Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 21(9): 3997-4005, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33881885

RESUMO

Electric field driven reversible phase transitions in two-dimensional (2D) materials are appealing for their potential in switching applications. Here, we introduce potassium intercalated MnO2 as an exemplary case. We demonstrate the synthesis of large-area single-crystal layered MnO2 via chemical vapor deposition as thin as 5 nm. These crystals are spontaneously intercalated by potassium ions during the synthesis. We showed that the charge transport in 2D K-MnO2 is dominated by motion of hydrated potassium ions in the interlayer space. Under a few volts bias, separation of potassium and the structural water leads to formation of different phases at the opposite terminals, and at larger biases K-MnO2 crystals exhibit reversible layered-to-spinel phase transition. These phase transitions are accompanied by electrical and optical changes in the material. We used the electric field driven ionic motion in K-MnO2 based devices to demonstrate the memristive capabilities of two terminal devices.

2.
ACS Appl Mater Interfaces ; 15(3): 4216-4225, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36635093

RESUMO

Fabricating electronic and optoelectronic devices by transferring pre-deposited metal electrodes has attracted considerable attention, owing to the improved device performance. However, the pre-deposited metal electrode typically involves complex fabrication procedures. Here, we introduce our facile electrode fabrication process which is free of lithography, lift-off, and reactive ion etching by directly press-transferring a single-walled carbon nanotube (SWCNT) film. We fabricated Schottky diodes for photodetector applications using dry-transferred SWCNT films as the transparent electrode to increase light absorption in photoactive MoS2 channels. The MoS2 flake vertically stacked with an SWCNT electrode can exhibit excellent photodetection performance with a responsivity of ∼2.01 × 103 A/W and a detectivity of ∼3.2 × 1012 Jones. Additionally, we carried out temperature-dependent current-voltage measurement and Fowler-Nordheim (FN) plot analysis to explore the dominant charge transport mechanism. The enhanced photodetection in the vertical configuration is found to be attributed to the FN tunneling and internal photoemission of charge carriers excited from indium tin oxide across the MoS2 layer. Our study provides a novel concept of using a photoactive MoS2 layer as a tunneling layer itself with a dry-transferred transparent SWCNT electrode for high-performance and energy-efficient optoelectronic devices.

3.
Adv Sci (Weinh) ; 10(29): e2303437, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37551999

RESUMO

Molybdenum ditelluride (MoTe2 ) exhibits immense potential in post-silicon electronics due to its bandgap comparable to silicon. Unlike other 2D materials, MoTe2 allows easy phase modulation and efficient carrier type control in electrical transport. However, its unstable nature and low-carrier mobility limit practical implementation in devices. Here, a deterministic method is proposed to improve the performance of MoTe2 devices by inducing local tensile strain through substrate engineering and encapsulation processes. The approach involves creating hole arrays in the substrate and using atomic layer deposition grown Al2 O3 as an additional back-gate dielectric layer on SiO2 . The MoTe2 channel is passivated with a thick layer of Al2 O3 post-fabrication. This structure significantly improves hole and electron mobilities in MoTe2 field-effect transistors (FETs), approaching theoretical limits. Hole mobility up to 130 cm-2  V-1 s-1 and electron mobility up to 160 cm-2  V-1 s-1 are achieved. Introducing local tensile strain through the hole array enhances electron mobility by up to 6 times compared to the unstrained devices. Remarkably, the devices exhibit metal-insulator transition in MoTe2 FETs, with a well-defined critical point. This study presents a novel technique to enhance carrier mobility in MoTe2 FETs, offering promising prospects for improving 2D material performance in electronic applications.

4.
Nanoscale Adv ; 3(13): 3894-3899, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36133020

RESUMO

Mechanical properties of transition metal dichalcogenides (TMDCs) are relevant to their prospective applications in flexible electronics. So far, the focus has been on the semiconducting TMDCs, mostly MoX2 and WX2 (X = S, Se) due to their potential in optoelectronics. A comprehensive understanding of the elastic properties of metallic TMDCs is needed to complement the semiconducting TMDCs in flexible optoelectronics. Thus, mechanical testing of metallic TMDCs is pertinent to the realization of the applications. Here, we report on the atomic force microscopy-based nano-indentation measurements on ultra-thin 2H-TaS2 crystals to elucidate the stretching and breaking of the metallic TMDCs. We explored the elastic properties of 2H-TaS2 at different thicknesses ranging from 3.5 nm to 12.6 nm and find that the Young's modulus is independent of the thickness at a value of 85.9 ± 10.6 GPa, which is lower than the semiconducting TMDCs reported so far. We determined the breaking strength as 5.07 ± 0.10 GPa which is 6% of the Young's modulus. This value is comparable to that of other TMDCs. We used ab initio calculations to provide an insight into the high elasticity measured in 2H-TaS2. We also performed measurements on a small number of 1T-TaTe2, 3R-NbS2 and 1T-NbTe2 samples and extended our ab initio calculations to these materials to gain a deeper understanding on the elastic and breaking properties of metallic TMDCs. This work illustrates that the studied metallic TMDCs are suitable candidates to be used as additives in composites as functional and structural elements and for flexible conductive electronic devices.

5.
Nanoscale ; 11(15): 7317-7323, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30938382

RESUMO

Understanding the mechanisms involved in chemical vapour deposition (CVD) synthesis of atomically thin transition metal dichalcogenides (TMDCs) requires precise control of numerous growth parameters. All the proposed mechanisms and their relationship with the growth conditions are inferred from characterising intermediate formations obtained by stopping the growth blindly. To fully understand the reaction routes that lead to the monolayer formation, real time observation and control of the growth are needed. Here, we demonstrate how a custom-made CVD chamber that allows real time optical monitoring can be employed to study the reaction routes that are critical to the production of the desired layered thin crystals in salt assisted TMDC synthesis. Our real time observations reveal the reaction between the salt and the metallic precursor to form intermediate compounds which lead to the layered crystal formation. We identified that both the vapour-solid-solid and vapour-liquid-solid growth routes are in an interplay. Furthermore, we demonstrate the role H2 plays in the salt-assisted WSe2 synthesis. Finally, we observed the synthesis of the MoSe2/WSe2 heterostructures optically, and elucidated the conditions required for both lateral and vertical heterostructure syntheses.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa