offs between the performance traits and between the environments, suggesting that X. laevis is equally good at swimming and jumping thanks to the same underlying morphological specialisations. We did observe, however, that morphological predictors differed depending on the environment, with variation in head shape and forelimb length being good predictors for aquatic locomotion and variation in hindlimb and forelimb segments predicting variation in jumping performance on land.


Assuntos
Locomoção , Natação , Animais , Xenopus laevis , Membro Posterior/anatomia & histologia , Água
5.
J Anat ; 241(3): 716-728, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35488423

RESUMO

Caecilians are elongate, limbless and annulated amphibians that, as far as is known, all have an at least partly fossorial lifestyle. It has been suggested that elongate limbless vertebrates show little morphological differentiation throughout the postcranial skeleton. However, relatively few studies have explored the axial skeleton in limbless tetrapods. In this study, we used µCT data and three-dimensional geometric morphometrics to explore regional differences in vertebral shape across a broad range of caecilian species. Our results highlight substantial differences in vertebral shape along the axial skeleton, with anterior vertebrae being short and bulky, whereas posterior vertebrae are more elongated. This study shows that despite being limbless, elongate tetrapods such as caecilians still show regional heterogeneity in the shape of individual vertebrae along the vertebral column. Further studies are needed, however, to understand the possible causes and functional consequences of the observed variation in vertebral shape in caecilians.


Assuntos
Anfíbios , Coluna Vertebral , Anfíbios/anatomia & histologia , Animais , Coluna Vertebral/anatomia & histologia , Coluna Vertebral/diagnóstico por imagem
6.
PLoS Biol ; 17(9): e3000404, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31536486

RESUMO

Developed countries are producing policies to reduce the flow of invasive species and control or eradicate existing invasions, but most developing countries are under-resourced to tackle either aspect without help. Emerging economies, such as Brazil, Russia, India, China, and South Africa (BRICS), are responsible for donating many of the world's invasive species that have the potential to reach nearly all terrestrial biomes. Implementing a proactive 'facilitated network' model is urgently required to build capacity and stimulate effective appropriate invasion science. We contend that creating a BRICS network of invasion scientists will have the immediate impact required to meet future policy demands.


Assuntos
Países em Desenvolvimento , Espécies Introduzidas
7.
J Exp Biol ; 225(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35662342

RESUMO

Caecilians are predominantly burrowing, elongate, limbless amphibians that have been relatively poorly studied. Although it has been suggested that the sturdy and compact skulls of caecilians are an adaptation to their head-first burrowing habits, no clear relationship between skull shape and burrowing performance appears to exist. However, the external forces encountered during burrowing are transmitted by the skull to the vertebral column, and, as such, may impact vertebral shape. Additionally, the muscles that generate the burrowing forces attach onto the vertebral column and consequently may impact vertebral shape that way as well. Here, we explored the relationships between vertebral shape and maximal in vivo push forces in 13 species of caecilian amphibians. Our results show that the shape of the two most anterior vertebrae, as well as the shape of the vertebrae at 90% of the total body length, is not correlated with peak push forces. Conversely, the shape of the third vertebrae, and the vertebrae at 20% and 60% of the total body length, does show a relationship to push forces measured in vivo. Whether these relationships are indirect (external forces constraining shape variation) or direct (muscle forces constraining shape variation) remains unclear and will require quantitative studies of the axial musculature. Importantly, our data suggest that mid-body vertebrae may potentially be used as proxies to infer burrowing capacity in fossil representatives.


Assuntos
Anfíbios , Crânio , Anfíbios/fisiologia , Animais , Cabeça , Coluna Vertebral
8.
J Exp Biol ; 225(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34897477

RESUMO

Caecilians are enigmatic limbless amphibians that, with a few exceptions, all have an at least partly burrowing lifestyle. Although it has been suggested that caecilian evolution resulted in sturdy and compact skulls as an adaptation to their head-first burrowing habits, no relationship between skull shape and burrowing performance has been demonstrated to date. However, the unique dual jaw-closing mechanism and the osteological variability of their temporal region suggest a potential relationship between skull shape and feeding mechanics. Here, we explored the relationships between skull shape, head musculature and in vivo bite forces. Although there is a correlation between bite force and external head shape, no relationship between bite force and skull shape could be detected. Whereas our data suggest that muscles are the principal drivers of variation in bite force, the shape of the skull is constrained by factors other than demands for bite force generation. However, a strong covariation between the cranium and mandible exists. Moreover, both cranium and mandible shape covary with jaw muscle architecture. Caecilians show a gradient between species with a long retroarticular process associated with a large and pennate-fibered m. interhyoideus posterior and species with a short process but long and parallel-fibered jaw adductors. Our results demonstrate the complexity of the relationship between form and function of this jaw system. Further studies that focus on factors such as gape distance or jaw velocity will be needed in order to fully understand the evolution of feeding mechanics in caecilians.


Assuntos
Anfíbios , Força de Mordida , Anfíbios/fisiologia , Animais , Fenômenos Biomecânicos , Cabeça , Arcada Osseodentária/fisiologia , Músculo Esquelético , Crânio
9.
Ecol Appl ; 32(2): e2502, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34873777

RESUMO

Detecting occupied sites of rare species, and estimating the probability that all occupied sites are known within a given area, are desired outcomes for many ecological or conservation projects. Examples include managing all occupied sites of a threatened species or eradicating an emerging invader. Occupied sites may remain undetected because (1) sites where the species potentially occurs had not been searched, and (2) the species could have been overlooked in the searched sites. For rare species, available data are typically scant, making it difficult to predict sites where the species probably occurs or to estimate detection probability in the searched sites. Using the critically endangered Rose's mountain toadlet (Capensibufo rosei), known from only two localities, we outline an iterative process aimed at estimating the probability that any unknown occupied sites remain and maximizing the chance of finding them. This includes fitting a species distribution model to guide sampling effort, testing model accuracy and sampling efficacy using the occurrence of more common proxy species, and estimating detection probability using sites of known presence. The final estimate of the probability that all occupied sites were found incorporates the uncertainties of uneven distribution, relative area searched, and detection probability. Our results show that very few occupied sites of C. rosei are likely to remain undetected. We also show that the probability of an undetected occupied site remaining will always be high for large unsearched areas of potential occurrence, but can be low for smaller areas intended for targeted management interventions. Our approach is especially useful for assessing uncertainty in species occurrences, planning the required search effort needed to reduce probability of unknown occurrence to desired levels, and identifying priority areas for further searches or management interventions.


Assuntos
Espécies em Perigo de Extinção , Animais , Probabilidade
10.
Microb Ecol ; 84(4): 1042-1054, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34735604

RESUMO

Studies of laboratory animals demonstrate extensive variation of host gut microbiomes and their functional capabilities across populations, but how does anthropogenic change impact the microbiomes of non-model species? The anthropogenic movement of species to novel environments can drastically alter animals' microbiomes; however, factors that shape invasive species gut microbiota during introduction remain relatively unexplored. Through 16S amplicon sequencing on guttural toad (Sclerophrys gutturalis) faecal samples, we determine that residence time does not impact microbiome variation between source and introduced populations. The youngest population (~ 20 years in Cape Town) has the most distinct microbiome and associated functional capabilities, whereas longer residence times (~ 100 years in Réunion and Mauritius) produce less divergent microbial compositional, phylogenetic, and predicted functional diversity and differential abundance from source populations (Durban). Additionally, we show extensive variation of microbial and functional diversity, as well as differential abundance patterns in an expanding introduced population (Cape Town) between core and periphery sites. Contrasting previous studies, we suggest that introduction pathways might be an important factor impacting host microbial divergence. These findings also imply that the microbiome can diverge in accordance with host population dynamics.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Microbioma Gastrointestinal/genética , Filogenia , África do Sul , Microbiota/genética , Bufonidae , RNA Ribossômico 16S/genética
11.
Oecologia ; 200(1-2): 37-50, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35996029

RESUMO

Phenotypic variations between populations often correlate with climatic variables. Determining the presence of phenotypic plasticity and local adaptation of a species to different environments over a large spatial scale can provide insight on the persistence of a species across its range. Amphibians, and in particular their larvae, are good models for studies of phenotypic variation as they are especially sensitive to their immediate environment. Few studies have attempted to determine the mechanisms that drive phenotypic variation between populations of a single amphibian species over a large spatial scale especially across contrasting climatic regimes. The African clawed frog, Xenopus laevis, occurs in two regions with contrasting rainfall regimes in southern Africa. We hypothesised that the phenotypic variation of life-history traits of X. laevis tadpoles emerges from a combination of plastic and genetic responses. We predicted that plasticity would allow the development of tadpoles from both regions in each environment. We also predicted that local adaptation of larval traits would drive the differentiation of reaction norms between populations and lower survival in tadpoles reared away from their home environment. We measured growth, time to metamorphosis, and survival in a reciprocal transplant experiment using outdoor mesocosms. Supporting our prediction, we found that the measured variation of all traits was explained by both adaptation and plasticity. However, the reaction norms differed between populations suggesting adaptive and asymmetric plasticity. All tadpoles experienced lower survival when translocated, but only translocated tadpoles from the winter rainfall region matched survival of local tadpoles. This has implications for the dynamics of translocated X. laevis into novel environments, especially from the winter rainfall region. Our discovery of their asymmetric capacity to overcome novel environmental conditions by phenotypic plasticity alone provides insight into their invasion success.


Assuntos
Adaptação Fisiológica , Variação Biológica da População , Animais , Larva , Plásticos , Xenopus laevis
12.
J Exp Biol ; 224(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33653717

RESUMO

Environmental temperature variation generates adaptive phenotypic differentiation in widespread populations. We used a common garden experiment to determine whether offspring with varying parental origins display adaptive phenotypic variation related to different thermal conditions experienced in parental environments. We compared burst swimming performance and critical thermal limits of African clawed frog (Xenopus laevis) tadpoles bred from adults captured at high (∼2000 m above sea level) and low (∼ 5 m above sea level) altitudes. Maternal origin significantly affected swimming performance. Optimal swimming performance temperature (Topt) had a >9°C difference between tadpoles with low altitude maternal origins (pure- and cross-bred, 35.0°C) and high-altitude maternal origins (pure-bred, 25.5°C; cross-bred, 25.9°C). Parental origin significantly affected critical thermal (CT) limits. Pure-bred tadpoles with low-altitude parental origins had higher CTmax (37.8±0.8°C) than pure-bred tadpoles with high-altitude parental origins and all cross-bred tadpoles (37.0±0.8 and 37.1±0.8°C). Pure-bred tadpoles with low-altitude parental origins and all cross-bred tadpoles had higher CTmin (4.2±0.7 and 4.2±0.7°C) than pure-bred tadpoles with high-altitude parental origins (2.5±0.6°C). Our study shows that the varying thermal physiological traits of Xenopus laevis tadpoles are the result of adaptive responses to their parental thermal environments. This study is one of few demonstrating potential intraspecific evolution of critical thermal limits in a vertebrate species. Multi-generation common garden experiments and genetic analyses would be required to further tease apart the relative contribution of plastic and genetic effects to the adaptive phenotypic variation observed in these tadpoles.


Assuntos
Altitude , Natação , Animais , Larva , Temperatura , Xenopus laevis/genética
13.
J Exp Biol ; 224(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34494653

RESUMO

Caecilians are elongate, limbless and annulated amphibians that, with the exception of one aquatic family, all have an at least partly fossorial lifestyle. It has been suggested that caecilian evolution resulted in sturdy and compact skulls with fused bones and tight sutures, as an adaptation to their head-first burrowing habits. However, although their cranial osteology is well described, relationships between form and function remain poorly understood. In the present study, we explored the relationship between cranial shape and in vivo burrowing forces. Using micro-computed tomography (µCT) data, we performed 3D geometric morphometrics to explore whether cranial and mandibular shapes reflected patterns that might be associated with maximal push forces. The results highlight important differences in maximal push forces, with the aquatic Typhlonectes producing a lower force for a given size compared with other species. Despite substantial differences in head morphology across species, no relationship between overall skull shape and push force could be detected. Although a strong phylogenetic signal may partly obscure the results, our conclusions confirm previous studies using biomechanical models and suggest that differences in the degree of fossoriality do not appear to be driving the evolution of head shape.


Assuntos
Anfíbios , Crânio , Animais , Evolução Biológica , Pesos e Medidas Corporais , Filogenia , Microtomografia por Raio-X
14.
Artigo em Inglês | MEDLINE | ID: mdl-33321177

RESUMO

Species introduced by human activities can alter the normal functioning of ecosystems promoting negative impacts on native biodiversity, as they can rapidly expand their population size, demonstrating phenotypic plasticity and possible adaptive capacity to novel environments. Twenty years ago, the guttural toad, Sclerophrys gutturalis, was introduced to a peri-urban area of Cape Town, with cooler and drier climatic characteristics than its native source population, Durban, South Africa. Our goal was to understand the phenotypic changes, in terms of physiology and immunity, of populations in native and novel environments. We evaluated body index (BI), field hydration level, plasma corticosterone levels (CORT), proportion of neutrophils: lymphocytes (N: L), plasma bacterial killing ability (BKA), and hematocrit (HTC) in the field, and after standardized stressors (dehydration and movement restriction) in males from the native and invasive populations. Toads from the invasive population presented lower BI and tended to show a lower field hydration state, which is consistent with living in the drier environmental conditions of Cape Town. Additionally, invasive toads also showed higher BKA and N:L ratio under field conditions. After exposure to stressors, invasive animals presented higher BKA than the natives. Individuals from both populations showed increased CORT after dehydration, an intense stressor for these animals. The highest BKA and N:L ratio in the field and after submission to stressors in the laboratory shows that the invasive population has a phenotype that might increase their fitness, leading to adaptive responses in the novel environment and, thus, favoring successful dispersion and population increase.


Assuntos
Bufonidae/fisiologia , Desidratação/fisiopatologia , Espécies Introduzidas , Estresse Fisiológico , Equilíbrio Hidroeletrolítico , Animais , Atividade Bactericida do Sangue , Bufonidae/imunologia , Contagem de Linfócitos , Neutrófilos/citologia , África do Sul
15.
Biol Lett ; 16(11): 20200651, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33202183

RESUMO

Island ecosystems have traditionally been hailed as natural laboratories for examining phenotypic change, including dramatic shifts in body size. Similarly, biological invasions can drive rapid localized adaptations within modern timeframes. Here, we compare the morphology of two invasive guttural toad (Sclerophrys gutturalis) populations in Mauritius and Réunion with their source population from South Africa. We found that female toads on both islands were significantly smaller than mainland counterparts (33.9% and 25.9% reduction, respectively), as were males in Mauritius (22.4%). We also discovered a significant reduction in the relative hindlimb length of both sexes, on both islands, compared with mainland toads (ranging from 3.4 to 9.0%). If our findings are a result of natural selection, then this would suggest that the dramatic reshaping of an amphibian's morphology-leading to insular dwarfism-can result in less than 100 years; however, further research is required to elucidate the mechanism driving this change (e.g. heritable adaptation, phenotypic plasticity, or an interaction between them).


Assuntos
Nanismo , Ecossistema , Animais , Evolução Biológica , Bufonidae , Feminino , Masculino , África do Sul
16.
Proc Biol Sci ; 286(1897): 20182528, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30963838

RESUMO

The exponential increase in species introductions during the Anthropocene has brought about a major loss of biodiversity. Amphibians have suffered large declines, with more than 16% considered to be threatened by invasive species. We conducted a global meta-analysis of the impacts of alien species on native amphibians to determine which aspects of amphibian ecology are most affected by plant, invertebrate, fish, amphibian, reptile, or mammal introductions. Measures of fitness were most strongly affected; amphibian performance was consistently lower in the presence of alien species. While exposure to alien species caused a significant decrease in amphibian behavioural activity when compared with a no species control, this response was stronger towards a control of native impacting species. This indicates a high degree of prey naiveté towards alien species and highlights the importance of using different types of controls in empirical studies. Alien invertebrates had the greatest overall impact on amphibians. This study sets a new agenda for research on biological invasions, highlighting the lack of studies investigating the impacts of alien species on amphibian terrestrial life-history stages. It also emphasizes the strong ecological impacts that alien species have on amphibian fitness and suggests that future introductions or global spread of alien invertebrates could strongly exacerbate current amphibian declines.


Assuntos
Anfíbios/fisiologia , Distribuição Animal , Espécies Introduzidas , Anfíbios/crescimento & desenvolvimento , Animais , Aptidão Genética , Invertebrados , Plantas , Dinâmica Populacional , Vertebrados
18.
J Exp Biol ; 221(Pt 9)2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29615531

RESUMO

Invasive species frequently cope with ecological conditions that are different from those to which they adapted, presenting an opportunity to investigate how phenotypes change across short time scales. In 2000, the guttural toad Sclerophrys gutturalis was first detected in a peri-urban area of Cape Town, where it is now invasive. The ability of the species to invade Cape Town is surprising as the area is characterized by a Mediterranean climate significantly drier and colder than that of the native source area. We measured field hydration state of guttural toads from the invasive Cape Town population and a native source population from Durban. We also obtained from laboratory trials: rates of evaporative water loss and water uptake, sensitivity of locomotor endurance to hydration state, critical thermal minimum (CTmin) and sensitivity of CTmin to hydration state. Field hydration state of invasive toads was significantly lower than that of native toads. Although the two populations had similar rates of water loss and uptake, invasive toads were more efficient in minimizing water loss through postural adjustments. In locomotor trials, invasive individuals noticeably outperformed native individuals when dehydrated but not when fully hydrated. CTmin was lower in invasive individuals than in native individuals, independent of hydration state. Our results indicate that an invasive population that is only 20 years old shows adaptive responses that reduce phenotypic mismatch with the novel environment. The invasion potential of the species in Cape Town is higher than we could infer from its characteristics in the native source population.


Assuntos
Adaptação Biológica , Bufonidae/fisiologia , Espécies Introduzidas , Fenótipo , Animais , Bufonidae/genética , Meio Ambiente , Feminino , Masculino , África do Sul
19.
PeerJ ; 11: e15516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304861

RESUMO

Amphibians are more threatened than any other vertebrate class, yet evidence for many threats is missing. The Cape lowland fynbos (endemic scrub biome) is threatened by habitat loss, and natural temporary freshwater habitats are removed in favour of permanent impoundments. In this study, we determine amphibian assemblages across different freshwater habitat types with special attention to the presence of invasive fish. We find that anuran communities differ primarily by habitat type, with permanent water habitats having more widespread taxa, while temporary water bodies have more range restricted taxa. Invasive fish are found to have a significant impact on frogs with toads most tolerant of their presence. Temporary freshwater habitats are a conservation priority in the area, and their amphibian assemblages represent endemic taxa that are intolerant of invasive fish. Conservation of a biodiverse amphibian assemblage in lowland fynbos areas will rely on the creation of temporary freshwater habitats, rather than a northern hemisphere pond based solution.


Assuntos
Anuros , Bufonidae , Animais , Água Doce , Ecossistema , Água
20.
Physiol Biochem Zool ; 96(4): 272-281, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37418604

RESUMO

AbstractEctothermic species are dependent on temperature, which drives many aspects of their physiology, including locomotion. The distribution of the native populations of Xenopus laevis is characterized by an exceptional range in latitude and altitude. Along altitudinal gradients, thermal environments change, and populations experience different temperatures. In this study, we compared critical thermal limits and thermal performance curves of populations from the native range across an altitudinal gradient to test whether optimal temperatures for exertion differ depending on altitude. Data on exertion capacity were collected at six different temperatures (8°C, 12°C, 16°C, 19°C, 23°C, and 27°C) for four populations spanning an altitudinal gradient (60, 1,016, 1,948, and 3,197 m asl). Results show that the thermal performance optimum differs among populations. Populations from cold environments at high altitudes exhibit a lower optimal performance temperature than populations from warmer environments at lower altitudes. The ability of this species to change its optimal temperature for locomotor exertion across extremely different climatic environments within the native range may help explain its exceptional invasive potential. These results suggest that ectothermic species capable of adapting to broad altitudinal ranges may be particularly good at invading novel climatic areas, given their ability to cope with a wide range of variation in environmental temperatures.


Assuntos
Altitude , Locomoção , Animais , Xenopus laevis , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa