Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(33): e2314074121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39121162

RESUMO

Adolescent development of human brain structural and functional networks is increasingly recognized as fundamental to emergence of typical and atypical adult cognitive and emotional proodal magnetic resonance imaging (MRI) data collected from N [Formula: see text] 300 healthy adolescents (51%; female; 14 to 26 y) each scanned repeatedly in an accelerated longitudinal design, to provide an analyzable dataset of 469 structural scans and 448 functional MRI scans. We estimated the morphometric similarity between each possible pair of 358 cortical areas on a feature vector comprising six macro- and microstructural MRI metrics, resulting in a morphometric similarity network (MSN) for each scan. Over the course of adolescence, we found that morphometric similarity increased in paralimbic cortical areas, e.g., insula and cingulate cortex, but generally decreased in neocortical areas, and these results were replicated in an independent developmental MRI cohort (N [Formula: see text] 304). Increasing hubness of paralimbic nodes in MSNs was associated with increased strength of coupling between their morphometric similarity and functional connectivity. Decreasing hubness of neocortical nodes in MSNs was associated with reduced strength of structure-function coupling and increasingly diverse functional connections in the corresponding fMRI networks. Neocortical areas became more structurally differentiated and more functionally integrative in a metabolically expensive process linked to cortical thinning and myelination, whereas paralimbic areas specialized for affective and interoceptive functions became less differentiated, as hypothetically predicted by a developmental transition from periallocortical to proisocortical organization of the cortex. Cytoarchitectonically distinct zones of the human cortex undergo distinct neurodevelopmental programs during typical adolescence.


Assuntos
Imageamento por Ressonância Magnética , Neocórtex , Humanos , Adolescente , Feminino , Masculino , Neocórtex/diagnóstico por imagem , Neocórtex/crescimento & desenvolvimento , Neocórtex/fisiologia , Adulto , Adulto Jovem , Mapeamento Encefálico/métodos , Desenvolvimento do Adolescente/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/crescimento & desenvolvimento , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia
2.
Biol Psychiatry ; 96(6): 486-494, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460580

RESUMO

BACKGROUND: Symptoms of borderline personality disorder (BPD) often manifest during adolescence, but the underlying relationship between these debilitating symptoms and the development of functional brain networks is not well understood. Here, we aimed to investigate how multivariate patterns of functional connectivity are associated with borderline personality traits in large samples of young adults and adolescents. METHODS: We used functional magnetic resonance imaging data from young adults and adolescents from the HCP-YA (Human Connectome Project Young Adult) (n = 870, ages 22-37 years, 457 female) and the HCP-D (Human Connectome Project Development) (n = 223, ages 16-21 years, 121 female). A previously validated BPD proxy score was derived from the NEO Five-Factor Inventory. A ridge regression model with cross-validation and nested hyperparameter tuning was trained and tested in HCP-YA to predict BPD scores in unseen data from regional functional connectivity. The trained model was further tested on data from HCP-D without further tuning. Finally, we tested how the connectivity patterns associated with BPD aligned with age-related changes in connectivity. RESULTS: Multivariate functional connectivity patterns significantly predicted out-of-sample BPD scores in unseen data in young adults (HCP-YA ppermuted = .001) and older adolescents (HCP-D ppermuted = .001). Regional predictive capacity was heterogeneous; the most predictive regions were found in functional systems relevant for emotion regulation and executive function, including the ventral attention network. Finally, regional functional connectivity patterns that predicted BPD scores aligned with those associated with development in youth. CONCLUSIONS: Individual differences in functional connectivity in developmentally sensitive regions are associated with borderline personality traits.


Assuntos
Transtorno da Personalidade Borderline , Encéfalo , Conectoma , Imageamento por Ressonância Magnética , Humanos , Transtorno da Personalidade Borderline/fisiopatologia , Transtorno da Personalidade Borderline/diagnóstico por imagem , Feminino , Adulto Jovem , Adulto , Masculino , Adolescente , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia
3.
Nat Commun ; 15(1): 3511, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664387

RESUMO

Human cortical maturation has been posited to be organized along the sensorimotor-association axis, a hierarchical axis of brain organization that spans from unimodal sensorimotor cortices to transmodal association cortices. Here, we investigate the hypothesis that the development of functional connectivity during childhood through adolescence conforms to the cortical hierarchy defined by the sensorimotor-association axis. We tested this pre-registered hypothesis in four large-scale, independent datasets (total n = 3355; ages 5-23 years): the Philadelphia Neurodevelopmental Cohort (n = 1207), Nathan Kline Institute-Rockland Sample (n = 397), Human Connectome Project: Development (n = 625), and Healthy Brain Network (n = 1126). Across datasets, the development of functional connectivity systematically varied along the sensorimotor-association axis. Connectivity in sensorimotor regions increased, whereas connectivity in association cortices declined, refining and reinforcing the cortical hierarchy. These consistent and generalizable results establish that the sensorimotor-association axis of cortical organization encodes the dominant pattern of functional connectivity development.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Córtex Sensório-Motor , Humanos , Adolescente , Feminino , Masculino , Adulto Jovem , Criança , Córtex Sensório-Motor/fisiologia , Córtex Sensório-Motor/diagnóstico por imagem , Pré-Escolar , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Vias Neurais/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Córtex Cerebral/crescimento & desenvolvimento
4.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915591

RESUMO

Human cortical development follows a sensorimotor-to-association sequence during childhood and adolescence1-6. The brain's capacity to enact this sequence over decades indicates that it relies on intrinsic mechanisms to regulate inter-regional differences in the timing of cortical maturation, yet regulators of human developmental chronology are not well understood. Given evidence from animal models that thalamic axons modulate windows of cortical plasticity7-12, here we evaluate the overarching hypothesis that structural connections between the thalamus and cortex help to coordinate cortical maturational heterochronicity during youth. We first introduce, cortically annotate, and anatomically validate a new atlas of human thalamocortical connections using diffusion tractography. By applying this atlas to three independent youth datasets (ages 8-23 years; total N = 2,676), we reproducibly demonstrate that thalamocortical connections develop along a maturational gradient that aligns with the cortex's sensorimotor-association axis. Associative cortical regions with thalamic connections that take longest to mature exhibit protracted expression of neurochemical, structural, and functional markers indicative of higher circuit plasticity as well as heightened environmental sensitivity. This work highlights a central role for the thalamus in the orchestration of hierarchically organized and environmentally sensitive windows of cortical developmental malleability.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa