Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 24(3): e202200513, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36420688

RESUMO

Two florescent xanthene-cyanamide lysosomal trackers emitting strongly at ∼525 nm were prepared from fluorescein and rhodol methyl esters in microwave-assisted reactions. Both forms named "off" (nonfluorescent lactam) and "on" (strongly fluorescent ring-opened amide) have been comprehensively characterized out by using a combination of NMR spectroscopy, X-ray analysis, fluorimetry and confocal microscopy. Known rhodamines bearing electron-withdrawing groups (EWGs) exhibit an equilibrium between non-fluorescent (off) and fluorescent (on) depending on the dielectric constant of the medium. Here, cyanamide was introduced as EWG amine into the fluorescein and rhodol framework. Unlike rhodamine-type dyes, the ring-opened forms of fluorescein- and rhodol-cyanamides are stable in protic solvents under circumneutral and basic pH conditions. The osteoblastic cell line MC3T3-E1 from C57BL/6 mouse calvaria was used for confocal imaging where the different organelles and nuclei were distinguished by using an orthogonal combination of fluorescent dyes.


Assuntos
Cianamida , Corantes Fluorescentes , Camundongos , Animais , Camundongos Endogâmicos C57BL , Corantes Fluorescentes/química , Rodaminas/química , Fluoresceína , Lisossomos
2.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499456

RESUMO

Matrix vesicles (MVs) contain the whole machinery necessary to initiate apatite formation in their lumen. We suspected that, in addition to tissue-nonspecific alkaline phosphatase (TNAP), Na,K,-ATPase (NKA) could be involved in supplying phopshate (Pi) in the early stages of MV-mediated mineralization. MVs were extracted from the growth plate cartilage of chicken embryos. Their average mean diameters were determined by Dynamic Light Scattering (DLS) (212 ± 19 nm) and by Atomic Force Microcopy (AFM) (180 ± 85 nm). The MVs had a specific activity for TNAP of 9.2 ± 4.6 U·mg-1 confirming that the MVs were mineralization competent. The ability to hydrolyze ATP was assayed by a colorimetric method and by 31P NMR with and without Levamisole and SBI-425 (two TNAP inhibitors), ouabain (an NKA inhibitor), and ARL-67156 (an NTPDase1, NTPDase3 and Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) competitive inhibitor). The mineralization profile served to monitor the formation of precipitated calcium phosphate complexes, while IR spectroscopy allowed the identification of apatite. Proteoliposomes containing NKA with either dipalmitoylphosphatidylcholine (DPPC) or a mixture of 1:1 of DPPC and dipalmitoylphosphatidylethanolamine (DPPE) served to verify if the proteoliposomes were able to initiate mineral formation. Around 69-72% of the total ATP hydrolysis by MVs was inhibited by 5 mM Levamisole, which indicated that TNAP was the main enzyme hydrolyzing ATP. The addition of 0.1 mM of ARL-67156 inhibited 8-13.7% of the total ATP hydrolysis in MVs, suggesting that NTPDase1, NTPDase3, and/or NPP1 could also participate in ATP hydrolysis. Ouabain (3 mM) inhibited 3-8% of the total ATP hydrolysis by MVs, suggesting that NKA contributed only a small percentage of the total ATP hydrolysis. MVs induced mineralization via ATP hydrolysis that was significantly inhibited by Levamisole and also by cleaving TNAP from MVs, confirming that TNAP is the main enzyme hydrolyzing this substrate, while the addition of either ARL-6715 or ouabain had a lesser effect on mineralization. DPPC:DPPE (1:1)-NKA liposome in the presence of a nucleator (PS-CPLX) was more efficient in mineralizing compared with a DPPC-NKA liposome due to a better orientation of the NKA active site. Both types of proteoliposomes were able to induce apatite formation, as evidenced by the presence of the 1040 cm-1 band. Taken together, the findings indicated that the hydrolysis of ATP was dominated by TNAP and other phosphatases present in MVs, while only 3-8% of the total hydrolysis of ATP could be attributed to NKA. It was hypothesized that the loss of Na/K asymmetry in MVs could be caused by a complete depletion of ATP inside MVs, impairing the maintenance of symmetry by NKA. Our study carried out on NKA-liposomes confirmed that NKA could contribute to mineral formation inside MVs, which might complement the known action of PHOSPHO1 in the MV lumen.


Assuntos
Calcinose , Monoéster Fosfórico Hidrolases , Animais , Embrião de Galinha , Monoéster Fosfórico Hidrolases/metabolismo , ATPase Trocadora de Sódio-Potássio , Calcificação Fisiológica , Fosfatase Alcalina/metabolismo , Hidrólise , Trifosfato de Adenosina , Lipossomos/química , Minerais/metabolismo
3.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012211

RESUMO

The biochemical machinery involved in matrix vesicles-mediated bone mineralization involves a specific set of lipids, enzymes, and proteins. Annexins, among their many functions, have been described as responsible for the formation and stabilization of the matrix vesicles' nucleational core. However, the specific role of each member of the annexin family, especially in the presence of type-I collagen, remains to be clarified. To address this issue, in vitro mineralization was carried out using AnxA6 (in solution or associated to the proteoliposomes) in the presence or in the absence of type-I collagen, incubated with either amorphous calcium phosphate (ACP) or a phosphatidylserine-calcium phosphate complex (PS-CPLX) as nucleators. Proteoliposomes were composed of 1,2-dipalmitoylphosphatidylcholine (DPPC), 1,2-dipalmitoylphosphatidylcholine: 1,2-dipalmitoylphosphatidylserine (DPPC:DPPS), and DPPC:Cholesterol:DPPS to mimic the outer and the inner leaflet of the matrix vesicles membrane as well as to investigate the effect of the membrane fluidity. Kinetic parameters of mineralization were calculated from time-dependent turbidity curves of free Annexin A6 (AnxA6) and AnxA6-containing proteoliposomes dispersed in synthetic cartilage lymph. The chemical composition of the minerals formed was investigated by Fourier transform infrared spectroscopy (FTIR). Free AnxA6 and AnxA6-proteoliposomes in the presence of ACP were not able to propagate mineralization; however, poorly crystalline calcium phosphates were formed in the presence of PS-CPLX, supporting the role of annexin-calcium-phosphatidylserine complex in the formation and stabilization of the matrix vesicles' nucleational core. We found that AnxA6 lacks nucleation propagation capacity when incorporated into liposomes in the presence of PS-CPLX and type-I collagen. This suggests that AnxA6 may interact either with phospholipids, forming a nucleational core, or with type-I collagen, albeit less efficiently, to induce the nucleation process.


Assuntos
Anexina A6 , Calcinose , 1,2-Dipalmitoilfosfatidilcolina/química , Anexina A6/metabolismo , Colágeno/metabolismo , Humanos , Fosfatos/metabolismo , Fosfatidilserinas/química , Proteolipídeos
4.
Int J Mol Sci ; 22(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799449

RESUMO

(1) Background: Tissue non-specific alkaline phosphatase (TNAP) is suspected to induce atherosclerosis plaque calcification. TNAP, during physiological mineralization, hydrolyzes the mineralization inhibitor inorganic pyrophosphate (PPi). Since atherosclerosis plaques are characterized by the presence of necrotic cells that probably release supraphysiological concentrations of ATP, we explored whether this extracellular adenosine triphosphate (ATP) is hydrolyzed into the mineralization inhibitor PPi or the mineralization stimulator inorganic phosphate (Pi), and whether TNAP is involved. (2) Methods: Murine aortic smooth muscle cell line (MOVAS cells) were transdifferentiated into chondrocyte-like cells in calcifying medium, containing ascorbic acid and ß-glycerophosphate. ATP hydrolysis rates were determined in extracellular medium extracted from MOVAS cultures during their transdifferentiation, using 31P-NMR and IR spectroscopy. (3) Results: ATP and PPi hydrolysis by MOVAS cells increased during transdifferentiation. ATP hydrolysis was sequential, yielding adenosine diphosphate (ADP), adenosine monophosphate (AMP), and adenosine without any detectable PPi. The addition of levamisole partially inhibited ATP hydrolysis, indicating that TNAP and other types of ectonucleoside triphoshatediphosphohydrolases contributed to ATP hydrolysis. (4) Conclusions: Our findings suggest that high ATP levels released by cells in proximity to vascular smooth muscle cells (VSMCs) in atherosclerosis plaques generate Pi and not PPi, which may exacerbate plaque calcification.


Assuntos
Aterosclerose/genética , Transdiferenciação Celular/genética , Difosfatos/metabolismo , Calcificação Vascular/genética , Trifosfato de Adenosina , Fosfatase Alcalina/genética , Animais , Aorta/citologia , Aorta/metabolismo , Ácido Ascórbico/farmacologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Condrócitos/metabolismo , Condrócitos/patologia , Glicerofosfatos/genética , Glicerofosfatos/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fosfatos/metabolismo , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia
5.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924370

RESUMO

The mineralization process is initiated by osteoblasts and chondrocytes during intramembranous and endochondral ossifications, respectively. Both types of cells release matrix vesicles (MVs), which accumulate Pi and Ca2+ and form apatites in their lumen. Tissue non-specific alkaline phosphatase (TNAP), a mineralization marker, is highly enriched in MVs, in which it removes inorganic pyrophosphate (PPi), an inhibitor of apatite formation. MVs then bud from the microvilli of mature osteoblasts or hypertrophic chondrocytes and, thanks to the action of the acto-myosin cortex, become released to the extracellular matrix (ECM), where they bind to collagen fibers and propagate mineral growth. In this report, we compared the mineralization ability of human fetal osteoblastic cell line (hFOB 1.19 cells) with that of osteosarcoma cell line (Saos-2 cells). Both types of cells were able to mineralize in an osteogenic medium containing ascorbic acid and beta glycerophosphate. The composition of calcium and phosphate compounds in cytoplasmic vesicles was distinct from that in extracellular vesicles (mostly MVs) released after collagenase-digestion. Apatites were identified only in MVs derived from Saos-2 cells, while MVs from hFOB 1.19 cells contained amorphous calcium phosphate complexes. In addition, AnxA6 and AnxA2 (nucleators of mineralization) increased mineralization in the sub-membrane region in strongly mineralizing Saos-2 osteosarcoma, where they co-localized with TNAP, whereas in less mineralizing hFOB 1.19 osteoblasts, AnxA6, and AnxA2 co-localizations with TNAP were less visible in the membrane. We also observed a reduction in the level of fetuin-A (FetuA), an inhibitor of mineralization in ECM, following treatment with TNAP and Ca channels inhibitors, especially in osteosarcoma cells. Moreover, a fraction of FetuA was translocated from the cytoplasm towards the plasma membrane during the stimulation of Saos-2 cells, while this displacement was less pronounced in stimulated hFOB 19 cells. In summary, osteosarcoma Saos-2 cells had a better ability to mineralize than osteoblastic hFOB 1.19 cells. The formation of apatites was observed in Saos-2 cells, while only complexes of calcium and phosphate were identified in hFOB 1.19 cells. This was also evidenced by a more pronounced accumulation of AnxA2, AnxA6, FetuA in the plasma membrane, where they were partly co-localized with TNAP in Saos-2 cells, in comparison to hFOB 1.19 cells. This suggests that both activators (AnxA2, AnxA6) and inhibitors (FetuA) of mineralization were recruited to the membrane and co-localized with TNAP to take part in the process of mineralization.


Assuntos
Anexina A2/metabolismo , Anexina A6/metabolismo , Calcificação Fisiológica , Osteoblastos/metabolismo , Osteossarcoma/metabolismo , alfa-2-Glicoproteína-HS/metabolismo , Fosfatase Alcalina/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Forma Celular , Humanos , Fósforo/metabolismo
6.
J Struct Biol ; 212(2): 107607, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32858148

RESUMO

Bone biomineralization is an exquisite process by which a hierarchically organized mineral matrix is formed. Growing evidence has uncovered the involvement of one class of extracellular vesicles, named matrix vesicles (MVs), in the formation and delivery of the first mineral nuclei to direct collagen mineralization. MVs are released by mineralization-competent cells equipped with a specific biochemical machinery to initiate mineral formation. However, little is known about the mechanisms by which MVs can trigger this process. Here, we present a combination of in situ investigations and ex vivo analysis of MVs extracted from growing-femurs of chicken embryos to investigate the role played by phosphatidylserine (PS) in the formation of mineral nuclei. By using self-assembled Langmuir monolayers, we reconstructed the nucleation core - a PS-enriched motif thought to trigger mineral formation in the lumen of MVs. In situ infrared spectroscopy of Langmuir monolayers and ex situ analysis by transmission electron microscopy evidenced that mineralization was achieved in supersaturated solutions only when PS was present. PS nucleated amorphous calcium phosphate that converted into biomimetic apatite. By using monolayers containing lipids extracted from native MVs, mineral formation was also evidenced in a manner that resembles the artificial PS-enriched monolayers. PS-enrichment in lipid monolayers creates nanodomains for local increase of supersaturation, leading to the nucleation of ACP at the interface through a multistep process. We posited that PS-mediated nucleation could be a predominant mechanism to produce the very first mineral nuclei during MV-driven bone/cartilage biomineralization.


Assuntos
Biomineralização/fisiologia , Fosfatos de Cálcio/metabolismo , Lipídeos/fisiologia , Fosfatidilserinas/metabolismo , Animais , Apatitas/metabolismo , Biomimética/métodos , Calcificação Fisiológica/fisiologia , Cálcio/metabolismo , Cartilagem/metabolismo , Galinhas , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Fêmur/metabolismo , Microscopia Eletrônica de Transmissão/métodos
7.
Langmuir ; 36(19): 5134-5144, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32338922

RESUMO

Lipid-based carriers such as liposomes represent one of the most advanced classes of drug delivery systems. Their clinical success relies on their composition, similar to that of the cell membrane. Their cellular specificity often relies on a ligand-receptor interaction. Although differences in the physicochemical properties of the cell membrane between tumor and nontumor cells have been reported, they are not systematically used for drug delivery purposes. In this report, a new approach was developed to ensure selective targeting based on physical compatibility between the target and the carrier membranes. By modulating the liposome composition and thus its membrane fluidity, we achieved selective targeting on four cancer cell lines of varying aggressiveness. Furthermore, using membrane-embedded and inner core-encapsulated fluorophores, we assessed the mechanism of this interaction to be based on the fusion of the liposome with the cell membranes. Membrane fluidity is therefore a major parameter to be considered when designing lipid drug carriers as a promising, lower cost alternative to current targeting strategies based on covalent grafting.


Assuntos
Fluidez de Membrana , Neoplasias , Sistemas de Liberação de Medicamentos , Humanos , Lipídeos , Lipossomos , Neoplasias/tratamento farmacológico
8.
Mol Cell Biochem ; 473(1-2): 263-279, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32661773

RESUMO

Prostate cancer (PCa) is the most frequent cancer among men and the first cause of death over 65. Approximately 90% of patients with advanced disease will develop bone metastasis, which dramatically reduces long-term survival. Therefore, effective therapies need to be developed, especially when disease is still well-localized. Phospholipase D (PLD), an enzyme that hydrolyzes phosphatidylcholine to yield phosphatidic acid, regulates several cellular functions as proliferation, survival, migration or vesicular trafficking. PLD is implicated in numerous diseases such as neurodegenerative, cardiovascular, autoimmune disorders or cancer. Indeed, PLD controls different aspects of oncogenesis including tumor progression and resistance to targeted therapies such as radiotherapy. PLD1 and PLD2 are the only isoforms with catalytic activity involved in cancer. Surprisingly, studies deciphering the role of PLD in the pathophysiology of PCa are scarce. Here we describe the correlation between PLD activity and PLD1 and PLD2 expression in PCa bone metastasis-derived cell lines C4-2B and PC-3. Next, by using PLD pharmacological inhibitors and RNA interference strategy, we validate the implication of PLD1 and PLD2 in cell viability, clonogenicity and proliferation of C4-2B and PC-3 cells and in migration capacity of PC-3 cells. Last, we show an increase in PLD activity as well as PLD2 protein expression during controlled starvation of PC-3 cells, concomitant with an augmentation of its migration capacity. Specifically, upregulation of PLD activity appears to be PKC-independent. Taken together, our results indicate that PLD, and in particular PLD2, could be considered as a potential therapeutic target for the treatment of PCa-derived bone metastasis.


Assuntos
Carcinogênese/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfolipase D/metabolismo , Neoplasias da Próstata/enzimologia , Carcinogênese/genética , Carcinogênese/patologia , Humanos , Masculino , Proteínas de Neoplasias/genética , Células PC-3 , Fosfolipase D/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia
9.
Int J Mol Sci ; 21(4)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085611

RESUMO

Annexin A6 (AnxA6) is the largest member of the annexin family of proteins present in matrix vesicles (MVs). MVs are a special class of extracellular vesicles that serve as a nucleation site during cartilage, bone, and mantle dentin mineralization. In this study, we assessed the localization of AnxA6 in the MV membrane bilayer using native MVs and MV biomimetics. Biochemical analyses revealed that AnxA6 in MVs can be divided into three distinct groups. The first group corresponds to Ca2+-bound AnxA6 interacting with the inner leaflet of the MV membrane. The second group corresponds to AnxA6 localized on the surface of the outer leaflet. The third group corresponds to AnxA6 inserted in the membrane's hydrophobic bilayer and co-localized with cholesterol (Chol). Using monolayers and proteoliposomes composed of either dipalmitoylphosphatidylcholine (DPPC) to mimic the outer leaflet of the MV membrane bilayer or a 9:1 DPPC:dipalmitoylphosphatidylserine (DPPS) mixture to mimic the inner leaflet, with and without Ca2+, we confirmed that, in agreement with the biochemical data, AnxA6 interacted differently with the MV membrane. Thermodynamic analyses based on the measurement of surface pressure exclusion (πexc), enthalpy (ΔH), and phase transition cooperativity (Δt1/2) showed that AnxA6 interacted with DPPC and 9:1 DPPC:DPPS systems and that this interaction increased in the presence of Chol. The selective recruitment of AnxA6 by Chol was observed in MVs as probed by the addition of methyl-ß-cyclodextrin (MßCD). AnxA6-lipid interaction was also Ca2+-dependent, as evidenced by the increase in πexc in negatively charged 9:1 DPPC:DPPS monolayers and the decrease in ΔH in 9:1 DPPC:DPPS proteoliposomes caused by the addition of AnxA6 in the presence of Ca2+ compared to DPPC zwitterionic bilayers. The interaction of AnxA6 with DPPC and 9:1 DPPC:DPPS systems was distinct even in the absence of Ca2+ as observed by the larger change in Δt1/2 in 9:1 DPPC:DPPS vesicles as compared to DPPC vesicles. Protrusions on the surface of DPPC proteoliposomes observed by atomic force microscopy suggested that oligomeric AnxA6 interacted with the vesicle membrane. Further work is needed to delineate possible functions of AnxA6 at its different localizations and ways of interaction with lipids.


Assuntos
Anexina A6/metabolismo , Calcificação Fisiológica , Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , Varredura Diferencial de Calorimetria , Colesterol/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Microdomínios da Membrana/metabolismo , Microscopia de Força Atômica , Proteolipídeos/metabolismo
10.
J Cell Physiol ; 234(4): 4825-4839, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30207376

RESUMO

Vascular calcification (VC) is the pathological accumulation of calcium phosphate crystals in one of the layers of blood vessels, leading to loss of elasticity and causing severe calcification in vessels. Medial calcification is mostly seen in patients with chronic kidney disease (CKD) and diabetes. Identification of key enzymes and their actions during calcification will contribute to understand the onset of pathological calcification. Phospholipase D (PLD1, PLD2) is active at the earlier steps of mineralization in osteoblasts and chondrocytes. In this study, we aimed to determine their effects during high-phosphate treatment in mouse vascular smooth muscle cell line MOVAS, in the ex vivo model of the rat aorta, and in the in vivo model of adenine-induced CKD. We observed an early increase in PLD1 gene and protein expression along with the increase in the PLD activity in vascular muscle cell line, during calcification induced by ascorbic acid and ß-glycerophosphate. Inhibition of PLD1 by the selective inhibitor VU0155069, or the pan-PLD inhibitor, halopemide, prevented calcification. The mechanism of PLD activation is likely to be protein kinase C (PKC)-independent since bisindolylmaleimide X hydrochloride, a pan-PKC inhibitor, did not affect the PLD activity. In agreement, we found an increase in Pld1 gene expression and PLD activity in aortic explant cultures treated with high phosphate, whereas PLD inhibition by halopemide decreased calcification. Finally, an increase in both Pld1 and Pld2 expression occurred simultaneously with the appearance of VC in a rat model of CKD. Thus, PLD, especially PLD1, promotes VC in the context of CKD and could be an important target for preventing onset or progression of VC.


Assuntos
Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Fosfolipase D/metabolismo , Fósforo na Dieta , Insuficiência Renal Crônica/complicações , Calcificação Vascular/etiologia , Animais , Cálcio da Dieta , Linhagem Celular , Transdiferenciação Celular , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Inibidores de Fosfodiesterase/farmacologia , Fosfolipase D/antagonistas & inibidores , Fosfolipase D/genética , Ratos Sprague-Dawley , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/enzimologia , Transdução de Sinais , Técnicas de Cultura de Tecidos , Calcificação Vascular/enzimologia , Calcificação Vascular/patologia , Calcificação Vascular/prevenção & controle
11.
J Cell Biochem ; 120(4): 5923-5935, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30320913

RESUMO

Mammalian phospholipase D (PLD) mostly hydrolyzes phosphatidylcholine producing phosphatidic acid. PLD activity was previously detected in different osteoblastic cell models, and was increased by several growth factors involved in bone homeostasis. To confirm possible actions of PLD isoforms during mineralization process, we analyzed their effects in osteoblastic cell models and during bone formation. PLD1 expression, along with PLD activity, increased during differentiation of primary osteoblasts and Saos-2 cells, and peaked at the onset of mineralization. Subsequently, both PLD1 expression and PLD activity decreased, suggesting that PLD1 function is regulated during osteoblast maturation. In contrast, PLD2 expression was not significantly affected during differentiation of osteoblasts. Overexpression of PLD1 in Saos-2 cells improved their mineralization potential. PLD inhibitor Halopemide or PLD1-selective inhibitor, led to a decrease in mineralization in both cell types. On the contrary, the selective inhibitor of PLD2, did not affect the mineralization process. Moreover, primary osteoblasts isolated from PLD1 knockout (KO) mice were significantly less efficient in mineralization as compared with those isolated from wild type (WT) or PLD2 KO mice. In contrast, bone formation, as monitored by high-resolution microcomputed tomography analysis, was not impaired in PLD1 KO nor in PLD2 KO mice, indicating that the lack of PLD1 or that of PLD2 did not affect the bone structure in adult mice. Taken together, our findings indicate that PLD activity, especially which of PLD1 isoform, may enhance the mineralization process in osteoblastic cells. Nonetheless, the lack of PLD1 or PLD2 do not seem to significantly affect bone formation in adult mice.


Assuntos
Osteoblastos/metabolismo , Fosfolipase D/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Western Blotting , Calcificação Fisiológica/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Osteogênese/fisiologia , Fosfolipase D/genética , Reação em Cadeia da Polimerase em Tempo Real
12.
Arch Biochem Biophys ; 667: 14-21, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-30998909

RESUMO

Matrix vesicles (MVs) are a class of extracellular vesicles that initiate mineralization in cartilage, bone, and other vertebrate tissues by accumulating calcium ions (Ca2+) and inorganic phosphate (Pi) within their lumen and forming a nucleation core (NC). After further sequestration of Ca2+ and Pi, the NC transforms into crystalline complexes. Direct evidence of the existence of the NC and its maturation have been provided solely by analyses of dried samples. We isolated MVs from chicken embryo cartilage and used atomic force microscopy peak force quantitative nanomechanical property mapping (AFM-PFQNM) to measure the nanomechanical and morphological properties of individual MVs under both mineralizing (+Ca2+) and non-mineralizing (-Ca2+) fluid conditions. The elastic modulus of MVs significantly increased by 4-fold after incubation in mineralization buffer. From AFM mapping data, we inferred the morphological changes of MVs as mineralization progresses: prior to mineralization, a punctate feature, the NC, is present within MVs and this feature grows and stiffens during mineralization until it occupies most of the MV lumen. Dynamic light scattering showed a significant increase in hydrodynamic diameter and no change in the zeta potential of hydrated MVs after incubation with Ca2+. This validates that crystalline complexes, which are strongly negative relative to MVs, were forming within the lumen of MVs. These data were substantiated by transmission electron microscopy energy dispersive X-ray and Fourier transform infrared spectroscopic analyses of dried MVs, which provide evidence that the complexes increased in size, crystallinity, and Ca/P ratio within MVs during the mineralization process.


Assuntos
Biomineralização/fisiologia , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Microscopia de Força Atômica/métodos , Animais , Fenômenos Biomecânicos , Cartilagem/química , Cartilagem/metabolismo , Cartilagem/ultraestrutura , Embrião de Galinha , Vesículas Extracelulares/ultraestrutura , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Bioorg Med Chem ; 27(6): 1034-1042, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30773420

RESUMO

Selective proteinase inhibitors have demonstrated utility in the investigation of cartilage degeneration mechanisms and may have clinical use in the management of osteoarthritis. The cysteine protease cathepsin K (CatK) is an attractive target for arthritis therapy. Here we report the synthesis of two cathepsin K inhibitors (CKIs): racemic azanitrile derivatives CKI-E and CKI-F, which have better inhibition properties on CatK than the commercial inhibitor odanacatib (ODN). Their IC50 values and inhibition constants (Ki) have been determined in vitro. Inhibitors demonstrate differential selectivity for CatK over cathepsin B, L and S in vitro, with Ki amounting to 1.14 and 7.21 nM respectively. We analyzed the effect of these racemic inhibitors on viability in different cell types. The human osteoblast-like cell line MG63, MOVAS cells (a murine vascular smooth muscle cell line) or murine primary chondrocytes, were treated either with CKI-E or with CKI-F, which were not toxic at doses of up to 5 µM. Primary chondrocytes subjected to several passages were used as a model of phenotypic loss of articular chondrocytes, occurring in osteoarthritic cartilage. The efficiency of CKIs regarding CatK inhibition and their specificity over other proteases were validated in primary chondrocytes subjected to several passages. Racemic CKI-E and CKI-F at 0.1 and 1 µM significantly inhibited CatK activity in dedifferentiated chondrocytes, even better than the commercial CatK inhibitor ODN. The enzymatic activity of other proteases such as matrix metalloproteinases or aggrecanases were not affected. Taken together, these findings support the possibility to design CatK inhibitors for preventing cartilage degradation in different pathologies.


Assuntos
Catepsina K/antagonistas & inibidores , Desdiferenciação Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Nitrilas/farmacologia , Inibidores de Proteases/farmacologia , Animais , Compostos Aza/síntese química , Compostos Aza/química , Compostos Aza/farmacologia , Catepsina K/metabolismo , Linhagem Celular , Células Cultivadas , Condrócitos/citologia , Condrócitos/enzimologia , Desenho de Fármacos , Humanos , Camundongos , Nitrilas/síntese química , Nitrilas/química , Inibidores de Proteases/síntese química , Inibidores de Proteases/química
14.
Int J Mol Sci ; 20(12)2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31212828

RESUMO

Osteoblasts initiate bone mineralization by releasing matrix vesicles (MVs) into the extracellular matrix (ECM). MVs promote the nucleation process of apatite formation from Ca2+ and Pi in their lumen and bud from the microvilli of osteoblasts during bone development. Tissue non-specific alkaline phosphatase (TNAP) as well as annexins (among them, AnxA6) are abundant proteins in MVs that are engaged in mineralization. In addition, sarcoma proto-oncogene tyrosine-protein (Src) kinase and Rho-associated coiled-coil (ROCK) kinases, which are involved in vesicular transport, may also regulate the mineralization process. Upon stimulation in osteogenic medium containing 50 µg/mL of ascorbic acid (AA) and 7.5 mM of ß-glycerophosphate (ß-GP), human osteosarcoma Saos-2 cells initiated mineralization, as evidenced by Alizarin Red-S (AR-S) staining, TNAP activity, and the partial translocation of AnxA6 from cytoplasm to the plasma membrane. The addition of 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d] pyrimidine (PP2), which is an inhibitor of Src kinase, significantly inhibited the mineralization process when evaluated by the above criteria. In contrast, the addition of (R)-(+)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexane carboxamide hydrochloride (Y-27632), which is an inhibitor of ROCK kinase, did not affect significantly the mineralization induced in stimulated Saos-2 cells as denoted by AR-S and TNAP activity. In conclusion, mineralization by human osteosarcoma Saos-2 cells seems to be differently regulated by Src and ROCK kinases.


Assuntos
Neoplasias Ósseas/metabolismo , Calcificação Fisiológica , Osteossarcoma/metabolismo , Quinases Associadas a rho/metabolismo , Quinases da Família src/metabolismo , Anexinas/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Matriz Extracelular/metabolismo , Imunofluorescência , Humanos , Proto-Oncogene Mas
15.
J Cell Physiol ; 233(5): 4056-4067, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28776684

RESUMO

Medial artery calcification, a hallmark of type 2 diabetes mellitus and chronic kidney disease (CKD), is known as an independent risk factor for cardiovascular mortality and morbidity. Hyperphosphatemia associated with CKD is a strong stimulator of vascular calcification but the molecular mechanisms regulating this process remain not fully understood. We showed that calcification was induced after exposing Sprague-Dawley rat aortic explants to high inorganic phosphate level (Pi , 6 mM) as examined by Alizarin red and Von Kossa staining. This calcification was associated with high Tissue-Nonspecific Alkaline Phosphatase (TNAP) activity, vascular smooth muscle cells de-differentiation, manifested by downregulation of smooth muscle 22 alpha (SM22α) protein expression which was assessed by immunoblot analysis, immunofluorescence, and trans-differentiation into osteo-chondrocyte-like cells revealed by upregulation of Runt related transcription factor 2 (Runx2), TNAP, osteocalcin, and osteopontin mRNA levels which were determined by quantitative real-time PCR. To unravel the possible mechanism(s) involved in this process, microRNA (miR) expression profile, which was assessed using TLDA technique and thereafter confirmed by individual qRT-PCR, revealed differential expression 10 miRs, five at day 3 and 5 at day 6 post Pi treatment versus control untreated aortas. At day 3, miR-200c, -155, 322 were upregulated and miR-708 and 331 were downregulated. After 6 days of treatment, miR-328, -546, -301a were upregulated while miR-409 and miR-542 were downregulated. Our results indicate that high Pi levels trigger aortic calcification and modulation of certain miRs. These observations suggest that mechanisms regulating aortic calcification might involve miRs, which warrant further investigations in future studies.


Assuntos
Calcificação Fisiológica/genética , Hiperfosfatemia/genética , MicroRNAs/genética , Insuficiência Renal Crônica/genética , Fosfatase Alcalina/genética , Animais , Desdiferenciação Celular/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hiperfosfatemia/fisiopatologia , Proteínas dos Microfilamentos/genética , Proteínas Musculares/genética , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Osteocalcina/genética , Fosfatos/farmacologia , Ratos , Insuficiência Renal Crônica/fisiopatologia
16.
Biochim Biophys Acta Gen Subj ; 1862(3): 532-546, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29108957

RESUMO

BACKGROUND: Matrix vesicles (MVs) are released from hypertrophic chondrocytes and from mature osteoblasts, the cells responsible for endochondral and membranous ossification. Under pathological conditions, they can also be released from cells of non-skeletal tissues such as vascular smooth muscle cells. MVs are extracellular vesicles of approximately 100-300nm diameter harboring the biochemical machinery needed to induce mineralization. SCOPE OF THE REVIEW: The review comprehensively delineates our current knowledge of MV biology and highlights open questions aiming to stimulate further research. The review is constructed as a series of questions addressing issues of MVs ranging from their biogenesis and functions, to biomimetic models. It critically evaluates experimental data including their isolation and characterization methods, like lipidomics, proteomics, transmission electron microscopy, atomic force microscopy and proteoliposome models mimicking MVs. MAJOR CONCLUSIONS: MVs have a relatively well-defined function as initiators of mineralization. They bind to collagen and their composition reflects the composition of lipid rafts. We call attention to the as yet unclear mechanisms leading to the biogenesis of MVs, and how minerals form and when they are formed. We discuss the prospects of employing upcoming experimental models to deepen our understanding of MV-mediated mineralization and mineralization disorders such as the use of reconstituted lipid vesicles, proteoliposomes and, native sample preparations and high-resolution technologies. GENERAL SIGNIFICANCE: MVs have been extensively investigated owing to their roles in skeletal and ectopic mineralization. MVs serve as a model system for lipid raft structures, and for the mechanisms of genesis and release of extracellular vesicles.


Assuntos
Condrócitos/ultraestrutura , Matriz Extracelular/metabolismo , Vesículas Extracelulares , Osteoblastos/ultraestrutura , Animais , Apatitas/metabolismo , Materiais Biomiméticos , Calcificação Fisiológica/fisiologia , Calcinose/fisiopatologia , Condrócitos/patologia , Colágeno/metabolismo , Vesículas Extracelulares/fisiologia , Humanos , Hipertrofia , Microdomínios da Membrana/fisiologia , Minerais/metabolismo , Modelos Biológicos , Biogênese de Organelas , Proteolipídeos , Manejo de Espécimes , Calcificação Vascular/fisiopatologia
17.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt A): 1009-1023, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28188861

RESUMO

BACKGROUND: Members of Rho-associated coiled-coil kinases (ROCKs) are effectors of Rho family of small GTPases. ROCKs have multiple functions that include regulation of cellular contraction and polarity, adhesion, motility, proliferation, apoptosis, differentiation, maturation and remodeling of the extracellular matrix (ECM). SCOPE OF THE REVIEW: Here, we focus on the action of RhoA and RhoA effectors, ROCK1 and ROCK2, in cells related to tissue mineralization: mesenchymal stem cells, chondrocytes, preosteoblasts, osteoblasts, osteocytes, lining cells and osteoclasts. MAJOR CONCLUSIONS: The activation of the RhoA/ROCK pathway promotes stress fiber formation and reduces chondrocyte and osteogenic differentiations, in contrast to that in mesenchymal stem cells which stimulated the osteogenic and the chondrogenic differentiation. The effects of Rac1 and Cdc42 in promoting chondrocyte hypertrophy and of Rac1, Rac2 and Cdc42 in osteoclast are discussed. In addition, members of the Rho family of GTPases such Rac1, Rac2, Rac3 and Cdc42, acting upstream of ROCK and/or other protein effectors, may compensate the actions of RhoA, affecting directly or indirectly the actions of ROCKs as well as other protein effectors. GENERAL SIGNIFICANCE: ROCK activity can trigger cartilage degradation and affect bone formation, therefore these kinases may represent a possible therapeutic target to treat osteoarthritis and osseous diseases. Inhibition of Rho/ROCK activity in chondrocytes prevents cartilage degradation, stimulate mineralization of osteoblasts and facilitate bone formation around implanted metals. Treatment with osteoprotegerin results in a significant decrease in the expression of Rho GTPases, ROCK1 and ROCK2, reducing bone resorption. Inhibition of ROCK signaling increases osteoblast differentiation in a topography-dependent manner.


Assuntos
Calcificação Fisiológica/fisiologia , Diferenciação Celular/fisiologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Osteoblastos/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Humanos
18.
Bioorg Med Chem Lett ; 26(5): 1457-9, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26860736

RESUMO

Tissue-nonspecific alkaline phosphatase (TNAP) by hydrolyzing pyrophosphate, an inhibitor of apatite formation, promotes extracellular matrix calcification during bone formation and growth, as well as during ectopic calcification under pathological conditions. TNAP is a target for the treatment of soft tissue pathological ossification. We synthesized a series of benzofuran derivatives. Among these, SMA14, displayed TNAP activity better than levamisole. SMA14 was found to be not toxic at doses of up to 40µM in osteoblast-like Saos-2 cells and primary osteoblasts. As probed by Alizarin Red staining, this compound inhibited mineral formation in murine primary osteoblast and in osteoblast-like Saos-2 cells.


Assuntos
Fosfatase Alcalina/antagonistas & inibidores , Benzofuranos/síntese química , Benzofuranos/farmacologia , Osteoclastos/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Animais , Benzofuranos/efeitos adversos , Benzofuranos/química , Calcificação Fisiológica/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Camundongos , Estrutura Molecular , Osteoclastos/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
19.
Biochem Biophys Res Commun ; 446(4): 1161-4, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24685481

RESUMO

Hypertrophic chondrocytes participate in matrix mineralization by releasing matrix vesicles (MVs). These MVs, by accumulating Ca(2+) and phosphate initiate the formation of hydroxyapatite. To determine the types of lipids essential for mineralization, we analyzed fatty acids (FAs) in MVs, microvilli and in membrane fractions of chondrocytes isolated from femurs of chicken embryos. The FA composition in the MVs was almost identical to that in microvilli, indicating that the MVs originated from microvilli. These fractions contained more monounsaturated FAs especially oleic acid than in membrane homogenates of chondrocytes. They were enriched in 5,8,11-eicosatrienoic acid (20:3n-9), in eicosadienoic acid (20:2n-6), and in arachidonic acid (20:4n-6). In contrast, membrane homogenates from chondrocytes were enriched in 20:1n-9, 18:3n-3, 22:5n-3 and 22:5n-6. Due to their relatively high content in MVs and to their selective recruitment within microvilli from where MV originate, we concluded that 20:2n-6 and 20:3n-9 (pooled values), 18:1n-9 and 20:4n-6 are essential for the biogenesis of MVs and for bone mineralization.


Assuntos
Embrião de Galinha/citologia , Embrião de Galinha/metabolismo , Condrócitos/metabolismo , Ácidos Graxos/análise , Fêmur/embriologia , Microvilosidades/metabolismo , Animais , Calcificação Fisiológica , Células Cultivadas , Embrião de Galinha/embriologia , Galinhas , Condrócitos/citologia , Ácidos Graxos/metabolismo , Fêmur/metabolismo , Microvilosidades/química
20.
Inflamm Res ; 63(11): 907-17, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25098205

RESUMO

OBJECTIVE: The effect of in vitro expansion of human adipose-derived stem cells (ASCs) on stem cell properties is controversial. We examined serial subcultivation with expansion on the ability of ASCs to grow and differentiate into osteoblastic lineages. DESIGN: Flow cytometric analysis, growth kinetics, cell population doubling time, light microscopy and confocal analysis, and osteogenesis induction were performed to assess growth and osteogenic potential of subcultivated ASCs at passages 2 (P2), P4 and P6. RESULTS: Flow cytometric analysis revealed that ASCs at P2 express classical mesenchymal stem cell markers including CD44, CD73, and CD105, but not CD14, CD19, CD34, CD45, or HLA-DR. Calcium deposition and alkaline phosphatase activity were the highest at P2 but completely abrogated at P4. Increased passage number impaired cell growth; P2 cultures exhibited exponential growth, while cells at P4 and P6 showed near linear growth with cell population doubling times increased from 3.2 at P2 to 4.8 d at P6. Morphologically, cells in various subcultivation stages showed flattened shape at low density but spindle-like structures at confluency as judged by phalloidin staining. CONCLUSIONS: Osteogenic potential of ASCs is impaired by successive passaging and may not serve as a useful clinical source of osteogenic ASCs past P2.


Assuntos
Tecido Adiposo/citologia , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Adulto , Idoso , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Pessoa de Meia-Idade , Osteogênese
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa