Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Anal Chem ; 96(11): 4446-4454, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451777

RESUMO

Microfluidic isotachophoresis (ITP) is a powerful technique that can significantly increase the reaction rate of homogeneous chemical reactions by cofocusing reactants in a narrow sample zone. Correspondingly, ITP has been utilized to reduce the reaction time in various bioanalytical assays. However, in conventional ITP, it is hardly possible to control the reaction rate in real time, i.e., speeding up or slowing down a reaction on demand. Here, we experimentally demonstrate a new mode of ITP that allows the spatial overlap of two ITP zones to be precisely controlled over time, which is a crucial first step toward controlling reaction rates. Two nonreactive samples are initially focused and separated by a spacer using a DC electric field. By superimposing an oscillating field component with sufficiently high amplitude on the DC field, the spatial overlap of their concentration profiles is temporarily increased due to electromigration dispersion. The time-average of this overlap can be precisely controlled by varying the frequency and amplitude of the oscillation. We suggest that this scheme can be transferred to chemical reactions between ionic species with sufficiently different electrophoretic mobilities. Tuning the parameters of the oscillatory electric field should allow direct control of the corresponding reaction rate.

2.
Langmuir ; 37(29): 8746-8752, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34269591

RESUMO

Porous materials are ubiquitous and essential for many processes in nature as well as in industry, and the need to produce them from renewable materials will definitely increase. A prominent example for such a fully recyclable and biogenic porous material is paper, a material that contains macropores formed in between the fibers as well as a large distribution of much finer pores on and within the fiber walls. While the determination of pore sizes is of central importance for the characterization of such materials, their determination is usually only possible with complex methodologies. The determination of pore sizes in the context of water has remained largely unsolved to date, in particular, if water-swellable materials are considered. Here, we introduce a completely new way of determining pore sizes of materials even under swelling conditions. Using a centrifugal device and studying the imbibition of water into paper at various centrifugal forces that oppose the capillary forces, we can access the mean pore size of different paper materials in an experimentally simple fashion. In addition, we can show that the pore size values obtained with our "centrifugal porosimetry" are consistent with the values obtained using other methods, usually much more involved methods. For this purpose, we measure well-characterized translucent macroporous materials using water, ranging from simple glass capillaries to standard filters and nitrocellulose membranes.

3.
Biomacromolecules ; 22(7): 2864-2873, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34126012

RESUMO

We present an alternative to commonly used, but from an environmental point of view, problematic wet strength agents, which are usually added to paper to prevent a loss of mechanical stability and finally disintegrate when they get into contact with water. To this end, diazoester-containing copolymers are generated, which are coated onto paper and by heating to 110-160 °C for short periods of time become activated and form carbene intermediates, which undergo a CH-insertion cross-linking reaction. The process leads to a simultaneous cross-linking of the polymer and its attachment to the cellulose substrate. The immobilization process of copolymers consisting of a hydrophilic matrix based on N,N-dimethylacrylamide and a diazoester-based comonomer to a cellulose model surface and to laboratory-engineered, fibrous paper substrates is investigated as a function of time, temperature, and cross-linker composition. The distribution of the polymer in the fiber network is studied using confocal fluorescence microscopy. Finally, the tensile properties of modified wet and dry eucalyptus sulfate papers are measured to demonstrate the strong effect of the thermally cross-linked copolymers on the wet strength of paper substrates. Initial experiments show that the tensile indices of the modified and wetted paper samples are up to 50 times higher compared to the values measured for unmodified samples. When dry and wet papers coated with the above-described wetting agents are compared, relative wet strengths of over 30% are observed.


Assuntos
Celulose , Água , Interações Hidrofóbicas e Hidrofílicas , Resistência à Tração
4.
Biomacromolecules ; 22(7): 2954-2962, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34101458

RESUMO

Herein, we report a novel two-step method for the covalent, site-directed, and efficient immobilization of proteins on lab-made paper sheets. First, paper fibers were modified with a peptidic anchor comprising enzyme recognition motifs. Four different conjugation strategies for peptide immobilization were evaluated with respect to reproducibility and fiber loading efficiency. After manufacturing of the peptide-preconditioned paper, oriented conjugation of the model protein tGFP containing a C-terminal recognition sequence for either sortase A or microbial transglutaminase was assessed semiquantitatively by fluorescence measurement and inspected by confocal laser scanning microscopy (CLSM). The two enzymes utilized for protein conjugation used the same oligoglycine peptide anchor, and both proved to be suitable for controlled oriented linkage of substrate proteins at physiological conditions.


Assuntos
Proteínas de Bactérias , Peptídeos , Reprodutibilidade dos Testes , Transglutaminases
5.
Bioorg Med Chem Lett ; 53: 128418, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34715306

RESUMO

NIMA-related protein kinase Nek1 is crucially involved in cell cycle regulation, DNA repair and microtubule regulation and dysfunctions of Nek1 play key roles in amyotrophic lateral sclerosis (ALS), polycystic kidney disease (PKD) and several types of radiotherapy resistant cancer. Targeting of Nek1 could reveal a new class of radiosensitizing substances and provide useful tools to better understand the aforementioned diseases. In this report we explore substituted aminopyrazoles and 7-azaindoles as potent inhibitors for the Nek1 kinase domain and examine their effect on kidney organogenesis in Danio rerio.


Assuntos
Desenho de Fármacos , Indóis/farmacologia , Rim/efeitos dos fármacos , Quinase 1 Relacionada a NIMA/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Animais , Relação Dose-Resposta a Droga , Indóis/síntese química , Indóis/química , Rim/crescimento & desenvolvimento , Rim/metabolismo , Estrutura Molecular , Quinase 1 Relacionada a NIMA/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade , Peixe-Zebra
6.
J Pept Sci ; 27(4): e3298, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33458922

RESUMO

The development of novel biotherapeutics based on peptides and proteins is often limited to extracellular targets, because these molecules are not able to reach the cytosol. In recent years, several approaches were proposed to overcome this limitation. A plethora of cell-penetrating peptides (CPPs) was developed for cytoplasmic delivery of cell-impermeable cargo molecules. For many CPPs, multimerization or multicopy arrangement on a scaffold resulted in improved delivery but also higher cytotoxicity. Recently, we introduced dextran as multivalent, hydrophilic polysaccharide scaffold for multimerization of cell-targeting cargoes. Here, we investigated covalent conjugation of a CPP to dextran in multiple copies and assessed the ability of resulted molecular hybrid to enter the cytoplasm of mammalian cells without largely compromising cell viability. As a CPP, we used a novel, low-toxic cationic amphiphilic peptide L17E derived from M-lycotoxin. Here, we show that cell-penetrating properties of L17E are retained upon multivalent covalent linkage to dextran. Dextran-L17E efficiently mediated cytoplasmic translocation of an attached functional peptide and a peptide nucleic acid (PNA). Moreover, a synthetic route was established to mask the lysine side chains of L17E with a photolabile protecting group thus opening avenues for light-triggered activation of cellular uptake.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Citosol/metabolismo , Dextranos/metabolismo , Corantes Fluorescentes/metabolismo , Peptídeos Penetradores de Células/síntese química , Peptídeos Penetradores de Células/química , Citosol/química , Dextranos/química , Corantes Fluorescentes/química , Células HeLa , Humanos , Estrutura Molecular , Imagem Óptica , Células Tumorais Cultivadas
7.
Sensors (Basel) ; 21(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34640668

RESUMO

Microfluidic paper combines pump-free water transport at low cost with a high degree of sustainability, as well as good availability of the paper-forming cellulosic material, thus making it an attractive candidate for point-of-care (POC) analytics and diagnostics. Although a number of interesting demonstrators for such paper devices have been reported to date, a number of challenges still exist, which limit a successful transfer into marketable applications. A strong limitation in this respect is the (unspecific) adsorption of protein analytes to the paper fibers during the lateral flow assay. This interaction may significantly reduce the amount of analyte that reaches the detection zone of the microfluidic paper-based analytical device (µPAD), thereby reducing its overall sensitivity. Here, we introduce a novel approach on reducing the nonspecific adsorption of proteins to lab-made paper sheets for the use in µPADs. To this, cotton linter fibers in lab-formed additive-free paper sheets are modified with a surrounding thin hydrogel layer generated from photo-crosslinked, benzophenone functionalized copolymers based on poly-(oligo-ethylene glycol methacrylate) (POEGMA) and poly-dimethyl acrylamide (PDMAA). This, as we show in tests similar to lateral flow assays, significantly reduces unspecific binding of model proteins. Furthermore, by evaporating the transport fluid during the microfluidic run at the end of the paper strip through local heating, model proteins can almost quantitatively be accumulated in that zone. The possibility of complete, almost quantitative protein transport in a µPAD opens up new opportunities to significantly improve the signal-to-noise (S/N) ratio of paper-based lateral flow assays.


Assuntos
Microfluídica , Polímeros , Adsorção , Hidrogéis , Papel
8.
J Cell Sci ; 131(6)2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29487177

RESUMO

Many actin filaments in animal cells are co-polymers of actin and tropomyosin. In many cases, non-muscle myosin II associates with these co-polymers to establish a contractile network. However, the temporal relationship of these three proteins in the de novo assembly of actin filaments is not known. Intravital subcellular microscopy of secretory granule exocytosis allows the visualisation and quantification of the formation of an actin scaffold in real time, with the added advantage that it occurs in a living mammal under physiological conditions. We used this model system to investigate the de novo assembly of actin, tropomyosin Tpm3.1 (a short isoform of TPM3) and myosin IIA (the form of non-muscle myosin II with its heavy chain encoded by Myh9) on secretory granules in mouse salivary glands. Blocking actin polymerization with cytochalasin D revealed that Tpm3.1 assembly is dependent on actin assembly. We used time-lapse imaging to determine the timing of the appearance of the actin filament reporter LifeAct-RFP and of Tpm3.1-mNeonGreen on secretory granules in LifeAct-RFP transgenic, Tpm3.1-mNeonGreen and myosin IIA-GFP (GFP-tagged MYH9) knock-in mice. Our findings are consistent with the addition of tropomyosin to actin filaments shortly after the initiation of actin filament nucleation, followed by myosin IIA recruitment.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Tropomiosina/metabolismo , Citoesqueleto de Actina/genética , Actinas/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cadeias Pesadas de Miosina , Miosina não Muscular Tipo IIA/genética , Ligação Proteica , Vesículas Secretórias/genética , Vesículas Secretórias/metabolismo , Tropomiosina/genética
9.
Chemistry ; 25(7): 1746-1751, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30395364

RESUMO

Efficient and reliable methods for the generation of bioactive papers are of growing interest in relation to point-of-care testing devices that do not require extensive analytical equipment. Herein, we report the immobilization of functional proteins on paper fibers using a modular chemoenzymatic approach. The synthetic strategy relies on a combination of highly efficient spatially controllable photo-triggered cycloaddition followed by site-specific sortase A-catalyzed transamidation. This site-directed and regiospecific method has allowed unidirectional and covalent immobilization of several proteins displaying different functional properties, with ramifications for application in paper-based diagnostics.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Luz , Papel , Amidas/química , Aminoaciltransferases/química , Proteínas de Bactérias/química , Biocatálise , Reação de Cicloadição , Cisteína Endopeptidases/química , Corantes Fluorescentes/química , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Microscopia Confocal , Peptídeos/análise , Peptídeos/química , Sistemas Automatizados de Assistência Junto ao Leito , Estereoisomerismo
10.
Immunity ; 32(6): 778-89, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20620943

RESUMO

Memory B cells express high-affinity, immunoglobulin GB cell receptors (IgG BCRs) that enhance B cell responses, giving rise to the rapid production of high-affinity, IgG antibodies. Despite the central role of IgG BCRs in memory responses, the mechanisms by which the IgG BCRs function to enhance B cell responses are not fully understood. Using high-resolution live-cell imaging, we showed that IgG1 BCRs dramatically enhanced the earliest BCR-intrinsic events that followed within seconds of B cells' encounter with membrane bound antigen, including BCR oligomerization and BCR microcluster growth, leading to Syk kinase recruitment and calcium responses. The enhancement of these early events was dependent on a membrane proximal region of the IgG1 cytoplasmic tail not previously appreciated to play a role in IgG1 BCR signaling. Thus, intrinsic properties of the IgG1 BCR enhance early antigen-driven events that ultimately translate into heightened signaling.


Assuntos
Switching de Imunoglobulina/imunologia , Imunoglobulina G/imunologia , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Transdução de Sinais/imunologia , Animais , Cálcio/imunologia , Cálcio/metabolismo , Membrana Celular/imunologia , Membrana Celular/metabolismo , Imunoglobulina G/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Tirosina Quinases/imunologia , Proteínas Tirosina Quinases/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Quinase Syk , Transfecção
11.
Immunity ; 31(1): 99-109, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19592272

RESUMO

Cytotoxic lymphocytes kill target cells by releasing the content of secretory lysosomes at the immune synapse. To understand the dynamics and control of cytotoxic immune synapses, we imaged human primary, live natural killer cells on lipid bilayers carrying ligands of activation receptors. Formation of an organized synapse was dependent on the presence of the beta2 integrin ligand ICAM-1. Ligands of coactivation receptors 2B4 and NKG2D segregated into central and peripheral regions, respectively. Lysosomal protein LAMP-1 that was exocytosed during degranulation accumulated in a large and spatially stable cluster, which overlapped with a site of membrane internalization. Lysosomal compartments reached the plasma membrane at focal points adjacent to centrally accumulated LAMP-1. Imaging of fixed cells revealed that perforin-containing granules were juxtaposed to an intracellular compartment where exocytosed LAMP-1 was retrieved. Thus, cytotoxic immune synapses include a central region of bidirectional vesicular traffic, which is controlled by integrin signaling.


Assuntos
Citotoxicidade Imunológica , Sinapses Imunológicas/imunologia , Células Matadoras Naturais/imunologia , Vesículas Transportadoras/imunologia , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antígenos CD18/imunologia , Antígenos CD18/metabolismo , Degranulação Celular/imunologia , Humanos , Sinapses Imunológicas/metabolismo , Molécula 1 de Adesão Intercelular/imunologia , Molécula 1 de Adesão Intercelular/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Antígeno-1 Associado à Função Linfocitária/imunologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Proteínas de Membrana Lisossomal/imunologia , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/imunologia , Lisossomos/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Perforina/imunologia , Perforina/metabolismo , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária
12.
Langmuir ; 33(1): 332-339, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27982597

RESUMO

In paper-based devices, capillary fluid flow is based on length-scale selective functional control within a hierarchical porous system. The fluid flow can be tuned by altering the paper preparation process, which controls parameters such as the paper grammage. Interestingly, the fiber morphology and nanoporosity are often neglected. In this work, porous voids are incorporated into paper by the combination of dense or mesoporous ceramic silica coatings with hierarchically porous cotton linter paper. Varying the silica coating leads to significant changes in the fluid flow characteristics, up to the complete water exclusion without any further fiber surface hydrophobization, providing new approaches to control fluid flow. Additionally, functionalization with redox-responsive polymers leads to reversible, dynamic gating of fluid flow in these hybrid paper materials, demonstrating the potential of length scale specific, dynamic, and external transport control.

13.
Biomacromolecules ; 16(7): 2179-87, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26101966

RESUMO

The properties of paper sheets can be tuned by adjusting the surface or bulk chemistry using functional polymers that are applied during (online) or after (offline) papermaking processes. In particular, polymers are widely used to enhance the mechanical strength of the wet state of paper sheets. However, the mechanical strength depends not only on the chemical nature of the polymeric additives but also on the distribution of the polymer on and in the lignocellulosic paper. Here, we analyze the photochemical attachment and distribution of hydrophilic polydimethylacrylamide-co-methacrylate-benzophenone P(DMAA-co-MABP) copolymers with defined amounts of photoreactive benzophenone moieties in model paper sheets. Raman microscopy was used for the unambiguous identification of P(DMAA-co-MABP) and cellulose specific bands and thus the copolymer distribution within the cellulose matrix. Two-dimensional Raman spectral maps at the intersections of overlapping cellulose fibers document that the macromolecules only partially surround the cellulose fibers, favor to attach to the fiber surface, and connect the cellulose fibers at crossings. Moreover, the copolymer appears to accumulate preferentially in holes, vacancies, and dips on the cellulose fiber surface. Correlative brightfield, Raman, and confocal laser scanning microscopy finally reveal a reticular three-dimensional distribution of the polymer and show that the polymer is predominately deposited in regions of high capillarity (i.e., in proximity to fine cellulose fibrils). These data provide deeper insights into the effects of paper functionalization with a copolymer and aid in understanding how these agents ultimately influence the local and overall properties of paper.


Assuntos
Celulose/ultraestrutura , Citometria de Varredura a Laser/métodos , Análise Espectral Raman/métodos , Benzofenonas/química , Metacrilatos/química , Papel , Processos Fotoquímicos , Fármacos Fotossensibilizantes/química , Reciclagem
14.
Biomimetics (Basel) ; 8(1)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36810374

RESUMO

Biomimetic actuators are typically constructed as functional bi- or multilayers, where actuating and resistance layers together dictate bending responses upon triggering by environmental stimuli. Inspired by motile plant structures, like the stems of the false rose of Jericho (Selaginella lepidophylla), we introduce polymer-modified paper sheets that can act as soft robotic single-layer actuators capable of hygro-responsive bending reactions. A tailored gradient modification of the paper sheet along its thickness entails increased dry and wet tensile strength and allows at the same time for hygro-responsiveness. For the fabrication of such single-layer paper devices, the adsorption behavior of a cross-linkable polymer to cellulose fiber networks was first evaluated. By using different concentrations and drying procedures fine-tuned polymer gradients throughout the thickness can be achieved. Due to the covalent cross-linking of polymer with fibers, these paper samples possess significantly increased dry and wet tensile strength properties. We furthermore investigated these gradient papers with respect to a mechanical deflection during humidity cycling. The highest humidity sensitivity is achieved using eucalyptus paper with a grammage of 150 g m-2 modified with the polymer dissolved in IPA (~13 wt%) possessing a polymer gradient. Our study presents a straightforward approach for the design of novel hygroscopic, paper-based single-layer actuators, which have a high potential for diverse soft robotic and sensor applications.

15.
Traffic ; 11(4): 548-59, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20136778

RESUMO

Using the bright, photostable, charged and hydrophilic fluorescent dye Alexa 488 hydrazide to label the fluid phase around intact guard cells, we show that these cells incorporate the fluid phase during constitutive endocytosis against the high turgor. Mobile, cortical and diffraction-limited signals were not observed if a concentration <4 mm was used to stain the fluid phase, suggesting that endocytic vesicles had to be loaded with a minimal number of dye molecules to produce a signal above the background. To quantify the number of molecules taken up by the vesicles, we prepared liposomes, filled with various concentrations of Alexa 488 hydrazide, fractionated them according to their size and imaged them under identical conditions as the guard cells. From the size/intensity relations of these liposomes, we extrapolated the molecular brightness of Alexa 488 hydrazide. Using this calibration, the mean fluorescent intensity of single endocytic vesicles translates into a mean number of 573 Alexa 488 molecules. If a vesicle needs to take up 573 molecules from a 4 mm solution, it requires a diameter of at least 87 nm. This number provides the first in vivo estimate for the size of endocytic vesicles in intact, turgid plant cells.


Assuntos
Endocitose , Corantes Fluorescentes/análise , Hidrazinas/análise , Vesículas Transportadoras/fisiologia , Células Cultivadas , Lipossomos/administração & dosagem , Microscopia de Fluorescência/métodos , Coloração e Rotulagem/métodos , Vicia faba/fisiologia
16.
J Immunol ; 184(4): 1977-89, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20083655

RESUMO

The FcgammaRIIB is a potent inhibitory coreceptor that blocks BCR signaling in response to immune complexes and, as such, plays a decisive role in regulating Ab responses. The recent application of high-resolution live cell imaging to B cell studies is providing new molecular details of the earliest events in the initiation BCR signaling that follow within seconds of Ag binding. In this study, we report that when colligated to the BCR through immune complexes, the FcgammaRIIB colocalizes with the BCR in microscopic clusters and blocks the earliest events that initiate BCR signaling, including the oligomerization of the BCR within these clusters, the active recruitment of BCRs to these clusters, and the resulting spreading and contraction response. Fluorescence resonance energy transfer analyses indicate that blocking these early events may not require molecular proximity of the cytoplasmic domains of the BCR and FcgammaRIIB, but relies on the rapid and sustained association of FcgammaRIIB with raft lipids in the membrane. These results may provide novel early targets for therapies aimed at regulating the FcgammaRIIB to control Ab responses in autoimmune disease.


Assuntos
Complexo Antígeno-Anticorpo/fisiologia , Antígenos/fisiologia , Receptores de Antígenos de Linfócitos B/antagonistas & inibidores , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de IgG/fisiologia , Sequência de Aminoácidos , Animais , Complexo Antígeno-Anticorpo/metabolismo , Subpopulações de Linfócitos B/enzimologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/imunologia , Células Cultivadas , Humanos , Inositol Polifosfato 5-Fosfatases , Ligantes , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/fisiologia , Fosforilação/imunologia , Transporte Proteico/imunologia , Agregação de Receptores/imunologia , Receptores de Antígenos de Linfócitos B/fisiologia , Receptores de IgG/metabolismo , Transdução de Sinais/imunologia , Quinases da Família src/metabolismo , Quinases da Família src/fisiologia
17.
J Med Chem ; 65(2): 1265-1282, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35081715

RESUMO

NIMA-related kinase 1 (Nek1) has lately garnered attention for its widespread function in ciliogenesis, apoptosis, and the DNA-damage response. Despite its involvement in various diseases and its potential as a cancer drug target, no directed medicinal chemistry efforts toward inhibitors against this dark kinase are published. Here, we report the structure-guided design of a potent small-molecule Nek1 inhibitor, starting from a scaffold identified by kinase cross-screening analysis. Seven lead compounds were identified in silico and evaluated for their inhibitory activity. The top compound, 10f, was further profiled for efficacy, toxicity, and bioavailability in a zebrafish polycystic kidney disease model. Administration of 10f caused the expansion of fluorescence-labeled proximal convoluted tubules, supporting our hypothesis that Nek1-inhibition causes cystic kidneys in zebrafish embryos. Compound 10f displayed insignificant inhibition in 48 of 50 kinases in a selectivity test panel. The findings provide a powerful tool to further elucidate the function and pharmacology of this neglected kinase.


Assuntos
Desenho de Fármacos , Embrião não Mamífero/efeitos dos fármacos , Quinase 1 Relacionada a NIMA/antagonistas & inibidores , Doenças Renais Policísticas/tratamento farmacológico , Pronefro/efeitos dos fármacos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Animais , Embrião não Mamífero/enzimologia , Doenças Renais Policísticas/enzimologia , Doenças Renais Policísticas/patologia , Pronefro/embriologia , Pronefro/enzimologia , Peixe-Zebra
18.
Front Immunol ; 13: 817281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603191

RESUMO

Low-dose radiotherapy (LD-RT) is a local treatment option for patients with chronic degenerative and inflammatory diseases, in particular musculoskeletal diseases. Despite reported analgesic and anti-inflammatory effects, cellular and molecular mechanisms related to osteoimmunological effects are still elusive. Here we test the hypothesis that X-irradiation inhibits the differentiation of precursor osteoclasts into mature osteoclasts (mOC) and their bone resorbing activity. Circulating monocytes from healthy donors were isolated and irradiated after attachment with single or fractionated X-ray doses, comparable to an LD-RT treatment scheme. Then monocytes underwent ex vivo differentiation into OC during cultivation up to 21 days, under conditions mimicking the physiological microenvironment of OC on bone. After irradiation, apoptotic frequencies were low, but the total number of OC precursors and mOC decreased up to the end of the cultivation period. On top, we observed an impairment of terminal differentiation, i.e. a smaller fraction of mOC, reduced resorbing activity on bone, and release of collagen fragments. We further analyzed the effect of X-irradiation on multinucleation, resulting from the fusion of precursor OC, which occurs late during OC differentiation. At 21 days after exposure, the observation of smaller cellular areas and a reduced number of nuclei per mOC suggest an impaired fusion of OC precursors to form mOC. Before, at 14 days, the nuclear translocation of Nuclear Factor Of Activated T Cells 1 (NFATc1), a master regulator of osteoclast differentiation and fusion, was decreased. In first results, obtained in the frame of a longitudinal LD-RT study, we previously reported a pain-relieving effect in patients. However, in a subgroup of patients suffering from Calcaneodynia or Achillodynia, we did not observe a consistent decrease of established blood markers for resorption and formation of bone, or modified T cell subtypes involved in regulating these processes. To assess the relevance of changes in bone metabolism for other diseases treated with LD-RT will be subject of further studies. Taken together, we observed that in vitro X-irradiation of monocytes results in an inhibition of the differentiation into bone-resorbing OC and a concomitant reduction of resorbing activity. The detected reduced NFATc1 signaling could be one underlying mechanism.


Assuntos
Reabsorção Óssea , Osteoclastos , Reabsorção Óssea/metabolismo , Citocinas/metabolismo , Humanos , Osteoclastos/metabolismo , Raios X
19.
Nucleus ; 13(1): 1-34, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35156529

RESUMO

Heterochromatin is the highly compacted form of chromatin with various condensation levels hallmarked by high DNA methylation. MeCP2 is mostly known as a DNA methylation reader but has also been reported as a heterochromatin organizer. Here, we combine liquid-liquid phase separation (LLPS) analysis and single-molecule tracking with quantification of local MeCP2 concentrations in vitro and in vivo to explore the mechanism of MeCP2-driven heterochromatin organization and dynamics. We show that MeCP2 alone forms liquid-like spherical droplets via multivalent electrostatic interactions and with isotropic mobility. Crowded environments and DNA promote MeCP2 LLPS and slow down MeCP2 mobility. DNA methylation, however, restricts the growth of heterochromatin compartments correlating with immobilization of MeCP2. Furthermore, MeCP2 self-interaction is required for LLPS and is disrupted by Rett syndrome mutations. In summary, we are able to model the heterochromatin compartmentalization as well as MeCP2 concentration and heterogeneous motion in the minimal in vitro system.


Assuntos
Heterocromatina , Síndrome de Rett , Cromatina , DNA , Metilação de DNA , Humanos , Síndrome de Rett/genética
20.
Sci Rep ; 11(1): 7880, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846482

RESUMO

Since the pandemic outbreak of Covid-19 in December 2019, several lateral flow assay (LFA) devices were developed to enable the constant monitoring of regional and global infection processes. Additionally, innumerable lateral flow test devices are frequently used for determination of different clinical parameters, food safety, and environmental factors. Since common LFAs rely on non-biodegradable nitrocellulose membranes, we focused on their replacement by cellulose-composed, biodegradable papers. We report the development of cellulose paper-based lateral flow immunoassays using a carbohydrate-binding module-fused to detection antibodies. Studies regarding the protein binding capacity and potential protein wash-off effects on cellulose paper demonstrated a 2.7-fold protein binding capacity of CBM-fused antibody fragments compared to the sole antibody fragment. Furthermore, this strategy improved the spatial retention of CBM-fused detection antibodies to the test area, which resulted in an enhanced sensitivity and improved overall LFA-performance compared to the naked detection antibody. CBM-assisted antibodies were validated by implementation into two model lateral flow test devices (pregnancy detection and the detection of SARS-CoV-2 specific antibodies). The CBM-assisted pregnancy LFA demonstrated sensitive detection of human gonadotropin (hCG) in synthetic urine and the CBM-assisted Covid-19 antibody LFA was able to detect SARS-CoV-2 specific antibodies present in serum. Our findings pave the way to the more frequent use of cellulose-based papers instead of nitrocellulose in LFA devices and thus potentially improve the sustainability in the field of POC diagnostics.


Assuntos
Anticorpos Antivirais/análise , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Carboidratos/química , Colódio/química , Imunoensaio/métodos , Materiais Biocompatíveis , Gonadotropina Coriônica/química , Clostridium thermocellum/imunologia , Humanos , Fragmentos de Imunoglobulinas/química , Imunoglobulina G/química , Sistemas Automatizados de Assistência Junto ao Leito , Ligação Proteica , SARS-CoV-2/imunologia , Urinálise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa