Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Environ Manage ; 345: 118888, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37690245

RESUMO

Global urbanization has not only promoted social and economic development, but also contributed to seriously ecological challenges. As a type of sustainable landscape patterns, ecological security pattern is considered as an effective spatial pathway to simultaneously conserve ecological security and maintain social-economic development. However, the fragmentation issue of ecological sources of ecological security pattern has not been effectively addressed, although many case studies have been conducted to identify ecological security pattern. In this study, we used spatial conservation prioritization to identify the ecological security pattern of the city belt along the Yellow River in Ningxia, China. Ecological sources were selected using Zonation model while ecological corridors and key ecological nodes were identified with circuit model. The results showed that the ecological security pattern was composed of 97 ecological sources, 226 ecological corridors, 267 pinch points and 22 barriers, covering a total area of 7713.1 km2 and accounting for 34% of the study area. Ecological sources were concentrated in the Helan Mountain, Xiang Mountain and along the Yellow River. Besides, ecological corridors were dense in the southern and eastern part of the study area. Both indicated that the Yellow River and Helan Mountain were the conservation hotspots. Landscape connectivity of ecological sources identified through Zonation-based spatial conservation prioritization was better than that with the scoring approach based on ecosystem service importance. Particularly, in the Zonation approach the landscape connectivity increased with 44% while the average patch area increased with 28% when comparing with the scoring approach. The spatial conservation prioritization approach proposed in this study provides a new effective tool to construct ecological security pattern, which is conducive to the synergic enhancement of landscape connectivity and ecosystem services conservation.


Assuntos
Ecologia , Ecossistema , Conservação dos Recursos Naturais , Cidades , Análise Espacial , China
2.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502302

RESUMO

In recent years, the development of new bio-based products for biocontrol has been gaining importance as it contributes to reducing the use of synthetic herbicides in agriculture. Conventional herbicides (i.e., the ones with synthetic molecules) can lead to adverse effects such as human diseases (cancers, neurodegenerative diseases, reproductive perturbations, etc.) but also to disturbing the environment because of their drift in the air, transport throughout aquatic systems and persistence across different environments. The use of natural molecules seems to be a very good alternative for maintaining productive agriculture but without the negative side effects of synthetic herbicides. In this context, essential oils and their components are increasingly studied in order to produce several categories of biopesticides thanks to their well-known biocidal activities. However, these molecules can also be potentially hazardous to humans and the environment. This article reviews the state of the literature and regulations with regard to the potential risks related to the use of essential oils as bioherbicides in agricultural and horticultural applications.


Assuntos
Agentes de Controle Biológico/farmacologia , Herbicidas/farmacologia , Óleos Voláteis/farmacologia , Controle Biológico de Vetores/tendências , Doenças das Plantas/prevenção & controle , Humanos , Medição de Risco
3.
Glob Chang Biol ; 22(3): 1008-28, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26301476

RESUMO

Soils are subject to varying degrees of direct or indirect human disturbance, constituting a major global change driver. Factoring out natural from direct and indirect human influence is not always straightforward, but some human activities have clear impacts. These include land-use change, land management and land degradation (erosion, compaction, sealing and salinization). The intensity of land use also exerts a great impact on soils, and soils are also subject to indirect impacts arising from human activity, such as acid deposition (sulphur and nitrogen) and heavy metal pollution. In this critical review, we report the state-of-the-art understanding of these global change pressures on soils, identify knowledge gaps and research challenges and highlight actions and policies to minimize adverse environmental impacts arising from these global change drivers. Soils are central to considerations of what constitutes sustainable intensification. Therefore, ensuring that vulnerable and high environmental value soils are considered when protecting important habitats and ecosystems, will help to reduce the pressure on land from global change drivers. To ensure that soils are protected as part of wider environmental efforts, a global soil resilience programme should be considered, to monitor, recover or sustain soil fertility and function, and to enhance the ecosystem services provided by soils. Soils cannot, and should not, be considered in isolation of the ecosystems that they underpin and vice versa. The role of soils in supporting ecosystems and natural capital needs greater recognition. The lasting legacy of the International Year of Soils in 2015 should be to put soils at the centre of policy supporting environmental protection and sustainable development.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Poluição Ambiental/efeitos adversos , Solo
4.
Proc Natl Acad Sci U S A ; 107(33): 14926-30, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20679194

RESUMO

Agriculture is considered to be among the economic sectors having the greatest greenhouse gas mitigation potential, largely via soil organic carbon (SOC) sequestration. However, it remains a challenge to accurately quantify SOC stock changes at regional to national scales. SOC stock changes resulting from SOC inventory systems are only available for a few countries and the trends vary widely between studies. Process-based models can provide insight in the drivers of SOC changes, but accurate input data are currently not available at these spatial scales. Here we use measurements from a soil inventory dating from the 1960s and resampled in 2006 covering the major soil types and agricultural regions in Belgium together with region-specific land use and management data and a process-based model. The largest decreases in SOC stocks occurred in poorly drained grassland soils (clays and floodplain soils), consistent with drainage improvements since 1960. Large increases in SOC in well drained grassland soils appear to be a legacy effect of widespread conversion of cropland to grassland before 1960. SOC in cropland increased only in sandy lowland soils, driven by increasing manure additions. Modeled land use and management impacts accounted for more than 70% of the variation in observed SOC changes, and no bias could be demonstrated. There was no significant effect of climate trends since 1960 on observed SOC changes. SOC monitoring networks are being established in many countries. Our results demonstrate that detailed and long-term land management data are crucial to explain the observed SOC changes for such networks.


Assuntos
Agricultura/métodos , Carbono/metabolismo , Produtos Agrícolas/metabolismo , Poaceae/metabolismo , Solo/análise , Agricultura/tendências , Algoritmos , Animais , Bélgica , Produtos Agrícolas/classificação , Produtos Agrícolas/crescimento & desenvolvimento , Ecossistema , Monitoramento Ambiental/métodos , Monitoramento Ambiental/estatística & dados numéricos , Água Doce/análise , Geografia , Esterco/análise , Modelos Teóricos , Poaceae/classificação , Poaceae/crescimento & desenvolvimento , Fatores de Tempo , Movimentos da Água
5.
Sci Total Environ ; 807(Pt 2): 150723, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34610410

RESUMO

Exploring the cost-effective pathways for restoring ecosystems is a fundamental aspect for scientific communities and policy-makers aiming for a sustainable future. The South China karst region has experienced severe environmental degradation because of unsustainable management practices in this vulnerable social-ecological context. However, it has also become one of the most stunning areas following its remarkable vegetation recovery over recent decades as a result of large-scale ecological restoration programs. There is an extensive body of literature focusing on how ecological restoration programs have altered the degraded environment in this region. By searching and comparing the published peer-reviewed articles, we reviewed the studies related to the effects of ecological restoration programs from the point of view of ecological, socio-economic, and integrated social-ecological impacts, as well as influencing factors and restoration approaches. We found independent evidence to support that large-scale ecological restoration programs increased biomass and carbon sequestration since 2000 across this region. The farmers' livelihoods have spontaneously transited from agriculture into forestry or non-farming sectors without financial compensation or incentive schemes, which coincided with a positive correlation between the implementation of ecological restoration programs and poverty alleviation. However, due to a lack of clear "before and after" comparisons, many studies have indirectly determined the impacts of ecological restoration with non-negligible uncertainties. In addition, considering the critical interactions between belowground and aboveground processes in karst regions, special attention should be given to the selection of tree species and restoration measures according to different bedrock types. In the future, to better understand the impacts of ecological restoration on social-ecological systems, research could be advanced by considering data access, context-based analysis, measurement-targeted assessment, and cross-scale integration.


Assuntos
Sequestro de Carbono , Ecossistema , Recuperação e Remediação Ambiental , Biomassa , China , Meio Social
6.
Sci Total Environ ; 769: 144297, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33486176

RESUMO

Understanding the impacts of climate change and human activities on vegetation is of great significance to the sustainable development of terrestrial ecosystems. However, most studies focused on the overall impact over a period and rarely examined the time-lag effect of vegetation's response to climatic factors when exploring the driving mechanisms of vegetation dynamics. In this study, we identified key areas driven by either positive or negative human activities and climate change. Taking the three karst provinces of southwest China as the case study area, a Leaf Area Index (LAI)-climate model was constructed by quantifying the time-lag effect. Then the associated residual threshold was calculated to identify the vegetation change areas dominated by human activities and climate change. The results showed that, during the implementation period of ecological restoration projects from 1999 to 2015, positive impact areas of human activities were mainly distributed among the implementation areas of ecological restoration projects, accounting for 5.61% of the total area. For another, the negative impact areas were mainly distributed across the mountainous area of Yunnan Province, accounting for 1.30% of the total area. Karst landform had the greatest influence on the areas dominated by positive human activities, whereas both topography and karst landform significantly affected the areas dominated by negative human activities. Urban development level had the greatest impact on the areas dominated by climate change. The outcomes of this study provided scientific supports for the sustainable development of ecological restoration projects in China's karst region.

7.
Sci Rep ; 11(1): 19907, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620924

RESUMO

The number of reforestation projects worldwide is increasing. In many cases funding is obtained through the claimed carbon capture of the trees, presented as immediate and durable, whereas reforested plots need time and maintenance to realise their carbon capture potential. Further, claims usually overlook the environmental costs of natural or anthropogenic disturbances during the forest's lifetime, and greenhouse gas (GHG) emissions associated with the reforestation are not allowed for. This study uses life cycle assessment to quantify the carbon footprint of setting up a reforestation plot in the Peruvian Amazon. In parallel, we combine a soil carbon model with an above- and below-ground plant carbon model to predict the increase in carbon stocks after planting. We compare our results with the carbon capture claims made by a reforestation platform. Our results show major errors in carbon accounting in reforestation projects if they (1) ignore the time needed for trees to reach their carbon capture potential; (2) ignore the GHG emissions involved in setting up a plot; (3) report the carbon capture potential per tree planted, thereby ignoring limitations at the forest ecosystem level; or (4) under-estimate tree losses due to inevitable human and climatic disturbances. Further, we show that applications of biochar during reforestation can partially compensate for project emissions.


Assuntos
Ciclo do Carbono , Carbono/química , Conservação dos Recursos Naturais , Florestas , Biomassa , Brasil , Bases de Dados Factuais , Ecossistema , Modelos Teóricos , Peru , Software , Solo/química , Árvores
8.
Sci Rep ; 10(1): 19479, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173109

RESUMO

Sugarcane (Saccharum officinarum L.) cultivation leaves behind around 20 t ha-1 of biomass residue after harvest and processing. We investigated the potential for sequestering carbon (C) in soil with these residues by partially converting them into biochar (recalcitrant carbon-rich material). First, we modified the RothC model to allow changes in soil C arising from additions of sugarcane-derived biochar. Second, we evaluated the modified model against published field data, and found satisfactory agreement between observed and predicted soil C accumulation. Third, we used the model to explore the potential for soil C sequestration with sugarcane biochar in São Paulo State, Brazil. The results show a potential increase in soil C stocks by 2.35 ± 0.4 t C ha-1 year-1 in sugarcane fields across the State at application rates of 4.2 t biochar ha-1 year-1. Scaling to the total sugarcane area of the State, this would be 50 Mt of CO2 equivalent year-1, which is 31% of the CO2 equivalent emissions attributed to the State in 2016. Future research should (a) further validate the model with field experiments; (b) make a full life cycle assessment of the potential for greenhouse gas mitigation, including additional effects of biochar applications on greenhouse gas balances.

9.
Nat Commun ; 11(1): 2392, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404911

RESUMO

Although low vegetation productivity has been observed in karst regions, whether and how bedrock geochemistry contributes to the low karstic vegetation productivity remain unclear. In this study, we address this knowledge gap by exploring the importance of bedrock geochemistry on vegetation productivity based on a critical zone investigation across a typical karst region in Southwest China. We show silicon and calcium concentrations in bedrock are strongly correlated with the regolith water loss rate (RWLR), while RWLR can predict vegetation productivity more effectively than previous models. Furthermore, the analysis based on 12 selected karst regions worldwide further suggest that lithological regulation has the potential to obscure and distort the influence of climate change. Our study implies that bedrock geochemistry could exert effects on vegetation growth in karst regions and highlights that the critical role of bedrock geochemistry for the karst region should not be ignored in the earth system model.

10.
Commun Biol ; 3(1): 164, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246054

RESUMO

Soil is essential for sustaining life on land. Plant roots play a crucial role in stabilising soil and minimising erosion, although these mechanisms are still not completely understood. Consequently, identifying and breeding for plant traits to enhance erosion resistance is challenging. Root hair mutants in Arabidopsis thaliana were studied using three different quantitative methods to isolate their effect on root-soil cohesion. We present compelling evidence that micro-scale interactions of root hairs with surrounding soil increase soil cohesion and reduce erosion. Arabidopsis seedlings with root hairs were more difficult to detach from soil, compost and sterile gel media than those with hairless roots, and it was 10-times harder to erode soil from roots with than without hairs. We also developed a model that can consistently predict the impact root hairs make to soil erosion resistance. Our study thus provides new insight into the mechanisms by which roots maintain soil stability.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/fisiologia , Erosão do Solo/prevenção & controle , Solo , Adesividade , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Mutação , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estações do Ano , Fatores de Tempo
11.
Sci Total Environ ; 660: 765-775, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743962

RESUMO

Multifunctional landscape has become a new discipline growth point in landscape ecology. Globally mountainous areas occupy about one fifth of Earth's surface. However, few studies focused on landscape multifunctionality in mountainous areas. Taking Dali Bai Autonomous Prefecture, China, as a case study area, five typical landscape functions (net primary productivity, soil retention, water yield, crop production, and residential support) were quantified and mapped. Hotspots of multiple landscape functions were identified using spatial overlap tools, interaction between each landscape function pair was discussed through Spearman's rank correlation analysis, and development zoning was conducted based on landscape function bundle. The results showed that, about 61% of the study area had at least one kind of landscape function hotspot, with only 2.7% covering three or more kinds of landscape function hotspots. Significant trade-offs or synergies existed between all pairs of landscape functions, except the pair of net primary productivity and residential support. With the application of Self-Organizing Feature Maps (SOFM) method, the study area was divided into four types of development zones (i.e. ecological shelter area, ecological transition area, suburban development area, and urban agglomeration area) which were all corresponding to different landscape function bundles. This study could provide spatial guidance for differentiated sustainable developing in mountainous areas according to local conditions of landscape multifunctionality.

12.
Sci Total Environ ; 644: 781-790, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-29990926

RESUMO

The rapid process of urbanization, accompanied by the sharp increase of urban population and expansion of artificial surface, has resulted in the loss of natural ecosystems and the degradation of ecosystem services. Identifying and protecting key places that have high importance for ecological sustainability are great challenges. Ecological security patterns are such an integrated approach to protecting regional ecological sustainability. In this study, taking Yunnan Province, China as a case study area, ecological sources were identified through ecosystem services, and circuit theory was used to model ecosystem processes in heterogeneous landscapes via calculating the 'resistance' or 'current', and thus to identify ecological corridors and key ecological nodes. The results showed that, ecological security patterns included 66 ecological sources, 186 ecological corridors, 24 pinch-points and 10 barriers. In details, the ecological sources were mainly distributed in the southwest and northwest of Yunnan Province, with the ecological corridors locating along the high mountains, and both ecological sources and corridors were mostly covered with forest land. Pinch-points covered by forest land and cultivated land, were distributed in the middle of Yunnan Province along the rivers. Approximately 75.9% nature reserves were located in the identified ecological sources, and the remainings were mainly distributed in eastern Yunnan Province with small area, showing the effectiveness in identifying ecological security patterns. Among 81 projects of low-slope hill development carried out in Yunnan Province, 46.9% showed potential human stress on regional ecological security. Based on ecosystem services and circuit theory, this study provides a new approach to identifying the spatial range of ecological corridors and the specific location of key nodes for effective ecological conservation and restoration.

13.
Sci Rep ; 6: 35798, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27808169

RESUMO

Many studies have highlighted significant interactions between soil C reservoir dynamics and global climate and environmental change. However, in order to estimate the future soil organic carbon sequestration potential and related ecosystem services well, more spatially detailed predictions are needed. The present study made detailed predictions of future spatial evolution (at 250 m resolution) of topsoil SOC driven by climate change and land use change for France up to the year 2100 by taking interactions between climate, land use and soil type into account. We conclude that climate change will have a much bigger influence on future SOC losses in mid-latitude mineral soils than land use change dynamics. Hence, reducing CO2 emissions will be crucial to prevent further loss of carbon from our soils.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa