Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Electrophoresis ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38571381

RESUMO

The recent rise in nucleic acid-based vaccines and therapies has resulted in an increased demand for plasmid DNA (pDNA). As a result, there is added pressure to streamline the manufacturing of these vectors, particularly their design and construction, which is currently considered a bottleneck. A significant challenge in optimizing pDNA production is the lack of high-throughput and rapid analytical methods to support the numerous samples produced during the iterative plasmid construction step and for batch-to-batch purity monitoring. pDNA is generally present as one of three isoforms: supercoiled, linear, or open circular. Depending on the ultimate use, the desired isoform may be supercoiled in the initial stages for cell transfection or linear in the case of mRNA synthesis. Here, we present a high-throughput microfluidic electrophoresis method capable of detecting the three pDNA isoforms and determining the size and concentration of the predominant supercoiled and linear isoforms from 2 to 7 kb. The limit of detection of the method is 0.1 ng/µL for the supercoiled and linear isoforms and 0.5 ng/µL for the open circular isoform, with a maximum loading capacity of 10-15 ng/µL. The turnaround time is 1 min/sample, and the volume requirement is 10 µL, making the method suitable for process optimization and batch-to-batch analysis. The results presented in this study will enhance the understanding of electrophoretic transport in microscale systems dependent on molecular conformations and potentially aid technological advances in diverse areas relevant to microfluidic devices.

2.
ACS Omega ; 9(3): 4027-4036, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284067

RESUMO

Despite recent advances in nucleic acid delivery systems with the success of LNP vehicles, adeno-associated virus (AAV) remains the leading platform for targeted gene delivery due to its low immunogenicity to humans, high transduction efficiency, and range of serotypes with varying tropisms. Depending on the therapeutic goals and serotype used, different production conditions may be more amenable, generating an ever-growing need for rapid yet robust analytical techniques to support the high-quality manufacturing of AAV. A critical bottleneck exists for assessing full capsids where rapid, high-throughput techniques capable of analyzing a range of serotypes are needed. Here, we present a rapid, high-throughput analytical technique, microfluidic electrophoresis, for the assessment of full capsids compatible with AAV1, AAV2, AAV6, AAV8, and AAV9 without the need for assay modifications or optimizations, and AAV5 with some constraints. The method presented in this study uses a mathematical formulation we developed previously with a reference standard to combine the independently obtained capsid protein and single-stranded DNA (ssDNA) profiles to estimate the percentage of full capsids in a sample of unknown concentration. We assessed the ability to use a single serotype (AAV8) as the reference standard regardless of the serotype of the sample being analyzed so long as the melting temperature (Tm) of the capsids is within 12 °C from the Tm of AAV8. Using this method, we are able to characterize samples ±6.1% with an average analytical turnaround time of <5 min/sample, using only 10 µL/sample at a concentration of 2.5 × 1012 VG/mL.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa