Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 37(3): 465-475, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38408751

RESUMO

To modernize genotoxicity assessment and reduce reliance on experimental animals, new approach methodologies (NAMs) that provide human-relevant dose-response data are needed. Two transcriptomic biomarkers, GENOMARK and TGx-DDI, have shown a high classification accuracy for genotoxicity. As these biomarkers were extracted from different training sets, we investigated whether combining the two biomarkers in a human-derived metabolically competent cell line (i.e., HepaRG) provides complementary information for the classification of genotoxic hazard identification and potency ranking. First, the applicability of GENOMARK to TempO-Seq, a high-throughput transcriptomic technology, was evaluated. HepaRG cells were exposed for 72 h to increasing concentrations of 10 chemicals (i.e., eight known in vivo genotoxicants and two in vivo nongenotoxicants). Gene expression data were generated using the TempO-Seq technology. We found a prediction performance of 100%, confirming the applicability of GENOMARK to TempO-Seq. Classification using TGx-DDI was then compared to GENOMARK. For the chemicals identified as genotoxic, benchmark concentration modeling was conducted to perform potency ranking. The high concordance observed for both hazard classification and potency ranking by GENOMARK and TGx-DDI highlights the value of integrating these NAMs in a weight of evidence evaluation of genotoxicity.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Animais , Humanos , Perfilação da Expressão Gênica/métodos , Biomarcadores , Linhagem Celular , Dano ao DNA
2.
Toxicol Sci ; 200(1): 95-113, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38603619

RESUMO

Organophosphate esters (OPEs), used as flame retardants and plasticizers, are present ubiquitously in the environment. Previous studies suggest that exposure to OPEs is detrimental to female fertility in humans. However, no experimental information is available on the effects of OPE mixtures on ovarian granulosa cells, which play essential roles in female reproduction. We used high-content imaging to investigate the effects of environmentally relevant OPE mixtures on KGN human granulosa cell phenotypes. Perturbations to steroidogenesis were assessed using ELISA and qRT-PCR. A high-throughput transcriptomic approach, TempO-Seq, was used to identify transcriptional changes in a targeted panel of genes. Effects on lipid homeostasis were explored using a cholesterol assay and global lipidomic profiling. OPE mixtures altered multiple phenotypic features of KGN cells, with triaryl OPEs in the mixture showing higher potencies than other mixture components. The mixtures increased basal production of steroid hormones; this was mediated by significant changes in the expression of critical transcripts involved in steroidogenesis. Further, the total-OPE mixture disrupted cholesterol homeostasis and the composition of intracellular lipid droplets. Exposure to complex mixtures of OPEs, similar to those found in house dust, may adversely affect female reproductive health by altering a multitude of phenotypic and functional endpoints in granulosa cells. This study provides novel insights into the mechanisms of actions underlying the toxicity induced by OPEs and highlights the need to examine the effects of human relevant chemical mixtures.


Assuntos
Poeira , Ésteres , Retardadores de Chama , Células da Granulosa , Lipidômica , Organofosfatos , Fenótipo , Transcriptoma , Humanos , Feminino , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Transcriptoma/efeitos dos fármacos , Organofosfatos/toxicidade , Ésteres/toxicidade , Retardadores de Chama/toxicidade , Linhagem Celular , Metabolismo dos Lipídeos/efeitos dos fármacos , Plastificantes/toxicidade , Colesterol/metabolismo
3.
Chem Biol Interact ; 394: 110952, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570061

RESUMO

High throughput transcriptomics (HTTr) profiling has the potential to rapidly and comprehensively identify molecular targets of environmental chemicals that can be linked to adverse outcomes. We describe here the construction and characterization of a 50-gene expression biomarker designed to identify estrogen receptor (ER) active chemicals in HTTr datasets. Using microarray comparisons, the genes in the biomarker were identified as those that exhibited consistent directional changes when ER was activated (4 ER agonists; 4 ESR1 gene constitutively active mutants) and opposite directional changes when ER was suppressed (4 antagonist treatments; 4 ESR1 knockdown experiments). The biomarker was evaluated as a predictive tool using the Running Fisher algorithm by comparison to annotated gene expression microarray datasets including those evaluating the transcriptional effects of hormones and chemicals in MCF-7 cells. Depending on the reference dataset used, the biomarker had a predictive accuracy for activation of up to 96%. To demonstrate applicability for HTTr data analysis, the biomarker was used to identify ER activators in a set of 15 chemicals that are considered potential bisphenol A (BPA) alternatives examined at up to 10 concentrations in MCF-7 cells and analyzed by full-genome TempO-Seq. Using benchmark dose (BMD) modeling, the biomarker genes stratified the ER potency of BPA alternatives consistent with previous studies. These results demonstrate that the ER biomarker can be used to accurately identify ER activators in transcript profile data derived from MCF-7 cells.


Assuntos
Compostos Benzidrílicos , Fenóis , Receptores de Estrogênio , Humanos , Células MCF-7 , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Compostos Benzidrílicos/toxicidade , Fenóis/farmacologia , Fenóis/toxicidade , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Biomarcadores/metabolismo , Moduladores de Receptor Estrogênico/farmacologia
4.
Photochem Photobiol ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317517

RESUMO

Exposure to ultraviolet radiation (UV-R), from both natural and artificial tanning, heightens the risk of skin cancer by inducing molecular changes in cells and tissues. Despite established transcriptional alterations at a molecular level due to UV-R exposure, uncertainties persist regarding UV radiation characterization and subsequent genomic changes. Our study aimed to mechanistically explore dose- and time-dependent gene expression changes, that may drive short-term (e.g., sunburn) and long-term actinic (e.g., skin cancer) consequences. Using C57BL/6N mouse skin, we analyzed transcriptomic expression following exposure to five erythemally weighted UV-R doses (0, 5, 10, 20, and 40 mJ/cm2 ) emitted by a UV-R tanning device. At 96 h post-exposure, 5 mJ/cm2 induced 116 statistically significant differentially expressed genes (DEGs) associated with structural changes from UV-R damage. The highest number of significant gene expression changes occurred at 6 and 48 h post-exposure in the 20 and 40 mJ/cm2 dose groups. Notably, at 40 mJ/cm2 , 13 DEGs related to skin barrier homeostasis were consistently perturbed across all timepoints. UV-R exposure activated pathways involving oxidative stress, P53 signaling, inflammation, biotransformation, skin barrier maintenance, and innate immunity. This in vivo study's transcriptional data offers mechanistic insights into both short-term and potential non-threshold-dependent long-term health effects of UV-R tanning.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa