Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(29): e2313851121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38976734

RESUMO

Mass spectrometry-based omics technologies are increasingly used in perturbation studies to map drug effects to biological pathways by identifying significant molecular events. Significance is influenced by fold change and variation of each molecular parameter, but also by multiple testing corrections. While the fold change is largely determined by the biological system, the variation is determined by experimental workflows. Here, it is shown that memory effects of prior subculture can influence the variation of perturbation profiles using the two colon carcinoma cell lines SW480 and HCT116. These memory effects are largely driven by differences in growth states that persist into the perturbation experiment. In SW480 cells, memory effects combined with moderate treatment effects amplify the variation in multiple omics levels, including eicosadomics, proteomics, and phosphoproteomics. With stronger treatment effects, the memory effect was less pronounced, as demonstrated in HCT116 cells. Subculture homogeneity was controlled by real-time monitoring of cell growth. Controlled homogeneous subculture resulted in a perturbation network of 321 causal conjectures based on combined proteomic and phosphoproteomic data, compared to only 58 causal conjectures without controlling subculture homogeneity in SW480 cells. Some cellular responses and regulatory events were identified that extend the mode of action of arsenic trioxide (ATO) only when accounting for these memory effects. Controlled prior subculture led to the finding of a synergistic combination treatment of ATO with the thioredoxin reductase 1 inhibitor auranofin, which may prove useful in the management of NRF2-mediated resistance mechanisms.


Assuntos
Proteômica , Humanos , Proteômica/métodos , Linhagem Celular Tumoral , Células HCT116 , Técnicas de Cultura de Células/métodos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Trióxido de Arsênio/farmacologia , Auranofina/farmacologia , Proliferação de Células/efeitos dos fármacos , Espectrometria de Massas/métodos
2.
J Proteome Res ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520676

RESUMO

Metabolomics is an emerging and powerful bioanalytical method supporting clinical investigations. Serum and plasma are commonly used without rational prioritization. Serum is collected after blood coagulation, a complex biochemical process involving active platelet metabolism. This may affect the metabolome and increase the variance, as platelet counts and function may vary substantially in individuals. A multiomics approach systematically investigating the suitability of serum and plasma for clinical studies demonstrated that metabolites correlated well (n = 461, R2 = 0.991), whereas lipid mediators (n = 83, R2 = 0.906) and proteins (n = 322, R2 = 0.860) differed substantially between specimen. Independently, analysis of platelet releasates identified most biomolecules significantly enriched in serum compared to plasma. A prospective, randomized, controlled parallel group metabolomics trial with acetylsalicylic acid administered for 7 days demonstrated that the apparent drug effects significantly differ depending on the analyzed specimen. Only serum analyses of healthy individuals suggested a significant downregulation of TXB2 and 12-HETE, which were specifically formed during coagulation in vitro. Plasma analyses reliably identified acetylsalicylic acid effects on metabolites and lipids occurring in vivo such as an increase in serotonin, 15-deoxy-PGJ2 and sphingosine-1-phosphate and a decrease in polyunsaturated fatty acids. The present data suggest that plasma should be preferred above serum for clinical metabolomics studies as the serum metabolome may be substantially confounded by platelets.

3.
Chembiochem ; 24(17): e202300178, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37345897

RESUMO

During recent years, accumulating evidence suggested that metal-based candidate drugs are promising modulators of cytoskeletal and cytoskeleton-associated proteins. This was substantiated by the identification and validation of actin, vimentin and plectin as targets of distinct ruthenium(II)- and platinum(II)-based modulators. Despite this, structural information about molecular interaction is scarcely available. Here, we compile the scattered reports about metal-based candidate molecules that influence the cytoskeleton, its associated proteins and explore their potential to interfere in cancer-related processes, including proliferation, invasion and the epithelial-to-mesenchymal transition. Advances in this field depend crucially on determining binding sites and on gaining comprehensive insight into molecular drug-target interactions. These are key steps towards establishing yet elusive structure-activity relationships.


Assuntos
Citoesqueleto , Microtúbulos , Citoesqueleto/metabolismo , Filamentos Intermediários/química , Filamentos Intermediários/metabolismo , Actinas
4.
Chemistry ; 29(4): e202202648, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36222279

RESUMO

A series of six highly lipophilic Cp-substituted molybdenocenes bearing different bioactive chelating ligands was synthesized and characterized by NMR spectroscopy, mass spectrometry and X-ray crystallography. In vitro experiments showed a greatly increased cytotoxic potency when compared to the non-Cp-substituted counterparts. In vivo experiments performed with the dichlorido precursor, (Ph2 C-Cp)2 MoCl2 and the in vitro most active complex, containing the thioflavone ligand, showed an inhibition of tumour growth. Proteomic studies on the same two compounds demonstrated a significant regulation of tubulin-associated and mitochondrial inner membrane proteins for both compounds and a strong metabolic effect of the thioflavone containing complex.


Assuntos
Antineoplásicos , Neoplasias , Animais , Camundongos , Estrutura Molecular , Proteômica , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Quelantes/química , Cristalografia por Raios X , Ligantes , Linhagem Celular Tumoral
5.
Cereb Cortex ; 31(6): 3096-3106, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33585896

RESUMO

Caffeine is commonly used to combat high sleep pressure on a daily basis. However, interference with sleep-wake regulation could disturb neural homeostasis and insufficient sleep could lead to alterations in human gray matter. Hence, in this double-blind, randomized, cross-over study, we examined the impact of 10-day caffeine (3 × 150 mg/day) on human gray matter volumes (GMVs) and cerebral blood flow (CBF) by fMRI MP-RAGE and arterial spin-labeling sequences in 20 habitual caffeine consumers, compared with 10-day placebo (3 × 150 mg/day). Sleep pressure was quantified by electroencephalographic slow-wave activity (SWA) in the previous nighttime sleep. Nonparametric voxel-based analyses revealed a significant reduction in GMV in the medial temporal lobe (mTL) after 10 days of caffeine intake compared with 10 days of placebo, voxel-wisely adjusted for CBF considering the decreased perfusion after caffeine intake compared with placebo. Larger GMV reductions were associated with higher individual concentrations of caffeine and paraxanthine. Sleep SWA was, however, neither different between conditions nor associated with caffeine-induced GMV reductions. Therefore, the data do not suggest a link between sleep depth during daily caffeine intake and changes in brain morphology. In conclusion, daily caffeine intake might induce neural plasticity in the mTL depending on individual metabolic processes.


Assuntos
Cafeína/administração & dosagem , Circulação Cerebrovascular/efeitos dos fármacos , Substância Cinzenta/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Sono/efeitos dos fármacos , Lobo Temporal/efeitos dos fármacos , Adulto , Circulação Cerebrovascular/fisiologia , Estudos Cross-Over , Método Duplo-Cego , Eletroencefalografia/métodos , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Plasticidade Neuronal/fisiologia , Sono/fisiologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Adulto Jovem
6.
Angew Chem Int Ed Engl ; 61(43): e202209136, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36004624

RESUMO

Target identification remains a critical challenge in inorganic drug discovery to deconvolute potential polypharmacology. Herein, we describe an improved approach to prioritize candidate protein targets based on a combination of dose-dependent chemoproteomics and treatment effects in living cancer cells for the rhenium tricarbonyl compound TRIP. Chemoproteomics revealed 89 distinct dose-dependent targets with concentrations of competitive saturation between 0.1 and 32 µM despite the broad proteotoxic effects of TRIP. Target-response networks revealed two highly probable targets of which the Fe-S cluster biogenesis factor NUBP2 was competitively saturated by free TRIP at nanomolar concentrations. Importantly, TRIP treatment led to a down-regulation of Fe-S cluster containing proteins and upregulated ferritin. Fe-S cluster depletion was further verified by assessing mitochondrial bioenergetics. Consequently, TRIP emerges as a first-in-class modulator of the scaffold protein NUBP2, which disturbs Fe-S cluster biogenesis at sub-cytotoxic concentrations in ovarian cancer cells.


Assuntos
Proteínas Ferro-Enxofre , Neoplasias Ovarianas , Rênio , Humanos , Feminino , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Ferritinas/metabolismo
7.
Molecules ; 26(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440755

RESUMO

The in situ spectroelectrochemical cyclic voltammetric studies of the antimony-monocapped nickel(II) and iron(II) tris-pyridineoximates with a labile triethylantimony cross-linking group and Zr(IV)/Hf(IV) phthalocyaninate complexes were performed in order to understand the nature of the redox events in the molecules of heterodinuclear zirconium(IV) and hafnium(IV) phthalocyaninate-capped derivatives. Electronic structures of their 1e-oxidized and 1e-electron-reduced forms were experimentally studied by electron paramagnetic resonance (EPR) spectroscopy and UV-vis-near-IR spectroelectrochemical experiments and supported by density functional theory (DFT) calculations. The investigated hybrid molecular systems that combine a transition metal (pseudo)clathrochelate and a Zr/Hf-phthalocyaninate moiety exhibit quite rich redox activity both in the cathodic and in the anodic region. These binuclear compounds and their precursors were tested as potential catalysts in oxidation reactions of cyclohexane and the results are discussed.


Assuntos
Complexos de Coordenação/química , Cicloexanos/química , Háfnio/química , Zircônio/química , Catálise , Teoria da Densidade Funcional , Espectroscopia de Ressonância de Spin Eletrônica , Indóis/química , Ferro/química , Isoindóis , Modelos Moleculares , Níquel/química , Oxirredução , Oximas/química , Piridinas/química
8.
Angew Chem Int Ed Engl ; 60(10): 5063-5068, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33369073

RESUMO

The ruthenium-based anticancer agent BOLD-100/KP1339 has shown promising results in several in vitro and in vivo tumour models as well as in early clinical trials. However, its mode of action remains to be fully elucidated. Recent evidence identified stress induction in the endoplasmic reticulum (ER) and concomitant down-modulation of HSPA5 (GRP78) as key drug effects. By exploiting the naturally formed adduct between BOLD-100 and human serum albumin as an immobilization strategy, we were able to perform target-profiling experiments that revealed the ribosomal proteins RPL10, RPL24, and the transcription factor GTF2I as potential interactors of this ruthenium(III) anticancer agent. Integrating these findings with proteomic profiling and transcriptomic experiments supported ribosomal disturbance and concomitant induction of ER stress. The formation of polyribosomes and ER swelling of treated cancer cells revealed by TEM validated this finding. Thus, the direct interaction of BOLD-100 with ribosomal proteins seems to accompany ER stress-induction and modulation of GRP78 in cancer cells.


Assuntos
Antineoplásicos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Proteína Ribossômica L10/metabolismo , Proteínas Ribossômicas/metabolismo , Antineoplásicos/química , Retículo Endoplasmático/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Células HCT116 , Humanos , Compostos Organometálicos/química , Polirribossomos/metabolismo , Rutênio/química , Fatores de Transcrição TFII/metabolismo , Transcriptoma
9.
Angew Chem Int Ed Engl ; 60(24): 13405-13413, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33755286

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, characterized by an aberrant metabolic phenotype with high metastatic capacity, resulting in poor patient prognoses and low survival rates. We designed a series of novel AuIII cyclometalated prodrugs of energy-disrupting Type II antidiabetic drugs namely, metformin and phenformin. Prodrug activation and release of the metformin ligand was achieved by tuning the cyclometalated AuIII fragment. The lead complex 3met was 6000-fold more cytotoxic compared to uncoordinated metformin and significantly reduced tumor burden in mice with aggressive breast cancers with lymphocytic infiltration into tumor tissues. These effects was ascribed to 3met interfering with energy production in TNBCs and inhibiting associated pro-survival responses to induce deadly metabolic catastrophe.


Assuntos
Antineoplásicos/metabolismo , Metformina/metabolismo , Pró-Fármacos/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/química , Avaliação Pré-Clínica de Medicamentos , Metabolismo Energético/efeitos dos fármacos , Ouro/química , Humanos , Metformina/química , Camundongos , Conformação Molecular , Fenformin/química , Fenformin/metabolismo , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Transplante Heterólogo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
10.
Int J Cancer ; 147(6): 1680-1693, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32064608

RESUMO

Ponatinib is a small molecule multi-tyrosine kinase inhibitor clinically approved for anticancer therapy. Molecular mechanisms by which cancer cells develop resistance against ponatinib are currently poorly understood. Likewise, intracellular drug dynamics, as well as potential microenvironmental factors affecting the activity of this compound are unknown. Cell/molecular biological and analytical chemistry methods were applied to investigate uptake kinetics/subcellular distribution, the role of lipid droplets (LDs) and lipoid microenvironment compartments in responsiveness of FGFR1-driven lung cancer cells toward ponatinib. Selection of lung cancer cells for acquired ponatinib resistance resulted in elevated intracellular lipid levels. Uncovering intrinsic ponatinib fluorescence enabled dissection of drug uptake/retention kinetics in vitro as well as in mouse tissue cryosections, and revealed selective drug accumulation in LDs of cancer cells. Pharmacological LD upmodulation or downmodulation indicated that the extent of LD formation and consequent ponatinib incorporation negatively correlated with anticancer drug efficacy. Co-culturing with adipocytes decreased ponatinib levels and fostered survival of cancer cells. Ponatinib-selected cancer cells exhibited increased LD levels and enhanced ponatinib deposition into this organelle. Our findings demonstrate intracellular deposition of the clinically approved anticancer compound ponatinib into LDs. Furthermore, increased LD biogenesis was identified as adaptive cancer cell-defense mechanism via direct drug scavenging. Together, this suggests that LDs represent an underestimated organelle influencing intracellular pharmacokinetics and activity of anticancer tyrosine kinase inhibitors. Targeting LD integrity might constitute a strategy to enhance the activity not only of ponatinib, but also other clinically approved, lipophilic anticancer therapeutics.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Imidazóis/farmacocinética , Gotículas Lipídicas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacocinética , Piridazinas/farmacocinética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Imidazóis/uso terapêutico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Inibidores de Proteínas Quinases/uso terapêutico , Piridazinas/uso terapêutico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Chembiochem ; 21(21): 3071-3076, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32511840

RESUMO

To gain more insight into the factors controlling efficient cysteine arylation by cyclometallated AuIII complexes, the reaction between selected gold compounds and different peptides was investigated by high-resolution liquid chromatography electrospray ionization mass spectrometry (HR-LC-ESI-MS). The deduced mechanisms of C-S cross-coupling, also supported by density functional theory (DFT) and quantum mechanics/molecular mechanics (QM/MM) calculations, evidenced the key role of secondary peptidic gold binding sites in favouring the process of reductive elimination.


Assuntos
Cisteína/síntese química , Ouro/química , Compostos Organoáuricos/química , Peptídeos/química , Cisteína/química , Teoria da Densidade Funcional , Modelos Moleculares , Estrutura Molecular , Compostos Organoáuricos/síntese química
12.
Bioconjug Chem ; 31(5): 1279-1288, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32243752

RESUMO

The conjugation of metal-based scaffolds to peptides, proteins, or antibodies allows the systemic targeting of these payloads to specific locations in the body, such as target cells/tissues (e.g., cancer) and subcellular compartments, for either therapy or imaging. This Topical Review includes an overview of the available chemical strategies to achieve metal-peptidic bioconjugates for biomedical applications, focusing on the types of chemical functionalities used to tether the drug to the peptide directly or indirectly. Central to all the possible approaches is the development of highly efficient and selective bioconjugation reactions that operate under mild, peptide-compatible conditions. For each strategy, selected examples are highlighted with particular emphasis to the studies reporting the therapeutic effects of the metal-peptidic conjugates in the treatment of cancer. Overall, some of the herewith discussed cases clearly hold promise for translation into clinically meaningful applications in the field of targeted therapeutics. Nevertheless, novel chemical approaches enabling the chemoselective metalation of specific residues in peptides under biologically friendly conditions, as well as the design of stimuli-responsive bioconjugates, are still expected to emerge. Certainly, the peculiar biorthogonal reactivity of metallodrugs provides an enlarged toolbox of opportunities for bioconjugation. Therefore, we outline a number of possible future directions and applications.


Assuntos
Metais/química , Peptídeos/química , Animais , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Humanos , Peptídeos/uso terapêutico
13.
Chemistry ; 26(67): 15528-15537, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32902006

RESUMO

The organometallic AuI bis-N-heterocyclic carbene complex [Au(9-methylcaffeine-8-ylidene)2 ]+ (AuTMX2 ) was previously shown to selectively and potently stabilise telomeric DNA G-quadruplex (G4) structures. This study sheds light on the molecular reactivity and mode of action of AuTMX2 in the cellular context using mass spectrometry-based methods, including shotgun proteomics in A2780 ovarian cancer cells. In contrast to other metal-based anticancer agents, this organogold compound is less prone to form coordinative bonds with biological nucleophiles and is expected to exert its drug effects mainly by non-covalent interactions. Global protein expression changes of treated cancer cells revealed a multimodal mode of action of AuTMX2 by alterations in the nucleolus, telomeres, actin stress-fibres and stress-responses, which were further supported by pharmacological assays, fluorescence microscopy and cellular accumulation experiments. Proteomic data are available via ProteomeXchange with identifier PXD020560.


Assuntos
Antineoplásicos , Ouro , Compostos Organometálicos , Neoplasias Ovarianas , Antineoplásicos/farmacologia , Cafeína/análogos & derivados , Cafeína/química , Cafeína/farmacologia , Linhagem Celular Tumoral , Feminino , Ouro/química , Ouro/farmacologia , Humanos , Metano/análogos & derivados , Metano/química , Metano/farmacologia , Compostos Organometálicos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Proteômica
14.
Mol Cell Proteomics ; 17(2): 290-303, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29196338

RESUMO

B cell chronic lymphocytic leukemia (B-CLL), the most common type of leukemia in adults, is still essentially incurable despite the development of novel therapeutic strategies. This reflects the incomplete understanding of the pathophysiology of this disease. A comprehensive proteome analysis of primary human B-CLL cells and B cells from younger as well as elderly healthy donors was performed. For comparison, the chronic B cell leukemia cell line JVM-13 was also included. A principal component analysis comprising 6,945 proteins separated these four groups, placing B cells of aged-matched controls between those of young donors and B-CLL patients, while identifying JVM-13 as poorly related cells. Mass spectrometric proteomics data have been made fully accessible via ProteomeXchange with identifier PXD006570-PXD006572, PXD006576, PXD006578, and PXD006589-PXD006591. Remarkably, B cells from aged controls displayed significant regulation of proteins related to stress management in mitochondria and ROS stress such as DLAT, FIS1, and NDUFAB1, and DNA repair, including RAD9A, MGMT, and XPA. ROS levels were indeed found significantly increased in B cells but not in T cells or monocytes from aged individuals. These alterations may be relevant for tumorigenesis and were observed similarly in B-CLL cells. In B-CLL cells, some remarkable unique features like the loss of tumor suppressor molecules PNN and JARID2, the stress-related serotonin transporter SLC6A4, and high expression of ZNF207, CCDC88A, PIGR and ID3, otherwise associated with stem cell phenotype, were determined. Alterations of metabolic enzymes were another outstanding feature in comparison to normal B cells, indicating increased beta-oxidation of fatty acids and increased consumption of glutamine. Targeted metabolomics assays corroborated these results. The present findings identify a potential proteome signature for immune senescence in addition to previously unrecognized features of B-CLL cells and suggest that aging may be accompanied by cellular reprogramming functionally relevant for predisposing B cells to transform to B-CLL cells.


Assuntos
Envelhecimento/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteínas de Neoplasias/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Metabolômica , Pessoa de Meia-Idade , Proteômica
15.
Chem Soc Rev ; 47(3): 909-928, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29170783

RESUMO

Anticancer metallodrugs based on ruthenium and osmium are among the most investigated and advanced non-platinum metallodrugs. Inorganic drug discovery with these agents has undergone considerable advances over the past two decades and has currently two representatives in active clinical trials. As many ruthenium and osmium metallodrugs are prodrugs, a key question to be addressed is how the molecular reactivity of such metal-based therapeutics dictates the selectivity and the type of interaction with molecular targets. Within this frame, this review introduces the field by the examples of the most advanced ruthenium lead structures. Then, global structure-activity relationships are discussed for ruthenium and osmium metallodrugs with respect to in vitro antiproliferative/cytotoxic activity and in vivo tumor-inhibiting properties, as well as pharmacokinetics. Determining and validating global mechanisms of action and molecular targets are still major current challenges. Moreover, significant efforts must be invested in screening in vivo tumor models that mimic human pathophysiology to increase the predictability for successful preclinical and clinical development of ruthenium and osmium metallodrugs.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Compostos Organometálicos/farmacologia , Osmio/farmacologia , Rutênio/farmacologia , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias/patologia , Compostos Organometálicos/química , Osmio/química , Rutênio/química , Relação Estrutura-Atividade
16.
Inorg Chem ; 57(23): 14852-14865, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30457328

RESUMO

A series of novel (C∧N∧N) cyclometalated AuIII complexes of general formula [Au(bipydmb-H)X][PF6] (bipydmb-H = C∧N∧N cyclometalated 6-(1,1-dimethylbenzyl)-2,2'-bipyridine) were prepared with a range of anionic ligands X in the fourth coordination position, featuring C (alkynyl)-, N-, O-, or S-donor atoms. The X ligands are varied in nature and include three coumarins, 4-ethynylaniline, saccharine, and thio-ß-d-glucose tetraacetate, the tripeptide glutathione (GSH), and a coumarin-substituted amide derived from 4-ethynylaniline. The gold(I) complex [Au(C2ArNHCOQ)(PPh3)] (HC2ArNHCOQ = N-(4-ethynylphenyl)-2-oxo-2 H-chromene-3-carboxamide) was also prepared for comparison. The new compounds were fully characterized by means of analytical techniques, including NMR, absorption, and emission spectroscopy. The crystal structures of three cyclometalated AuIII complexes and of the AuI derivative were solved by single-crystal X-ray diffraction. The antiproliferative activity of the new AuIII cyclometalated derivatives was evaluated against cancer cells in vitro. According to the obtained results, only complexes 3-PF6 and 5-PF6, featuring coumarins as ancillary ligands and endowed with high redox stability in solution, display antiproliferative effects, with 5-PF6 being the most potent, while all of the others are scarcely active to nonactive in the selected cell lines. In order to study the reactivity of the compounds with biomolecules, the interaction of complexes 3-PF6 and 5-PF6 with the protein cytochrome c and the amino acids cysteine and histidine was analyzed by electrospray ionization mass spectrometry (ESI MS), showing adduct formation only with Cys after at least 1 h incubation. Furthermore, the parent hydroxo complex [Au(bipydmb-H)(OH)][PF6] (1OH-PF6) was investigated in a competitive assay to determine the protein vs oligonucleotide binding preferences by capillary zone electrophoresis (CZE) coupled to ESI-MS. Of note, the compound was found to selectively form adducts with the oligonucleotide over the protein upon ligand exchange with the hydroxido ligand. Adduct formation occurred within the first 10 min of incubation, demonstrating the preference of 1OH-PF6 for nucleotides in this setup. Overall, the obtained results point toward the possibility to selectively target DNA with gold(III) organometallics.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Carbono/farmacologia , Complexos de Coordenação/farmacologia , Ouro/farmacologia , Nitrogênio/farmacologia , Antineoplásicos/química , Carbono/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Ouro/química , Células HEK293 , Humanos , Modelos Moleculares , Estrutura Molecular , Nitrogênio/química
17.
Inorg Chem ; 57(5): 2851-2864, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29442506

RESUMO

Platinum-based anticancer coordination compounds are widely used in the treatment of many tumor types, where they are very effective but also cause severe side effects. Organoplatinum compounds are significantly less investigated than the analogous coordination compounds. We report here rollover cyclometalated Pt compounds based on 2,2'-bipyridine which are demonstrated to be potent antitumor agents both in vitro and in vivo. Variation of the co-ligands on the Pt(2,2'-bipyridine) backbone resulted in the establishment of structure-activity relationships. They showed that the biological activity was in general inversely correlated with the reaction kinetics to biomolecules as shown for amino acids, proteins, and DNA. The less stable compounds caused higher reactivity with biomolecules and were shown to induce p53-dependent DNA damage. In contrast, the presence of bulky PTA and PPh3 ligands was demonstrated to cause lower reactivity and increased antineoplastic activity. Such compounds were devoid of DNA-damaging activity and induced ATF4, a component of the endoplasmic reticulum (ER) stress pathway. The lead complex inhibited tumor growth similar to oxaliplatin while showing no signs of toxicity in test mice. Therefore, we demonstrated that it is possible to fine-tune rollover-cyclometalated Pt(II) compounds to target different cancer pathways and be a means to overcome the side effects associated with cisplatin and analogous compounds in cancer chemotherapy.

18.
Analyst ; 142(13): 2327-2332, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28585637

RESUMO

An orally active osmium anticancer compound was reliably quantified in the organs of treated mice by inductively coupled plasma-mass spectrometry (ICP-MS) by adding a stabilizing solution consisting of ascorbic acid, thiourea and EDTA during sample preparation and avoiding oxidizing conditions. The limits of detection (LOD) and quantification (LOQ) of 189Os were determined in liver tissue to be 0.02 and 0.075 µg kg-1, respectively. In spiked liver tissue, the internal precision showed a relative standard deviation (RSD) of 4%, a matrix recovery of 92% and a digestion recovery of 99%. A similar quantification protocol was developed for cellular accumulation studies in vitro. The cells were lysed with a non-oxidizing lysis buffer consisting of 150 mmol L-1 NaCl, 1.0% Triton X-100, 0.1% SDS, and 50 mmol L-1 Tris at pH 8.0 before adding the stabilizing solution. The osmium compound was compared with an isosteric ruthenium analogue and they displayed similar cellular accumulation and organ distribution profiles.


Assuntos
Antineoplásicos/análise , Espectrometria de Massas , Osmio/análise , Animais , Antineoplásicos/farmacocinética , Técnicas de Cultura de Células , Limite de Detecção , Camundongos , Osmio/farmacocinética , Rutênio
19.
Inorg Chem ; 56(22): 14237-14250, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29095609

RESUMO

We report here on the synthesis of a series of mono- and dinuclear gold(I) complexes exhibiting sulfonated bis(NHC) ligands and novel hydroxylated mono(NHC) Au(I) compounds, which were also examined for their biological activities. Initial cell viability assays show strong antiproliferative activities of the hydroxylated mono(NHC) gold compounds (8 > 9 > 10) against 2008 human ovarian cancer cells even after 1 h incubation. In order to gain insight into the mechanism of biological action of the gold compounds, their effect on the pivotal cellular target seleno-enzyme thioredoxin reductase (TrxR), involved in the maintenance of intracellular redox balance, was investigated in depth. The compounds' inhibitory effects on TrxR and glutathione reductase (GR) were studied comparatively, using either the pure proteins or cancer cell extracts. The results show a strong and selective inhibitory effect of TrxR, specifically for the hydroxyl-functionalized NHC gold(I) complexes (8-10). Valuable information on the gold compounds' molecular reactivity with TrxR was gained using the BIAM (biotin-conjugated iodoacetamide) assay and performing competition experiments by mass spectrometry (MS). In good agreement, both techniques suggest the binding affinity of the mono(NHC) Au(I) complexes toward selenols and thiols. Notably, for the first time, bis-carbene formation from mono-carbenes in buffered solution could be observed by MS, which may provide new insights into the speciation mechanisms of bioactive Au(I) NHC complexes. Furthermore, the compounds' interactions with another relevant in cellulo target, namely telomeric G-quadruplex DNA-a higher-order DNA structure playing key roles in telomere function-was investigated by means of FRET melting assays. The lack of interactions with this type of nucleic acid secondary structure support the idea of selective targeting of the hydrophilic Au(I) NHC compounds toward proteins such as TrxR.


Assuntos
Complexos de Coordenação/farmacologia , Ouro/química , Tiorredoxina Redutase 1/antagonistas & inibidores , Tiorredoxina Redutase 2/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , DNA/metabolismo , Estabilidade de Medicamentos , Quadruplex G , Glutationa Redutase/antagonistas & inibidores , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Compostos Organoáuricos/química , Ratos , Espécies Reativas de Oxigênio/metabolismo , Prata/química , Solubilidade
20.
J Cheminform ; 16(1): 15, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321500

RESUMO

Mass spectrometry (MS) is an analytical technique for molecule identification that can be used for investigating protein-metal complex interactions. Once the MS data is collected, the mass spectra are usually interpreted manually to identify the adducts formed as a result of the interactions between proteins and metal-based species. However, with increasing resolution, dataset size, and species complexity, the time required to identify adducts and the error-prone nature of manual assignment have become limiting factors in MS analysis. AdductHunter is a open-source web-based analysis tool that  automates the peak identification process using constraint integer optimization to find feasible combinations of protein and fragments, and dynamic time warping to calculate the dissimilarity between the theoretical isotope pattern of a species and its experimental isotope peak distribution. Empirical evaluation on a collection of 22 unique MS datasetsshows fast and accurate identification of protein-metal complex adducts in deconvoluted mass spectra.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa