Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Physiol ; 597(7): 1935-1956, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30747446

RESUMO

KEY POINTS: Acute hypoxia induces active expiration in rectus abdominis (RA) muscles in conscious freely moving rats, although its overall contribution is smaller than in internal oblique (IO) muscles. Tonically active and silent RA motoneurons were identified in in vitro preparations of rat spinal cords. Sustained hypoxia (SH) increased the synaptic strength and induced morphological changes in tonically active RA motoneurons. Expiratory RA motoneurons were recorded in the in situ preparation and SH enhanced both the excitability and the synaptic transmission in those firing during the stage 2 expiration. The present study contributes to a better understanding of the mechanisms involved in SH recruitment of RA motoneurons to induce active expiration in rats. ABSTRACT: Rectus abdominis (RA) motoneurons translate the complex respiratory brainstem inputs into effective muscle contractions. Despite their fundamental role in respiration, their functional and morphological properties are not fully understood. In the present study, we investigated for the first time the contribution of RA muscle to active expiration and characterized RA motoneurons regarding their electrical, molecular and morphological profiles in control rats and in rats submitted to sustained hypoxia (SH), which induces chronic recruitment of abdominal muscles. Electromyographic experiments in conscious freely moving control rats and SH rats showed that RA contributes to active expiration induced by acute hypoxia, although its contribution is smaller than in internal oblique muscles. in vitro whole-cell patch clamp recordings from RA motoneurons revealed two populations of cells: tonically active and silent. SH induced hyperexcitability in the tonically active cells by changing their action potential properties, and EPSCs. Three-dimensional morphological reconstructions of these cells showed that SH increased the dendritic complexity, stimulated the appearance of dendrite spines, and increased the somatic area and volume. Physiologically identified RA motoneurons, firing in two distinct phases of expiration, were recorded in the brainstem-spinal cord in situ preparation of rats. SH increased the firing frequency and EPSCs of neurons firing during stage 2 expiration. Taken together, our results show that RA motoneurons reconfigure their biophysical properties, morphology and synaptic strength to produce an appropriate expiratory drive in response to SH in rats.


Assuntos
Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Músculo Esquelético/inervação , Oxigênio/administração & dosagem , Animais , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/fisiologia , Fenômenos Eletrofisiológicos , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Fenômenos Fisiológicos Respiratórios , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiologia
2.
J Neurosci ; 36(44): 11320-11330, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27807172

RESUMO

The control of the excitability in magnocellular neurosecretory cells (MNCs) of the supraoptic nucleus has been attributed mainly to synaptic inputs from circunventricular organs. However, nitric oxide (NO), a gaseous messenger produced in this nucleus during isotonic and short-term hypertonic conditions, is an example of a modulator that can act directly on MNCs to modulate their firing rate. NO inhibits the electrical excitability of MNCs, leading to a decrease in the release of vasopressin and oxytocin. Although the effects of NO on MNCs are well established, the mechanism by which this gas produces its effect is, so far, unknown. Because NO acts independently of synaptic inputs, we hypothesized that ion channels present in MNCs are the targets of NO. To investigate this hypothesis, we used the patch-clamp technique in vitro and in situ to measure currents carried by hyperpolarization-activated and nucleotide-gated cation (HCN) channels and establish their role in determining the electrical excitability of MNCs in rats. Our results show that blockade of HCN channels by ZD7288 decreases MNC firing rate with significant consequences on the release of OT and VP, measured by radioimmunoassay. NO induced a significant reduction in HCN currents by binding to cysteine residues and forming S-nitrosothiol complexes. These findings shed new light on the mechanisms that control the electrical excitability of MNCs via the nitrergic system and strengthen the importance of HCN channels in the control of hydroelectrolyte homeostasis. SIGNIFICANCE STATEMENT: Cells in our organism live in a liquid environment whose composition and osmolality are maintained within tight limits. Magnocellular neurons (MNCs) of the supra optic nucleus can sense osmolality and control the synthesis and secretion of vasopressin (VP) and oxytocin (OT) by the neurohypophysis. OT and VP act on the kidneys controlling the excretion of water and sodium to maintain homeostasis. Here we combined electrophysiology, molecular biology, and radioimmunoassay to show that the electrical activity of MNCs can be controlled by nitric oxide (NO), a gaseous messenger. NO reacts with cysteine residues (S-nitrosylation) on hyperpolarization-activated and nucleotide-gated cation channels decreasing the firing rate of MNCs and the consequent secretion of VP and OT.


Assuntos
Potenciais de Ação/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico/fisiologia , Células Neuroendócrinas/fisiologia , Óxido Nítrico/metabolismo , Núcleo Supraóptico/fisiologia , Animais , Células Cultivadas , Masculino , Ratos , Ratos Wistar
3.
J Neurosci ; 35(13): 5144-55, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25834041

RESUMO

The Na-K-2Cl cotransporter 2 (NKCC2) was thought to be kidney specific. Here we show expression in the brain hypothalamo-neurohypophyseal system (HNS), wherein upregulation follows osmotic stress. The HNS controls osmotic stability through the synthesis and release of the neuropeptide hormone, arginine vasopressin (AVP). AVP travels through the bloodstream to the kidney, where it promotes water conservation. Knockdown of HNS NKCC2 elicited profound effects on fluid balance following ingestion of a high-salt solution-rats produced significantly more urine, concomitant with increases in fluid intake and plasma osmolality. Since NKCC2 is the molecular target of the loop diuretics bumetanide and furosemide, we asked about their effects on HNS function following disturbed water balance. Dehydration-evoked GABA-mediated excitation of AVP neurons was reversed by bumetanide, and furosemide blocked AVP release, both in vivo and in hypothalamic explants. Thus, NKCC2-dependent brain mechanisms that regulate osmotic stability are disrupted by loop diuretics in rats.


Assuntos
Sistema Hipotálamo-Hipofisário/metabolismo , Osmorregulação/fisiologia , Neuro-Hipófise/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Animais , Arginina Vasopressina/sangue , Arginina Vasopressina/efeitos dos fármacos , Bumetanida/farmacologia , Desidratação/fisiopatologia , Furosemida/farmacologia , Expressão Gênica/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/citologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Masculino , Núcleos da Linha Média do Tálamo/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Quiasma Óptico/fisiologia , Neuro-Hipófise/citologia , Neuro-Hipófise/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Membro 1 da Família 12 de Carreador de Soluto/biossíntese , Equilíbrio Hidroeletrolítico/efeitos dos fármacos , Equilíbrio Hidroeletrolítico/fisiologia
4.
Physiology (Bethesda) ; 30(2): 127-38, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25729058

RESUMO

Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are gaseous molecules produced by the brain. Within the hypothalamus, gaseous molecules have been highlighted as autocrine and paracrine factors regulating endocrine function. Therefore, in the present review, we briefly discuss the main findings linking NO, CO, and H2S to the control of body fluid homeostasis at the hypothalamic level, with particular emphasis on the regulation of neurohypophyseal system output.


Assuntos
Monóxido de Carbono/metabolismo , Sulfeto de Hidrogênio/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Equilíbrio Hidroeletrolítico , Desequilíbrio Hidroeletrolítico/metabolismo , Animais , Comunicação Autócrina , Gases , Humanos , Sistema Hipotálamo-Hipofisário/fisiopatologia , Comunicação Parácrina , Desequilíbrio Hidroeletrolítico/fisiopatologia
5.
Biochem Pharmacol ; 217: 115850, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37832795

RESUMO

Although it has been previously demonstrated that oxytocin (OXT) receptor stimulation can control skeletal muscle mass in vivo, the intracellular mechanisms that mediate this effect are still poorly understood. Thus, rat oxidative skeletal muscles were isolated and incubated with OXT or WAY-267,464, a non-peptide selective OXT receptor (OXTR) agonist, in the presence or absence of atosiban (ATB), an OXTR antagonist, and overall proteolysis was evaluated. The results indicated that both OXT and WAY-267,464 suppressed muscle proteolysis, and this effect was blocked by the addition of ATB. Furthermore, the WAY-induced anti-catabolic action on protein metabolism did not involve the coupling between OXTR and Gαi since it was insensitive to pertussis toxin (PTX). The decrease in overall proteolysis induced by WAY was probably due to the inhibition of the autophagic/lysosomal system, as estimated by the decrease in LC3 (an autophagic/lysosomal marker), and was accompanied by an increase in the content of Ca2+-dependent protein kinase (PKC)-phosphorylated substrates, pSer473-Akt, and pSer256-FoxO1. Most of these effects were blocked by the inhibition of inositol triphosphate receptors (IP3R), which mediate Ca2+ release from the sarcoplasmic reticulum to the cytoplasm, and triciribine, an Akt inhibitor. Taken together, these findings indicate that the stimulation of OXTR directly induces skeletal muscle protein-sparing effects through a Gαq/IP3R/Ca2+-dependent pathway and crosstalk with Akt/FoxO1 signaling, which consequently decreases the expression of genes related to atrophy, such as LC3, as well as muscle proteolysis.


Assuntos
Músculo Esquelético , Proteólise , Proteínas Proto-Oncogênicas c-akt , Receptores de Ocitocina , Animais , Ratos , Músculo Esquelético/metabolismo , Ocitocina/farmacologia , Ocitocina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Ocitocina/genética , Transdução de Sinais
6.
Life Sci ; 279: 119665, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34087281

RESUMO

AIMS: Although it is well established that skeletal muscle contains oxytocin (OT) receptors and OT-knockout mice show premature development of sarcopenia, the role of OT in controlling skeletal muscle mass is still unknown. Therefore, the present work aimed to determine OT's effects on skeletal muscle protein metabolism. MAIN METHODS: Total proteolysis, proteolytic system activities and protein synthesis were assessed in isolated soleus muscle from prepubertal female rats. Through in vivo experiments, rats received 3-day OT treatment (3UI.kg-1.day-1, i.p.) or saline, and muscles were harvested for mass-gain assessment. KEY FINDINGS: In vitro OT receptor stimulation reduced total proteolysis, specifically through attenuation of the lysosomal and proteasomal proteolytic systems, and in parallel activated the Akt/FoxO1 signaling and suppressed atrogenes (e.g., MuRF-1 and atrogin-1) expression induced by motor denervation. On the other hand, the protein synthesis was not altered by in vitro treatment with the OT receptor-selective agonist. Although short-term OT treatment did not change the atrogene mRNA levels, the protein synthesis was stimulated, resulting in soleus mass gain, probably through an indirect effect. SIGNIFICANCE: Taken together, these data show for the first time that OT directly inhibits the proteolytic activities of the lysosomal and proteasomal systems in rat oxidative skeletal muscle by suppressing atrogene expression via stimulation of Akt/FoxO signaling. Moreover, the data obtained from in vivo experiments suggest OT's ability to control rat oxidative skeletal muscle mass.


Assuntos
Anabolizantes/farmacologia , Lisossomos/metabolismo , Músculo Esquelético/metabolismo , Ocitocina/farmacologia , Biossíntese de Proteínas , Proteólise , Animais , Feminino , Lisossomos/efeitos dos fármacos , Lisossomos/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Estresse Oxidativo , Ocitócicos/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais
7.
Physiol Behav ; 233: 113355, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33571545

RESUMO

Vigorous exercise can induce gastrointestinal disorders such decreased gastric emptying pace, while low-intensity exercise can accelerate gastric motility. However, the mechanisms of these effects are still unknown. We investigated the possible neurohumoral mechanisms involved in these phenomena. In sedentary (Sed) and acute exercise (Ex) groups of rats, we assessed the activation of c-Fos in NTS and DVMN and the plasma levels of CCK and OXT. Separate groups received pretreatment with the oxytocin antagonist atosiban (AT), the cholecystokinin antagonist devazepide (DVZ), or the TRPV1 receptor inhibitor capsazepine (CAPZ). AT, DVZ and CAPZ treatments prevented (p<0.05) slower gastric emptying induced by acute exercise. The gene expression of OXT decreased (P<0.05) while that of CCK increased (P<0.05) in the gastric fundus and pylorus of the Ex group, while the plasma levels of OXT rose (p<0.05) and of CCK declined (p<5.05). We also observed activation (p<0.05) of c-Fos-sensitive neurons in the NTS and DVMN of exercised rats. In conclusion, acute exercise slowed gastric emptying by the vagal afferent pathway, which involved activation of CCK1/OXT/TRPV1 sensitivity.


Assuntos
Colecistocinina , Esvaziamento Gástrico , Animais , Antagonistas de Hormônios/farmacologia , Ocitocina , Ratos , Nervo Vago
8.
J Renin Angiotensin Aldosterone Syst ; 8(4): 169-75, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18205095

RESUMO

OBJECTIVE: Considering the controversial data regarding the role of the brain renin-angiotensin system (RAS) on the thirst and sodium appetite in ovariectomised rats, we aimed to evaluate the role of the brain angiotensin II (Ang II) AT1-receptor on the nocturnal fluids intake. MATERIALS AND METHODS: Groups of Wistar female rats were ovariectomised and chronically given oestrogen or vehicle to evaluate its influence on effects induced by i.c.v. injection of losartan, Ang I and Ang II. RESULTS: The i.c.v. losartan decreased basal water intake in the ovariectomised group. Ang II but not Ang I-induced nocturnal dipsogenic and natriorexigenic responses in ovariectomised rats. In oestrogen-treated rats, both peptides increased fluids intake. Previously, i.c.v. losartan abolished these effects in all groups. Oestrogen replacement decreased the nocturnal fluids intake, attenuated the losartan and Ang II effects, and highlighted the Ang I response. CONCLUSIONS: The present study has shown for the first time the involvement of AT1-receptor in regulating nocturnal basal water and salt intake in ovariectomised rats. In addition, our data have revealed an unexpected increased brain Ang I-mediated fluid intake in oestrogen-treated ovariectomised compared to ovariectomised rats, which was blocked by previous i.c.v. losartan. Our data have therefore shown that oestrogen influences homeostatic behaviours dependent on brain RAS.


Assuntos
Angiotensinas/farmacologia , Apetite/efeitos dos fármacos , Encéfalo/metabolismo , Ritmo Circadiano/fisiologia , Receptor Tipo 1 de Angiotensina/metabolismo , Sódio/metabolismo , Sede/efeitos dos fármacos , Administração Oral , Angiotensina I/farmacologia , Angiotensina II/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Encéfalo/efeitos dos fármacos , Escuridão , Ingestão de Líquidos/efeitos dos fármacos , Estrogênios/farmacologia , Feminino , Injeções Intraventriculares , Losartan/administração & dosagem , Losartan/farmacologia , Ovariectomia , Ratos , Ratos Wistar
9.
Compr Physiol ; 5(3): 1465-516, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26140725

RESUMO

Since the crucial evolutionary change from an aqueous to a terrestrial environment, all living organisms address the primordial task of equilibrating the ingestion/production of water and electrolytes (primarily sodium) with their excretion. In mammals, the final route for the excretion of these elements is mainly through the kidneys, which can eliminate concentrated or diluted urine according to the requirements. Despite their primary role in homeostasis, the kidneys are not able to recover water and solutes lost through other systems. Therefore, the selective stimulation or inhibition of motivational and locomotor behavior becomes essential to initiate the search and acquisition of water and/or sodium from the environment. Indeed, imbalances affecting the osmolality and volume of body fluids are dramatic challenges to the maintenance of hydromineral homeostasis. In addition to behavioral changes, which are integrated in the central nervous system, most of the systemic responses recruited to restore hydroelectrolytic balance are accomplished by coordinated actions of the cardiovascular, autonomic and endocrine systems, which determine the appropriate renal responses. The activation of sequential and redundant mechanisms (involving local and systemic factors) produces accurate and self-limited effector responses. From a physiological point of view, understanding the mechanisms underlying water and sodium balance is intriguing and of great interest for the biomedical sciences. Therefore, the present review will address the biophysical, evolutionary and historical perspectives concerning the integrative neuroendocrine control of hydromineral balance, focusing on the major neural and endocrine systems implicated in the control of water and sodium balance.


Assuntos
Sistema Hipotálamo-Hipofisário/metabolismo , Equilíbrio Hidroeletrolítico , Adaptação Fisiológica , Animais , Humanos , Sistema Hipotálamo-Hipofisário/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa