Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
2.
J Invest Dermatol ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38642800

RESUMO

Three-dimensional human epidermal equivalents (HEEs) are a state-of-the-art organotypic culture model in preclinical investigative dermatology and regulatory toxicology. In this study, we investigated the utility of electrical impedance spectroscopy (EIS) for noninvasive measurement of HEE epidermal barrier function. Our setup comprised a custom-made lid fit with 12 electrode pairs aligned on the standard 24-transwell cell culture system. Serial EIS measurements for 7 consecutive days did not impact epidermal morphology, and readouts showed comparable trends with HEEs measured only once. We determined 2 frequency ranges in the resulting impedance spectra: a lower frequency range termed EISdiff correlated with keratinocyte terminal differentiation independent of epidermal thickness and a higher frequency range termed EISSC correlated with stratum corneum thickness. HEEs generated from CRISPR/Cas9-engineered keratinocytes that lack key differentiation genes FLG, TFAP2A, AHR, or CLDN1 confirmed that keratinocyte terminal differentiation is the major parameter defining EISdiff. Exposure to proinflammatory psoriasis- or atopic dermatitis-associated cytokine cocktails lowered the expression of keratinocyte differentiation markers and reduced EISdiff. This cytokine-associated decrease in EISdiff was normalized after stimulation with therapeutic molecules. In conclusion, EIS provides a noninvasive system to consecutively and quantitatively assess HEE barrier function and to sensitively and objectively measure barrier development, defects, and repair.

3.
Microbiome ; 11(1): 227, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37849006

RESUMO

BACKGROUND: Following descriptive studies on skin microbiota in health and disease, mechanistic studies on the interplay between skin and microbes are on the rise, for which experimental models are in great demand. Here, we present a novel methodology for microbial colonization of organotypic skin and analysis thereof. RESULTS: An inoculation device ensured a standardized application area on the stratum corneum and a homogenous distribution of bacteria, while preventing infection of the basolateral culture medium even during prolonged culture periods for up to 2 weeks at a specific culture temperature and humidity. Hereby, host-microbe interactions and antibiotic interventions could be studied, revealing diverse host responses to various skin-related bacteria and pathogens. CONCLUSIONS: Our methodology is easily transferable to a wide variety of organotypic skin or mucosal models and different microbes at every cell culture facility at low costs. We envision that this study will kick-start skin microbiome studies using human organotypic skin cultures, providing a powerful alternative to experimental animal models in pre-clinical research. Video Abstract.


Assuntos
Interações entre Hospedeiro e Microrganismos , Microbiota , Animais , Humanos , Pele/microbiologia , Epiderme , Modelos Animais
4.
iScience ; 26(4): 106483, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37096035

RESUMO

In atopic dermatitis (AD), chronic skin inflammation is associated with skin barrier defects and skin microbiome dysbiosis including a lower abundance of Gram-positive anaerobic cocci (GPACs). We here report that, through secreted soluble factors, GPAC rapidly and directly induced epidermal host-defense molecules in cultured human keratinocytes and indirectly via immune-cell activation and cytokines derived thereof. Host-derived antimicrobial peptides known to limit the growth of Staphylococcus aureus-a skin pathogen involved in AD pathology-were strongly upregulated by GPAC-induced signaling through aryl hydrocarbon receptor (AHR)-independent mechanisms, with a concomitant AHR-dependent induction of epidermal differentiation genes and control of pro-inflammatory gene expression in organotypic human epidermis. By these modes of operandi, GPAC may act as an "alarm signal" and protect the skin from pathogenic colonization and infection in the event of skin barrier disruption. Fostering growth or survival of GPAC may be starting point for microbiome-targeted therapeutics in AD.

5.
J Invest Dermatol ; 143(8): 1520-1528.e5, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36893939

RESUMO

Ever since the association between FLG loss-of-function variants and ichthyosis vulgaris and atopic dermatitis disease onset was identified, FLGs function has been under investigation. Intraindividual genomic predisposition, immunological confounders, and environmental interactions complicate the comparison between FLG genotypes and related causal effects. Using CRISPR/Cas9, we generated human FLG-knockout (ΔFLG) N/TERT-2G keratinocytes. FLG deficiency was shown by immunohistochemistry of human epidermal equivalent cultures. Next to (partial) loss of structural proteins (involucrin, hornerin, keratin 2, and transglutaminase 1), the stratum corneum was denser and lacked the typical basket weave appearance. In addition, electrical impedance spectroscopy and transepidermal water loss analyses highlighted a compromised epidermal barrier in ΔFLG human epidermal equivalents. Correction of FLG reinstated the presence of keratohyalin granules in the stratum granulosum, FLG protein expression, and expression of the proteins mentioned earlier. The beneficial effects on stratum corneum formation were reflected by the normalization of electrical impedance spectroscopy and transepidermal water loss. This study shows the causal phenotypical and functional consequences of FLG deficiency, indicating that FLG is not only central in epidermal barrier function but also vital for epidermal differentiation by orchestrating the expression of other important epidermal proteins. These observations pave the way to fundamental investigations into the exact role of FLG in skin biology and disease.


Assuntos
Sistemas CRISPR-Cas , Proteínas de Filamentos Intermediários , Humanos , Proteínas de Filamentos Intermediários/metabolismo , Proteínas Filagrinas , Queratinócitos/metabolismo , Fenótipo
6.
JID Innov ; 2(2): 100082, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35146483

RESUMO

CRISPR-Cas9 is the most straightforward genome-editing tool to date. However, its implementation across disciplines is hampered by variable genome-editing efficiencies, reduced cell viability, and low success rates in obtaining clonal cell lines. This review aims to recognize all CRISPR-Cas9‒related work within the experimental dermatology field to identify key factors for successful strategies in the different keratinocyte (KC) cell sources available. On the basis of these findings, we conclude that most groups use immortalized KCs for generating knockout KCs. Our critical considerations for future studies using CRISPR-Cas9, both for fundamental and clinical applications, may guide implementation strategies of CRISPR-Cas9 technologies in the (experimental) dermatology field.

7.
Front Immunol ; 11: 1276, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733446

RESUMO

The contribution of dendritic cell (DC) antigen cross-presentation to the activation of CD8+ T lymphocytes for immune defense against tumors, viruses, and intracellular pathogens has been recognized widely. Although originally thought to be an exclusive characteristic of DCs, recently also other immune cells, particularly macrophages, have been shown capable of cross-presentation. Here we provide an overview of in vitro and in vivo evidence on cross-presentation by macrophages. As we discuss, it is now firmly established that various types of tissue-resident macrophages are able to cross-present via similar cellular pathways as DCs. This is based on a wide range of antigens in macrophages from many different tissue origins such as blood, tumors, and lymphoid tissue. However, the physiological relevance of macrophage cross-presentation with potential contributions to activation of CD8+ T lymphocytes is still mostly unknown. While cross-presentation by various types of proinflammatory macrophages might be involved in cross-priming of naive CD8+ T lymphocytes, it might also be involved in local reactivation of memory and/or effector CD8+ T lymphocytes. Moreover, cross-presentation by anti-inflammatory macrophages could be related to immune tolerance. Because cross-presentation promotes the initiation and potentiation of antigen-specific CD8+ T lymphocyte responses, stimulating macrophages to cross-present antigen might be a promising strategy for antitumor or antiviral therapies.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos/imunologia , Apresentação Cruzada/imunologia , Macrófagos/imunologia , Animais , Biomarcadores , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Comunicação Celular/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Ativação Linfocitária/imunologia , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Macrófagos/metabolismo , Especificidade de Órgãos , Transdução de Sinais
8.
Front Immunol ; 11: 605958, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33384693

RESUMO

Major histocompatibility complex (MHC) molecules are well-known for their role in antigen (cross-) presentation, thereby functioning as key players in the communication between immune cells, for example dendritic cells (DCs) and T cells, or immune cells and their targets, such as T cells and virus-infected or tumor cells. However, much less appreciated is the fact that MHC molecules can also act as signaling receptors. In this process, here referred to as reverse MHC class I (MHC-I) signaling, ligation of MHC molecules can lead to signal-transduction and cell regulatory effects in the antigen presenting cell. In the case of MHC-I, reverse signaling can have several outcomes, including apoptosis, migration, induced or reduced proliferation and cytotoxicity towards target cells. Here, we provide an overview of studies showing the signaling pathways and cell outcomes upon MHC-I stimulation in various immune and non-immune cells. Signaling molecules like RAC-alpha serine/threonine-protein kinase (Akt1), extracellular signal-regulated kinases 1/2 (ERK1/2), and nuclear factor-κB (NF-κB) were common signaling molecules activated upon MHC-I ligation in multiple cell types. For endothelial and smooth muscle cells, the in vivo relevance of reverse MHC-I signaling has been established, namely in the context of adverse effects after tissue transplantation. For other cell types, the role of reverse MHC-I signaling is less clear, since aspects like the in vivo relevance, natural MHC-I ligands and the extended downstream pathways are not fully known.The existing evidence, however, suggests that reverse MHC-I signaling is involved in the regulation of the defense against bacterial and viral infections and against malignancies. Thereby, reverse MHC-I signaling is a potential target for therapies against viral and bacterial infections, cancer immunotherapies and management of organ transplantation outcomes.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Sistema Imunitário/metabolismo , Animais , Apoptose , Citotoxicidade Imunológica , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Ligantes , Linfócitos/imunologia , Linfócitos/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa