Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Microbiol ; 111(4): 918-937, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30556355

RESUMO

In bacteria, disulfide bonds confer stability on many proteins exported to the cell envelope or beyond, including bacterial virulence factors. Thus, proteins involved in disulfide bond formation represent good targets for the development of inhibitors that can act as antibiotics or anti-virulence agents, resulting in the simultaneous inactivation of several types of virulence factors. Here, we present evidence that the disulfide bond forming enzymes, DsbB and VKOR, are required for Pseudomonas aeruginosa pathogenicity and Mycobacterium tuberculosis survival respectively. We also report the results of a HTS of 216,767 compounds tested against P. aeruginosa DsbB1 and M. tuberculosis VKOR using Escherichia coli cells. Since both P. aeruginosa DsbB1 and M. tuberculosis VKOR complement an E. coli dsbB knockout, we screened simultaneously for inhibitors of each complemented E. coli strain expressing a disulfide-bond sensitive ß-galactosidase reported previously. The properties of several inhibitors obtained from these screens suggest they are a starting point for chemical modifications with potential for future antibacterial development.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Dissulfetos/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Mycobacterium tuberculosis/enzimologia , Pseudomonas aeruginosa/enzimologia , Animais , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Ensaios de Triagem em Larga Escala , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/patogenicidade , Pseudomonas aeruginosa/patogenicidade , Bibliotecas de Moléculas Pequenas/farmacologia , Virulência , Fatores de Virulência/metabolismo
2.
J Biol Chem ; 292(16): 6529-6541, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28232484

RESUMO

Disulfide bonds contribute to protein stability, activity, and folding in a variety of proteins, including many involved in bacterial virulence such as toxins, adhesins, flagella, and pili, among others. Therefore, inhibitors of disulfide bond formation enzymes could have profound effects on pathogen virulence. In the Escherichia coli disulfide bond formation pathway, the periplasmic protein DsbA introduces disulfide bonds into substrates, and then the cytoplasmic membrane protein DsbB reoxidizes DsbA's cysteines regenerating its activity. Thus, DsbB generates a protein disulfide bond de novo by transferring electrons to the quinone pool. We previously identified an effective pyridazinone-related inhibitor of DsbB enzymes from several Gram-negative bacteria. To map the protein residues that are important for the interaction with this inhibitor, we randomly mutagenized by error-prone PCR the E. coli dsbB gene and selected dsbB mutants that confer resistance to this drug using two approaches. We characterized in vivo and in vitro some of these mutants that map to two areas in the structure of DsbB, one located between the two first transmembrane segments where the quinone ring binds and the other located in the second periplasmic loop of DsbB, which interacts with DsbA. In addition, we show that a mutant version of a protein involved in lipopolysaccharide assembly, lptD4213, is synthetically lethal with the deletion of dsbB as well as with DsbB inhibitors. This finding suggests that drugs decreasing LptD assembly may be synthetically lethal with inhibitors of the Dsb pathway, potentiating the antibiotic effects.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Membrana/química , Mutação , Antibacterianos/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Dissulfetos/química , Escherichia coli/patogenicidade , Proteínas de Escherichia coli/genética , Biblioteca Gênica , Cinética , Lipopolissacarídeos/química , Proteínas de Membrana/genética , Mutagênese , Reação em Cadeia da Polimerase , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/genética , Piridazinas/química , Quinonas/química , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade , Temperatura , Virulência
3.
Mol Microbiol ; 103(3): 413-422, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27785850

RESUMO

Disulfide bonds are found in many proteins associated with the cell wall of Escherichia coli, and for some of these proteins the disulfide bond is critical to their stability and function. One protein found to contain a disulfide bond is the essential cell division protein FtsN, but the importance of this bond to the protein's structural integrity is unclear. While it evidently plays a role in the proper folding of the SPOR domain of FtsN, this domain is non-essential, suggesting that the disulfide bond might also be dispensable. However, we find that FtsN mutants lacking cysteines give rise to filamentous growth. Furthermore, FtsN protein levels in strains expressing these mutants were significantly lower than in a strain expressing the wild-type allele, as were FtsN levels in strains incapable of making disulfide bonds (dsb- ) exposed to anaerobic conditions. These results strongly suggest that FtsN lacking a disulfide bond is unstable, thereby making this disulfide critical for function. We have previously found that dsb- strains fail to grow anaerobically, and the results presented here suggest that this growth defect may be due in part to misfolded FtsN. Thus, proper cell division in E. coli is dependent upon disulfide bond formation.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Divisão Celular/fisiologia , Parede Celular/metabolismo , Dissulfetos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Ligação Proteica , Domínios Proteicos , Relação Estrutura-Atividade
4.
J Bacteriol ; 199(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28559299

RESUMO

Disulfide bonds are critical to the stability and function of many bacterial proteins. In the periplasm of Escherichia coli, intramolecular disulfide bond formation is catalyzed by the two-component disulfide bond forming (DSB) system. Inactivation of the DSB pathway has been shown to lead to a number of pleotropic effects, although cells remain viable under standard laboratory conditions. However, we show here that dsb strains of E. coli reversibly filament under aerobic conditions and fail to grow anaerobically unless a strong oxidant is provided in the growth medium. These findings demonstrate that the background disulfide bond formation necessary to maintain the viability of dsb strains is oxygen dependent. LptD, a key component of the lipopolysaccharide transport system, fails to fold properly in dsb strains exposed to anaerobic conditions, suggesting that these mutants may have defects in outer membrane assembly. We also show that anaerobic growth of dsb mutants can be restored by suppressor mutations in the disulfide bond isomerization system. Overall, our results underscore the importance of proper disulfide bond formation to pathways critical to E. coli viability under conditions where oxygen is limited.IMPORTANCE While the disulfide bond formation (DSB) system of E. coli has been studied for decades and has been shown to play an important role in the proper folding of many proteins, including some associated with virulence, it was considered dispensable for growth under most laboratory conditions. This work represents the first attempt to study the effects of the DSB system under strictly anaerobic conditions, simulating the environment encountered by pathogenic E. coli strains in the human intestinal tract. By demonstrating that the DSB system is essential for growth under such conditions, this work suggests that compounds inhibiting Dsb enzymes might act not only as antivirulents but also as true antibiotics.


Assuntos
Dissulfetos/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Anaerobiose , Meios de Cultura/química , Escherichia coli/citologia , Deleção de Genes , Viabilidade Microbiana , Oxidantes/metabolismo
5.
Nat Chem Biol ; 11(4): 292-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25686372

RESUMO

In bacteria, disulfide bonds confer stability on many proteins exported to the cell envelope or beyond. These proteins include numerous bacterial virulence factors, and thus bacterial enzymes that promote disulfide bond formation represent targets for compounds inhibiting bacterial virulence. Here, we describe a new target- and cell-based screening methodology for identifying compounds that inhibit the disulfide bond-forming enzymes Escherichia coli DsbB (EcDsbB) or Mycobacterium tuberculosis VKOR (MtbVKOR), which can replace EcDsbB, although the two are not homologs. Initial screening of 51,487 compounds yielded six specifically inhibiting EcDsbB. These compounds share a structural motif and do not inhibit MtbVKOR. A medicinal chemistry approach led us to select related compounds, some of which are much more effective DsbB inhibitors than those found in the screen. These compounds inhibit purified DsbB and prevent anaerobic growth of E. coli. Furthermore, these compounds inhibit all but one of the DsbBs of nine other Gram-negative pathogenic bacteria tested.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Escherichia coli/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Mycobacterium tuberculosis/metabolismo , Ágar/química , Antibacterianos/química , Domínio Catalítico , Química Farmacêutica/métodos , Técnicas de Química Combinatória , Dissulfetos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Transporte de Elétrons , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Mycobacterium smegmatis/metabolismo , Conformação Proteica , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/química , Pseudomonas aeruginosa/metabolismo
6.
Proc Natl Acad Sci U S A ; 109(30): 12153-8, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22778399

RESUMO

Bacteroides fragilis can replicate in atmospheres containing ≤0.05% oxygen, but higher concentrations arrest growth by an unknown mechanism. Here we show that inactivation of a single gene, oxe (i.e., oxygen enabled) in B. fragilis allows for growth in concentrations as high as 2% oxygen while increasing the tolerance of this organism to room air. Known components of the oxidative stress response including the ahpC, kat, batA-E, and tpx genes were not individually important for microaerobic growth. However, a Δoxe strain scavenged H(2)O(2) at a faster rate than WT, indicating that reactive oxygen species may play a critical role in limiting growth of this organism to low-oxygen environments. Clinical isolates of B. fragilis displayed a greater capacity for growth under microaerobic conditions than fecal isolates, with some encoding polymorphisms in oxe. Additionally, isolation of oxygen-enabled mutants of Bacteroides thetaiotaomicron suggests that Oxe may mediate growth arrest of other anaerobes in oxygenated environments.


Assuntos
Bacteroides fragilis/crescimento & desenvolvimento , Bacteroides fragilis/genética , Inativação Gênica , Genes Bacterianos/genética , Estresse Oxidativo/genética , Oxigênio/metabolismo , Anaerobiose , Bacteroides fragilis/metabolismo , Primers do DNA/genética , Peróxido de Hidrogênio/metabolismo , Plasmídeos/genética , Espécies Reativas de Oxigênio , Análise de Sequência de DNA , Especificidade da Espécie
7.
Microbiology (Reading) ; 158(Pt 2): 539-546, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22075026

RESUMO

Despite the detrimental role that endogenously generated reactive oxygen species (ROS) may play in bacteria exposed to aerobic environments, very few sources of ROS have been identified in vivo. Such studies are often precluded by the presence of efficient ROS-scavenging pathways, like those found in the aerotolerant anaerobe Bacteroides fragilis. Here we demonstrate that deletion of the genes encoding catalase (Kat), alkylhydroperoxide reductase (AhpC) and thioredoxin-dependent peroxidase (Tpx) strongly inhibits H(2)O(2) detoxification in B. fragilis, thereby allowing for the quantification of ROS production. Exogenous fumarate significantly reduced H(2)O(2) production in a ΔahpCΔkatΔtpx B. fragilis strain, as did deletion of fumarate reductase subunit c (frdC). Deletion of frdC also increased the aerotolerance of a strain lacking superoxide dismutase, indicating that fumarate reductase is a major contributor to ROS formation in B. fragilis exposed to oxygen.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroides fragilis/enzimologia , Peróxido de Hidrogênio/metabolismo , Succinato Desidrogenase/metabolismo , Anaerobiose , Proteínas de Bactérias/genética , Bacteroides fragilis/genética , Bacteroides fragilis/metabolismo , Succinato Desidrogenase/genética
8.
Nat Commun ; 13(1): 1244, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273143

RESUMO

Relative abundances of bacterial species in the gut microbiome have been linked to many diseases. Species of gut bacteria are ecologically differentiated by their abilities to metabolize different glycans, making glycan delivery a powerful way to alter the microbiome to promote health. Here, we study the properties and therapeutic potential of chemically diverse synthetic glycans (SGs). Fermentation of SGs by gut microbiome cultures results in compound-specific shifts in taxonomic and metabolite profiles not observed with reference glycans, including prebiotics. Model enteric pathogens grow poorly on most SGs, potentially increasing their safety for at-risk populations. SGs increase survival, reduce weight loss, and improve clinical scores in mouse models of colitis. Synthetic glycans are thus a promising modality to improve health through selective changes to the gut microbiome.


Assuntos
Colite , Microbioma Gastrointestinal , Animais , Bactérias/metabolismo , Colite/tratamento farmacológico , Promoção da Saúde , Camundongos , Polissacarídeos/metabolismo
9.
J Exp Med ; 195(11): 1455-62, 2002 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-12045243

RESUMO

The contribution of accessory toxins to the acute inflammatory response to Vibrio cholerae was assessed in a murine pulmonary model. Intranasal administration of an El Tor O1 V. cholerae strain deleted of cholera toxin genes (ctxAB) caused diffuse pneumonia characterized by infiltration of PMNs, tissue damage, and hemorrhage. By contrast, the ctxAB mutant with an additional deletion in the actin-cross-linking repeats-in-toxin (RTX) toxin gene (rtxA) caused a less severe pathology and decreased serum levels of proinflammatory molecules interleukin (IL)-6 and murine macrophage inflammatory protein (MIP)-2. These data suggest that the RTX toxin contributes to the severity of acute inflammatory responses. Deletions within the genes for either hemagglutinin/protease (hapA) or hemolysin (hlyA) did not significantly affect virulence in this model. Compound deletion of ctxAB, hlyA, hapA, and rtxA created strain KFV101, which colonized the lung but induced pulmonary disease with limited inflammation and significantly reduced serum titers of IL-6 and MIP-2. 100% of mice inoculated with KFV101 survive, compared with 20% of mice inoculated with the ctxAB mutant. Thus, the reduced virulence of KFV101 makes it a prototype for multi-toxin deleted vaccine strains that could be used for protection against V. cholerae without the adverse effects of the accessory cholera toxins.


Assuntos
Toxinas Bacterianas/metabolismo , Cólera/patologia , Pulmão/patologia , Vibrio cholerae/patogenicidade , Animais , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Quimiocina CXCL2 , Quimiocinas/metabolismo , Cólera/imunologia , Modelos Animais de Doenças , Deleção de Genes , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Interleucina-6/imunologia , Interleucina-6/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Camundongos , Taxa de Sobrevida , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo , Vibrio cholerae/classificação , Vibrio cholerae/genética , Vibrio cholerae/imunologia , Virulência/genética
10.
J Bacteriol ; 189(5): 1827-35, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17189368

RESUMO

Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, secretes several "accessory" toxins, including RTX toxin, which causes the cross-linking of the actin cytoskeleton. RTX toxin is exported to the extracellular milieu by an atypical type I secretion system (T1SS), and we previously noted that RTX-associated activity is detectable only in supernatant fluids from log phase cultures. Here, we investigate the mechanisms for regulating RTX toxin activity in supernatant fluids. We find that exported proteases are capable of destroying RTX activity and may therefore play a role in the growth phase regulation of toxin activity. We determined that the absence of RTX toxin in stationary-phase culture supernatant fluids is also due to a lack of toxin secretion and not attributable to solely proteolytic degradation. We ascertained that the T1SS apparatus is regulated at the transcriptional level by growth phase control that is independent of quorum sensing, unlike other virulence factors of V. cholerae. Additionally, in stationary-phase cultures, all RTX toxin activity is associated with bacterial membranes or outer membrane vesicles.


Assuntos
Toxinas Bacterianas/metabolismo , Vibrio cholerae/crescimento & desenvolvimento , Vibrio cholerae/patogenicidade , Toxinas Bacterianas/genética , Sequência de Bases , Dados de Sequência Molecular , Óperon , Regiões Promotoras Genéticas , Transporte Proteico , Percepção de Quorum , Sítio de Iniciação de Transcrição , Transcrição Gênica
11.
J Virol ; 81(10): 4919-27, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17329341

RESUMO

DNA sequences containing CpG motifs are recognized as immunomodulators in several species. Phosphodiester oligodeoxyribonucleotides (ODNs) representing sequences from the genome of porcine circovirus type 2 (PCV2) have been identified as potent inducers (ODN PCV2/5) or inhibitors (ODN PCV2/1) of alpha interferon (IFN-alpha) production by porcine peripheral blood mononuclear cells (poPBMCs) in vitro. In this study, the IFN-alpha-inducing or -inhibitory activities of specific phosphodiester ODNs were demonstrated to be dependent on their ability to form secondary structures. When a poly(G) sequence was added to a stimulatory self-complementary ODN, high levels of IFN-alpha were elicited, and the induction was not dependent on pretreatment with the transfecting agent Lipofectin. In addition, the IFN-alpha-inducing ODN required the presence of an intact CpG dinucleotide, whereas the inhibitory activity of ODN PCV2/1 was not affected by methylation or removal of the central CpG dinucleotide. Of particular significance, the IFN-alpha inhibition elicited by ODN PCV2/1 was only effective against induction stimulated by DNA control inducers and not RNA control inducers, indicating activity directed to TLR9 signaling. The PCV2 genome as a whole was demonstrated to induce IFN-alpha in cultures of poPBMCs, and the presence of immune modulatory sequences within the genome of PCV2 may, therefore, have implications with regard to the immune evasion mechanisms utilized by PCV2.


Assuntos
Circovirus/imunologia , DNA Viral/imunologia , Interferon-alfa/antagonistas & inibidores , Interferon-alfa/biossíntese , Leucócitos Mononucleares/imunologia , Oligodesoxirribonucleotídeos/imunologia , Animais , Sequência de Bases , Circovirus/genética , DNA Viral/genética , Fosfatos de Dinucleosídeos/química , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética , Suínos , Receptor Toll-Like 9/fisiologia
12.
J Gen Virol ; 84(Pt 11): 2937-2945, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14573798

RESUMO

Porcine circovirus type 2 (PCV-2) has been identified as the causal agent of postweaning multisystemic wasting syndrome and has been associated with several other disease syndromes in pigs. To date, however, little is known regarding the mechanism(s) underlying the pathogenesis of PCV-2-induced diseases and the interaction of the virus with the host immune system. In the present study, oligodeoxynucleotides (ODNs), with central CpG motifs selected from the genome of PCV-2, were demonstrated to modulate the immune response of porcine PBMCs. Four of the five ODNs tested were demonstrated to act in a stimulatory manner via induction of IFN-alpha production, whereas only one of the five ODNs showed inhibitory activity. Also, this inhibitory ODN was demonstrated to completely inhibit IFN-alpha production induced by the other stimulatory ODNs and showed a variable degree of inhibitory action on other known inducers of IFN-alpha. Although no single common characteristic among resistant or susceptible inducers could be identified, the presence of immune modulatory sequences in the genome of PCV-2 may represent an underlying mechanism of the pathogenesis of PCV-2-associated diseases.


Assuntos
Circovirus/genética , Genoma Viral , Interferon-alfa/antagonistas & inibidores , Leucócitos Mononucleares/metabolismo , Animais , Células Cultivadas , Ilhas de CpG , Interferon-alfa/biossíntese , Oligodesoxirribonucleotídeos/farmacologia , Fosfatidiletanolaminas/farmacologia , Suínos
13.
Avian Pathol ; 32(4): 375-82, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17585461

RESUMO

An attenuated chicken anaemia virus (CAV) isolate, cloned isolate 10, which was molecularly cloned from the Cuxhaven-1 CAV after 173 cell-culture passages, was shown previously to recover pathogenicity following 10 passages in young chicks. The consensus nucleotide sequence of the 'revertant' (Rev) virus, present as a tissue homogenate, differed from cloned isolate 10 at a single nucleotide residue (nucleotide 1739) that changed amino acid 287 of the capsid protein from alanine to aspartic acid. Subjecting Rev virus to 10 cell-culture passages reselected viruses with an alanine at this amino acid position. Experimental infections using a molecularly cloned Rev virus isolate demonstrated that the mutation at nucleotide 1739 was not in itself responsible for the recovery of pathogenicity exhibited by the Rev virus. Additional sequence analyses of cloned amplicons provided evidence that the Rev virus population comprised minor, genetically different subpopulations, and provided an indication of CAV's potential for genetic change.


Assuntos
Vírus da Anemia da Galinha/patogenicidade , Galinhas/virologia , Infecções por Circoviridae/veterinária , Doenças das Aves Domésticas/virologia , Animais , Vírus da Anemia da Galinha/isolamento & purificação , Infecções por Circoviridae/virologia , Regulação Viral da Expressão Gênica , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa