Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(8): 3276-3283, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38294348

RESUMO

We report an analytical methodology for the quantification of sulfur in biological molecules via a species-unspecific postcolumn isotope dilution (online ID) approach using capillary electrophoresis (CE) coupled online with inductively coupled plasma-mass spectrometry (online ID CE/ICP-MS). The method was optimized using a mixture of standard compounds including sulfate, methionine, cysteine, cystine, and albumin, yielding compound recoveries between 98 and 105%. The quantity of sulfur is further converted to the quantity of the compounds owing to the prior knowledge of the sulfur content in the molecules. The limit of detection and limit of quantification of sulfur in the compounds were 1.3-2.6 and 4.1-8.4 mg L-1, respectively, with a correlation coefficient of 0.99 within the concentration range of sulfur of 5-100 mg L-1. The capability of the method was extended to quantify albumin in its native matrix (i.e., in serum) using experimentally prepared serum spiked with a pure albumin standard for validation. The relative expanded uncertainty of the method for the quantification of albumin was 6.7% (k = 2). Finally, we tested the applicability of the method on real samples by the analysis of albumin in bovine and human sera. For automated data assessment, a software application (IsoCor)─which was developed by us in a previous work─was developed further for handling of online ID data. The method has several improvements compared to previously published setups: (i) reduced adsorption of proteins onto the capillary wall owing to a special capillary-coating procedure, (ii) baseline separation of the compounds in less than 30 min via CE, (iii) quantification of several sulfur species within one run by means of the online setup, (iv) SI traceability of the quantification results through online ID, and (v) facilitated data processing of the transient signals using the IsoCor application. Our method can be used as an accurate approach for quantification of proteins and other biological molecules via sulfur analysis in complex matrices for various fields, such as environmental, biological, and pharmaceutical studies as well as clinical diagnosis.


Assuntos
Proteínas , Enxofre , Animais , Bovinos , Humanos , Espectrometria de Massas/métodos , Enxofre/análise , Proteínas/análise , Isótopos , Albuminas , Eletroforese Capilar
2.
Anal Bioanal Chem ; 416(7): 1613-1621, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38285228

RESUMO

Capillary electrophoresis (CE) is a powerful and sensitive tool for speciation analysis when combined with inductively coupled plasma mass spectrometry (ICP-MS); however, the performance of this technique can be limited by the nature of pneumatic nebulizers. This study compares two commercially available pneumatic nebulizers to a newly introduced vibrating capillary nebulizer (VCN) for on-line coupling of CE with ICP-MS. The VCN is a low-cost, non-pneumatic nebulizer that is based on the design of capillary vibrating sharp-edge spray ionization. As a piezoelectrically driven nebulization source, the VCN creates an aerosol independent of gas flows and does not produce a low-pressure region at the nebulizer orifice. To compare the systems, we performed replicate analyses of sulfate in river water with each nebulizer and the same CE and ICP-MS instruments and determined the figures of merit of each setup. With the CE-VCN-ICP-MS setup, we achieved around 2-4 times lower sensitivity compared to the commercial setups. However, the VCN-based setup provided lower noise levels and better linear correlation from the analysis of calibration standards, which resulted in indistinguishable LOD and LOQ values from the in-house-built VCN-based and commercial setups for CE-ICP-MS analysis. The VCN is found to have the highest baseline stability with a standard deviation of 3500 cts s-1, corresponding to an RSD of 2.7%. High reproducibility is found with the VCN with a peak area RSD of 4.1% between 3 replicate measurements.

3.
Anal Chem ; 95(35): 13322-13329, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37566513

RESUMO

An automated and straightforward detection and data treatment strategy for the determination of the protein relative concentration in individual human cells by single cell-inductively coupled plasma-time-of-flight mass spectrometry (sc-ICP-ToF-MS) is proposed. Metal nanocluster (NC)-labeled specific antibodies for the target proteins were employed, and ruthenium red (RR) staining, which binds to the cells surface, was used to determine the number of cell events as well as to evaluate the relative volume of the cells. As a proof of concept, the expression of hepcidin, metallothionein-2, and ferroportin employing specific antibodies labeled with IrNCs, PtNCs, and AuNCs, respectively, was investigated by sc-ICP-ToF-MS in human ARPE-19 cells. Taking into account that ARPE-19 cells are spherical in suspension and RR binds to the surface of the cells, the Ru intensity was related to the cell volume (i.e., the cell volume is directly proportional to (Ru intensity)3/2), making it possible to determine not only the mass of the target proteins in each individual cell but also the relative concentration. The proposed approach is of particular interest in comparing cell cultures subjected to different supplementations. ARPE-19 cell cultures under two stress conditions were compared: a hyperglycemic model and an oxidative stress model. The comparison of the control with treated cells shows not only the mass of analyzed species but also the relative changes in the cell volume and concentration of target proteins, clearly allowing the identification of subpopulations under the respective treatment.


Assuntos
Metais , Humanos , Espectrometria de Massas/métodos , Análise Espectral
4.
Anal Bioanal Chem ; 415(6): 1195-1204, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36633619

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are emerging organic pollutants and can occur in surface and groundwater. To identify the degree of pollution in surface water with PFAS, often targeted HPLC-ESI-MS/MS has been employed in which commonly 30-40 compounds are analyzed. However, other PFAS and organofluorines remain undetected. We sampled surface water of the river Spree and the Teltow Canal in Berlin, Germany, which are affected by the effluent discharge of wastewater treatment plants. Here, we employed high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) for measuring extractable organofluorines (EOF) and compared in a mass balance approach the total fluorine to the identified and quantified PFAS from the targeted analysis. The analysis highlights that the EOF are in the range expected for an urban river system (Winchell et al. in Sci Total Environ 774, 2021). However, downstream of an effluent discharge, the EOF increased by one order of magnitude, e.g., 40.3 to 574 ng F L-1, along the Teltow Canal. From our target analytes, mostly short-chained perfluorinated carboxylic acids and sulfonates occur in the water, which however makes up less than 10% of the EOF. The increase in EOF in the Teltow Canal correlates well with the increase of perfluorohexanoic acid (PFHxA), indicating that PFHxA is characteristic for the discharged EOF but not responsible for the increase. Hence, it points to PFHxA precursor discharge. The study highlights that EOF screening using HR-CS-GFMAS is necessary to identify the full scale of pollution with regard to PFAS and other organofluorines such as pharmaceutical compounds from the effluent of WWTPs.

5.
Rapid Commun Mass Spectrom ; 35(2): e8953, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32970910

RESUMO

RATIONALE: (Eco-)toxicological effects are mostly derived empirically and are not correlated with metal uptake. Furthermore, if the metal content is determined, mostly bulk analysis of the whole organism population is conducted; thus, biological variability is completely disregarded, and this may lead to misleading results. To overcome this issue, we compared two different solid sampling techniques for the analysis of single organisms. METHODS: In this study, complementary electrothermal vaporization/inductively coupled plasma mass spectrometry (ETV/ICP-MS) ⇔ laser ablation/inductively coupled plasma mass spectrometry (LA/ICP-MS)-based methods for the analysis of individual organisms were developed and the results obtained were compared with the concentrations obtained after digestion and measured using ICP-MS. For this purpose, a common (eco-)toxicological test organism, the mud shrimp Corophium volutator, was selected. As proof-of-concept application, these organisms were incubated with environmentally relevant metals from galvanic anodes, which are often used for protection against metal corrosion in, for example, offshore wind farms. RESULTS: The bulk analysis revealed that large quantities of the incubated elements were detectable. Using the ETV/ICP-MS method, we could identify a high biovariability within the population of organisms tested. Using the LA/ICP-MS method, it could be determined that the large quantities of the elements detected were due to adsorption of the metals and not due to uptake, which correlates well with the absence of (eco-)toxicological effects. CONCLUSIONS: The results obtained imply the efficiency of complementary methods to explain the absence or presence of (eco-)toxicological effects. In particular, methods that allow for single-organism analysis or provide even a spatial resolution support the interpretation of ecotoxicological findings.


Assuntos
Anfípodes/metabolismo , Espectrometria de Massas/métodos , Metais Pesados/análise , Anfípodes/química , Animais , Ecotoxicologia/métodos , Técnicas Eletroquímicas , Metais Pesados/farmacocinética , Temperatura
6.
Anal Bioanal Chem ; 413(21): 5279-5289, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34302182

RESUMO

A recently introduced inductively coupled plasma-time-of-flight-mass spectrometer (ICP-ToF-MS) shows enhanced sensitivity compared to previous developments and superior isotope ratio precision compared to other ToF and commonly used single-collector ICP-MS instruments. Following this fact, an improvement for isotope dilution ICP-MS using the new instrumentation has been reported. This study aimed at investigating whether this improvement also meets the requirements of species-specific isotope dilution using GC/ICP-MS, where short transient signals are recorded. The results of the analysis of monomethylmercury (MMHg) of a sediment reference material show that isotope ratio precision of ICP-MS instruments equipped with quadrupole, sector-field, and time-of-flight mass analyzers is similar within a broad range of peak signal-to-noise ratio when analyzing one isotopic system. The procedural limit of quantification (LOQ) for MMHg, expressed as mass fraction of Hg being present as MMHg, w(Hg)MMHg, was similar as well for all investigated instruments and ranged between 0.003 and 0.016 µg/kg. Due to the simultaneous detection capability, the ICP-ToF-MS might, however, be more favorable when several isotopic systems are analyzed within one measurement. In a case study, the GC/ICP-ToF-MS coupling was applied for analysis of MMHg in sediments of Finow Canal, a historic German canal heavily polluted with mercury. Mass fractions between 0.180 and 41 µg/kg (w(Hg)MMHg) for MMHg, and 0.056 and 126 mg/kg (w(Hg)total) for total mercury were found in sediment samples taken from the canal upstream and downstream of a former chemical plant.

7.
Anal Bioanal Chem ; 413(1): 103-115, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33164152

RESUMO

In this study, we compare combustion ion chromatography (CIC) and high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) with respect to their applicability for determining organically bound fluorine sum parameters. Extractable (EOF) and adsorbable (AOF) organically bound fluorine as well as total fluorine (TF) were measured in samples from river Spree in Berlin, Germany, to reveal the advantages and disadvantages of the two techniques used as well as the two established fluorine sum parameters AOF and EOF. TF concentrations determined via HR-CS-GFMAS and CIC were comparable between 148 and 270 µg/L. On average, AOF concentrations were higher than EOF concentrations, with AOF making up 0.14-0.81% of TF (determined using CIC) and EOF 0.04-0.28% of TF (determined using HR-CS-GFMAS). The results obtained by the two independent methods were in good agreement. It turned out that HR-CS-GFMAS is a more sensitive and precise method for fluorine analysis compared to CIC. EOF and AOF are comparable tools in risk evaluation for the emerging pollutants per- and polyfluorinated alkyl substances; however, EOF is much faster to conduct. Graphical abstract.

8.
Anal Bioanal Chem ; 412(23): 5637-5646, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32613566

RESUMO

In this work, a method for species-specific isotopic analysis of sulfur via capillary electrophoresis hyphenated on-line with multicollector ICP-MS (CE/MC-ICP-MS) was developed. Correction for the mass bias caused by instrumental mass discrimination was realized via external correction with multiple-injection sample-standard bracketing. By comparing the isotope ratio measurement results obtained using the newly developed on-line CE/MC-ICP-MS method with those obtained via traditional MC-ICP-MS measurement after analyte/matrix separation by anion exchange chromatography for isotopic reference materials and an in-house bracketing standard, the most suitable data evaluation method could be identified. The repeatability for the sulfate-δ34S value (calculated from 18 measurements of a standard conducted over seven measurement sessions) was 0.57‰ (2SD) and thereby only twice that obtained with off-line measurements (0.30‰, n = 68). As a proof of concept for analysis of samples with a real matrix, the determination of the sulfur isotopic composition of naturally present sulfate was performed for different river systems. The CE/MC-ICP-MS results thus obtained agreed with the corresponding off-line MC-ICP-MS results within the 2SD ranges, and the repeatability of consecutive δ34S measurements (n = 3) was between 0.3‰ and 1.3‰ (2SD). Finally, the isotopic analysis of two different S-species in a river water sample spiked with 2-pyridinesulfonic acid (PSA) was also accomplished. Graphical abstract The CE/MC-ICP-MS method developed allows for species-specific S isotopic analysis in samples containing multiple species. Mass bias is corrected for by multiple-injection sample-standard bracketing, while the repeatability (2SD) of the resulting 34δ-values is <1‰.

9.
Anal Bioanal Chem ; 411(27): 7261-7272, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31494688

RESUMO

In the recent decade, metal pyrithione complexes have become important biocides for antifouling purposes in shipping. The analysis of metal pyrithione complexes and their degradation products/species in environmental samples is challenging because they exhibit fast UV degradation, transmetalation, and ligand substitution and are known to be prone to spontaneous species transformation within a chromatographic system. The environmental properties of the pyrithione species, e.g., toxicity to target and non-target organisms, are differing strongly, and it is therefore inevitable to identify as well as quantify all species separately. To cope with the separation of metal pyrithione species with minimum species transformation during analysis, a capillary electrophoresis (CE)-based method was developed. The hyphenation of CE with selective electrospray ionization- and inductively coupled plasma-mass spectrometry (ESI-, ICP-MS) provided complementary molecular and elemental information for the identification and quantification of pyrithione species. To study speciation of pyrithiones, a leaching experiment of several commercial antifouling paints containing zinc pyrithione in ultrapure and river water was conducted. Only the two species pyrithione (HPT) and dipyrithione ((PT)2) were found in the leaching media, in concentrations between 0.086 and 2.4 µM (HPT) and between 0.062 and 0.59 µM ((PT)2), depending on the paint and leaching medium. The limits of detection were 20 nM (HPT) and 10 nM ((PT)2). The results show that complementary CE-MS is a suitable tool for mechanistical studies concerning species transformation (e.g., degradation) and the identification of target species of metal pyrithione complexes in real surface water matrices, laying the ground for future environmental studies. Graphical abstract Hyphenation of CE with ESI- and ICP-MS provided complementary molecular and elemental information. Metal pyrithione species released from commercial antifouling paints could be identified and quantified in ultrapure and river water matrices.


Assuntos
Eletroforese Capilar/métodos , Espectrometria de Massas/métodos , Piridinas/análise , Tionas/análise , Limite de Detecção , Pintura , Padrões de Referência , Poluentes Químicos da Água/análise
10.
Anal Bioanal Chem ; 411(19): 4647-4660, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30848316

RESUMO

The introduction of fluorine into organic molecules leads to new chemical/physical properties. Especially in the field of pharmaceutical as well as technical applications, fluorinated organic substances gain in importance. The OECD identified and categorized 4730 per- and polyfluoroalkyl substances-related CAS numbers. Thus, an increasing release of fluorinated compounds into the environment is expected. In particular, perfluorinated compounds often show higher environmental stability leading to the risk of bioaccumulation. Polyfluorinated compounds undergo decomposition; thus, further possible fluorine species occur, which may exhibit different toxic/chemical properties. However, current target methods based on, e.g., HPLC/MS-MS, are not applicable for a comprehensive screening of fluorinated substances as well as assessment of pollution. Thus, within this work, a sum parameter method for quantitative determination of extractable organically bound fluorine (EOF) in surface waters was developed. The method is based on solid-phase extraction (SPE) for extraction of fluorinated compounds as well as separation of interfering inorganic fluoride in combination with high-resolution-continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) for organic fluorine quantification. Upon optimization of the SPE procedure (maximum concentration of extractable organic fluorine), enrichment factors of about 1000 were achieved, allowing for highly sensitive fluorine detection. HR-CS GF MAS allows for selective fluorine detection upon in situ formation of a diatomic molecule ("GaF"). Next to a species-unspecific response, limits of detection in the low nanogram per liter range (upon enrichment) were achieved. Upon successful method development, surface water samples (rivers Moselle and Rhine) were analyzed. Furthermore, a sampling campaign along the river Rhine (from the south-close to the French border; to the north-close to The Netherlands border) was conducted. EOF values in the range of about 50-300 ng/L were detected. The developed method allows for a fast and sensitive as well as selective/screening detection of organically bound fluorine (EOF) in surface water samples, helping to elucidate pollution hotspots as well as discharge routes. Graphical abstract A solid phase extraction (SPE) HR-CS GF MAS screening method was developed for the quantitative analysis/screening of extractable organically bound fluorine (EOF) in river water samples. Highly sensitive EOF analysis (low ppq range) was obtained upon SPE and HR-CS GF MAS analysis. Sampling campaign along the river Rhine was conducted.

11.
Environ Sci Technol ; 52(15): 8309-8320, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29998733

RESUMO

The iodinated X-ray contrast medium (ICM) iopromide and its aerobic transformation products (TPs) are frequently detected in the effluents of wastewater treatment plants and in different compartments of the aquatic environment. In this study, the anaerobic transformation of iopromide and its aerobic TPs was investigated in water-sediment systems. Iopromide, its final aerobic TP didespropanediol iopromide (DDPI), and its primary aniline desmethoxyacetyl iopromide (DAMI) were used as model substances. Five biologically formed anaerobic TPs of iopromide and DAMI and six of DDPI, and the respective transformation pathways, were identified. The TPs were formed by successive deiodination and hydrolysis of amide moieties. Quantification of the iodinated TPs was achieved by further development of a complementary liquid chromatography (LC)-quadrupole time-of-flight mass spectrometry (Q-ToF-MS) and LC-inductively coupled plasma - mass spectrometry (ICP-MS) strategy without needing authentic standards, despite several TPs coeluting with others. A database with predicted anaerobic TPs of ICMs was derived by applying the transformation rules found for the anaerobic transformation pathways of iopromide and diatrizoate to further ICMs (iomeprol and iopamidol) and their aerobic TPs already reported in the literature. The environmental relevance of the identified transformation pathways was confirmed by identifying an experimental TP and two predicted TPs using suspect screening of water taken from anaerobic bank filtration zones.


Assuntos
Meios de Contraste , Poluentes Químicos da Água , Anaerobiose , Iohexol/análogos & derivados , Raios X
13.
Anal Bioanal Chem ; 409(30): 6949-6958, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28975375

RESUMO

In addition to beneficial health effects, fluoride can also have adverse effects on humans, animals, and plants if the daily intake is strongly elevated. One main source of fluoride uptake is water, and thus several ordinances exist in Germany that declare permissible concentrations of fluoride in, for example, drinking water, mineral water, and landfill seepage water. Controlling the fluoride concentrations in aqueous matrices necessitate valid and fast analytical methods. In this work an alternative method for the determination of fluoride in surface waters based on high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) was applied. Fluoride detection was made possible by the formation of a diatomic molecule, GaF, and detection of characteristic molecular absorption. On HR-CS-GFMAS parameter optimization, the method was adapted to surface water sample analysis. The influence of potential main matrix constituents such as Na+, Ca2+, Mg2+, and Cl- as well as surface water sampling/storage conditions on the molecular absorption signal of GaF was investigated. Method validation demonstrated a low limit of detection (8.1 µg L-1) and a low limit of quantification (26.9 µg L-1), both sufficient for direct river water sample analysis after 0.45-µm filtration. The optimized HR-CS-GFMAS method was applied for the analysis of real water samples from the rivers Rhine and Moselle. For method validation, samples were also analyzed by an ion chromatography (IC) method. IC and HR-CS-GFMAS results both agreed well. In comparison with IC, HR-CS-GFMAS has higher sample throughput, a lower limit of detection and a lower limit of quantification, and higher selectivity, and is a very suitable method for the analysis of dissolved fluoride in river water. Graphical abstract High-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) was applied for the quantitative analysis of dissolved fluoride in river water samples from the Rhine and the Moselle. Fluoride detection was made possible by the addition of Ga for GaF formation and analysis of characteristic molecular absorption at 211.248 nm. Good agreement between HR-CS-GFMAS and ion chromatography (IC) results was obtained. In comparison with IC, HR-CS-GFMAS had a faster sample throughput and lower limit of detection and limit of quantification.

16.
Anal Bioanal Chem ; 407(10): 2665-74, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25577354

RESUMO

Since its introduction in the early 1990s, the on-line coupling of field-flow fractionation to inductively coupled plasma-mass spectrometry (FFF/ICP-MS) has evolved from a "niche" method into an established technique, especially in the field of natural-colloid analysis. Around the turn of the millennium engineered nanomaterials became prominent in research as a result of new properties, and in recent years FFF/ICP-MS has been revealed to be a promising tool for their analysis. Given the beneficial properties of this technique (e.g., no stationary phase, high separation power, multi-elemental capabilities, and high sensitivity) further applications, especially in the field of biomolecule analysis, will be discovered in the near future, and FFF will evolve further as a complementary tool to well-established chromatographic techniques (e.g. high-performance liquid chromatography, size-exclusion chromatography). The focus of this article is on recent application trends of FFF/ICP-MS, revealing the applicability of this technique within several fields of research, especially natural colloids and engineered nanoparticles. Possible future application trends, based on the author's opinion, are outlined in the "Concluding remarks and outlook" section.

17.
Environ Sci Technol ; 48(17): 10145-54, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25140788

RESUMO

The iodinated X-ray contrast medium diatrizoate is known to be very persistent in current wastewater treatment as well as in environmental compartments. In this study, the potential of anaerobic processes in soils, sediments, and during wastewater treatment to remove and transform diatrizoate was investigated. In anaerobic batch experiments with soil and sediment seven biologically formed transformation products (TPs) as well as the corresponding transformation pathway were identified. The TPs resulted from successive deiodinations and deacetylations. The final TP 3,5-diaminobenzoic acid (DABA) was stable under anaerobic conditions. However, DABA was further transformed under air atmosphere, indicating the potential for the mineralization of diatrizoate by combining anaerobic and aerobic conditions. With the development of a methodology using complementary liquid chromatography-electrospray ionization-tandem mass spectrometry and liquid chromatography-inductively coupled plasma-mass spectrometry techniques, all identified TPs were quantified and the mass balance could be closed without having authentic standards for four of the TPs available. The detection and quantification of diatrizoate TPs in groundwater, in technical wetlands with anaerobic zones, and in a pilot wastewater treatment plant established for anaerobic treatment highlights the transferability and up-scaling of the results attained by laboratory experiments to environmental conditions.


Assuntos
Meios de Contraste/isolamento & purificação , Diatrizoato/isolamento & purificação , Anaerobiose , Técnicas de Cultura Celular por Lotes , Biodegradação Ambiental , Biotransformação , Cromatografia Líquida , Meios de Contraste/química , Diatrizoato/química , Água Subterrânea/química , Compostos de Iodo/isolamento & purificação , Limite de Detecção , Projetos Piloto , Solo , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Atômica , Fatores de Tempo , Águas Residuárias/química , Purificação da Água , Áreas Alagadas , Raios X
18.
Anal Bioanal Chem ; 406(2): 467-79, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24292431

RESUMO

Validated and easily applicable analytical tools are required to develop and implement regulatory frameworks and an appropriate risk assessment for engineered nanoparticles (ENPs). Concerning metal-based ENPs, two main aspects are the quantification of the absolute mass concentration and of the "dissolved" fraction in, e.g., (eco)toxicity and environmental studies. To provide information on preparative aspects and on potential uncertainties, preferably simple off-line methods were compared to determine (1) the total concentration of suspensions of five metal-based ENP materials (Ag, TiO2, CeO2, ZnO, and Au; two sizes), and (2) six methods to quantify the "dissolved" fraction of an Ag ENP suspension. Focusing on inductively coupled plasma-mass spectrometry, the total concentration of the ENP suspensions was determined by direct measurement, after acidification and after microwave-assisted digestion. Except for Au 10 nm, the total concentrations determined by direct measurements were clearly lower than those measured after digestion (between 61.1 % for Au 200 nm and 93.7 % for ZnO). In general, acidified suspensions delivered better recoveries from 89.3 % (ZnO) to 99.3 % (Ag). For the quantification of dissolved fractions two filtration methods (ultrafiltration and tangential flow filtration), centrifugation and ion selective electrode were mainly appropriate with certain limitations, while dialysis and cloud point extraction cannot be recommended. With respect to precision, time consumption, applicability, as well as to economic demands, ultrafiltration in combination with microwave digestion was identified as best practice.

19.
Sci Total Environ ; 871: 161979, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739030

RESUMO

Climate change may increase the overall susceptibility of peatlands to fire. Smoldering fires in peatlands can cause substantial emissions of greenhouse gases. It is, however, less clear how smoldering affects the soil pore water quality. In this study, soil samples were collected from agricultural fen and disturbed bog study sites in Germany and Lithuania to quantify the effect of peat burning on pore water composition. The samples were air dried and smoldered under ignition temperature (approximately 200 °C) with different durations (0, 2, 5, and 10 h). Pore water samples were extracted from the soil to determine dissolved organic carbon (DOC) concentrations, dissolved organic matter (DOM) fractions, fluoride, extractable organically bound fluorine (EOF), and sulfate concentrations. The results showed that soil smoldering changes the peat pore water chemistry and that changes differ between fens and bogs. The smoldering duration is likewise influential. For fen grasslands, 2 and 5 h of smoldering of peat caused a >10-fold increase in DOC (up to 1600 mg L-1) and EOF concentrations. The fluoride (up to 60 mg L-1) and sulfate concentrations substantially exceeded WHO drinking water guidelines. In contrast, the temperature treatment decreased the DOC concentrations of samples from raised bogs by 90 %. The fluoride concentrations decreased, but sulfate concentrations increased after smoldering of the bog samples. DOC, fluoride, and sulfate concentrations of bogs varied significantly between the smoldering duration treatments. For all peat samples, the extracted DOM was dominated by humic-like substances before smoldering, but the fraction of low molecular weight substances increased after smoldering combustion. In conclusion, smoldering alters the biogeochemical processes in both peatland types and possibly impair the water quality of adjacent water resources especially in fen peat landscapes.

20.
Sci Total Environ ; 885: 163753, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37121317

RESUMO

In this study, we compare analytical methods for PFAS determination-target analysis, non-target screening (NTS), direct total oxidizable precursor assay (dTOPA) and extractable organically bound fluorine (EOF). Therefore, suspended particulate matter (SPM) samples from German rivers at different locations in time series from 2005 to 2020 were analyzed to investigate temporal and spatially resolved trends. In this study 3 PFAS mass balances approaches were utilized: (i) PFAA target vs. PFAS dTOPA, (ii) PFAS target vs. EOF and (iii) PFAS target vs. PFAS dTOPA vs. organofluorines NTS vs. EOF. Mass balance approach (i) revealed high proportions of precursor substances in SPM samples. For the time resolved analysis an increase from 94% (2005) to 97% in 2019 was observable. Also for the spatial resolved analysis precursor proportions were high with >84% at all sampling sites. Mass balance approach (ii) showed that the unidentified EOF (uEOF) fraction increased over time from 82% (2005) to 99% (2019). Furthermore, along the river courses the uEOF increased. In the combined mass balance approach (iii) using 4 different analytical approaches EOF fractions were further unraveled. The EOF pattern was fully explainable at the sampling sites at Saar and Elbe rivers. For the time resolved analysis, an increased proportion of the EOF was now explainable. However, still 27% of the EOF for the time resolved analysis and 25% of the EOF for the spatial resolved analysis remained unknown. Therefore, in a complementary approach, both the EOF and dTOPA reveal unknown gaps in the PFAS mass balance and are valuable contributions to PFAS risk assessment. Further research is needed to identify organofluorines summarized in the EOF parameter.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa