Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 7(5): 1291-1301, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38751646

RESUMO

Clonal cell lines harboring loss-of-function mutations in genes of interest are crucial for studying the cellular functions of the encoded proteins. Recent advances in genome engineering have converged on the CRISPR/Cas9 technology to quickly and reliably generate frameshift mutations in the target genes across various cell lines and species. Although high on-target cleavage efficiencies can be obtained reproducibly, screening and identifying clones with loss-of-function alleles remains a major bottleneck. Here, we describe a single sgRNA strategy to generate CRISPR/Cas9-mediated frameshift mutations in target genes of mammalian cell lines that can be easily and cost-effectively identified. Given the proliferation of workhorse cell lines such as N2a cells and the resulting clonal expansion of the cell type, our protocol can facilitate the isolation of knockout clonal cell lines and their genetic validation within a period of down to 6-8 weeks.

2.
Acta Physiol (Oxf) ; 240(4): e14126, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38517248

RESUMO

AIM: Although of potential biomedical relevance, dipeptide metabolism has hardly been studied. We found the dipeptidase carnosinase-2 (CN2) to be abundant in human proximal tubules, which regulate water and solute homeostasis. We therefore hypothesized, that CN2 has a key metabolic role, impacting proximal tubular transport function. METHODS: A knockout of the CN2 gene (CNDP2-KO) was generated in human proximal tubule cells and characterized by metabolomics, RNA-seq analysis, paracellular permeability analysis and ion transport. RESULTS: CNDP2-KO in human proximal tubule cells resulted in the accumulation of cellular dipeptides, reduction of amino acids and imbalance of related metabolic pathways, and of energy supply. RNA-seq analyses indicated altered protein metabolism and ion transport. Detailed functional studies demonstrated lower CNDP2-KO cell viability and proliferation, and altered ion and macromolecule transport via trans- and paracellular pathways. Regulatory and transport protein abundance was disturbed, either as a consequence of the metabolic imbalance or the resulting functional disequilibrium. CONCLUSION: CN2 function has a major impact on intracellular amino acid and dipeptide metabolism and is essential for key metabolic and regulatory functions of proximal tubular cells. These findings deserve in vivo analysis of the relevance of CN2 for nephron function and regulation of body homeostasis.


Assuntos
Dipeptidases , Humanos , Dipeptidases/genética , Dipeptidases/metabolismo , Dipeptídeos/metabolismo , Túbulos Renais Proximais/metabolismo , Homeostase , Aminoácidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa