Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 45(7): 619-632, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32305250

RESUMO

N-myristoylation (MYR) is a crucial fatty acylation catalyzed by N-myristoyltransferases (NMTs) that is likely to have appeared over 2 billion years ago. Proteome-wide approaches have now delivered an exhaustive list of substrates undergoing MYR across approximately 2% of any proteome, with constituents, several unexpected, associated with different membrane compartments. A set of <10 proteins conserved in eukaryotes probably represents the original set of N-myristoylated targets, marking major changes occurring throughout eukaryogenesis. Recent findings have revealed unexpected mechanisms and reactivity, suggesting competition with other acylations that are likely to influence cellular homeostasis and the steady state of the modification landscape. Here, we review recent advances in NMT catalysis, substrate specificity, and MYR proteomics, and discuss concepts regarding MYR during evolution.


Assuntos
Evolução Biológica , Ácido Mirístico/metabolismo , Catálise , Células Eucarióticas/metabolismo , Processamento de Proteína Pós-Traducional , Especificidade por Substrato
2.
J Cell Sci ; 135(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35621049

RESUMO

Acetyl-CoA participates in post-translational modification of proteins and in central carbon and lipid metabolism in several cell compartments. In mammals, acetyl-CoA transporter 1 (AT1, also known as SLC33A1) facilitates the flux of cytosolic acetyl-CoA into the endoplasmic reticulum (ER), enabling the acetylation of proteins of the secretory pathway, in concert with the activity of dedicated acetyltransferases such as NAT8. However, the involvement of the ER acetyl-CoA pool in acetylation of ER-transiting proteins in Apicomplexa is unknown. Here, we identified homologs of AT1 and NAT8 in Toxoplasma gondii and Plasmodium berghei parasites. Proteome-wide analyses revealed widespread N-terminal acetylation of secreted proteins in both species. Such extensive acetylation of N-terminally processed proteins has not been observed previously in any other organism. Deletion of AT1 homologs in both T. gondii and P. berghei resulted in considerable reductions in parasite fitness. In P. berghei, AT1 was found to be important for growth of asexual blood stages, production of female gametocytes and male gametocytogenesis, implying its requirement for parasite transmission. In the absence of AT1, lysine acetylation and N-terminal acetylation in T. gondii remained globally unaltered, suggesting an uncoupling between the role of AT1 in development and active acetylation occurring along the secretory pathway.


Assuntos
Parasitos , Toxoplasma , Acetilcoenzima A/metabolismo , Acetilação , Animais , Retículo Endoplasmático/metabolismo , Feminino , Masculino , Mamíferos/metabolismo , Parasitos/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo
3.
Plant Physiol ; 193(3): 2086-2104, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37427787

RESUMO

The acetylation-dependent (Ac/)N-degron pathway degrades proteins through recognition of their acetylated N-termini (Nt) by E3 ligases called Ac/N-recognins. To date, specific Ac/N-recognins have not been defined in plants. Here we used molecular, genetic, and multiomics approaches to characterize potential roles for Arabidopsis (Arabidopsis thaliana) DEGRADATION OF ALPHA2 10 (DOA10)-like E3 ligases in the Nt-acetylation-(NTA)-dependent turnover of proteins at global- and protein-specific scales. Arabidopsis has two endoplasmic reticulum (ER)-localized DOA10-like proteins. AtDOA10A, but not the Brassicaceae-specific AtDOA10B, can compensate for loss of yeast (Saccharomyces cerevisiae) ScDOA10 function. Transcriptome and Nt-acetylome profiling of an Atdoa10a/b RNAi mutant revealed no obvious differences in the global NTA profile compared to wild type, suggesting that AtDOA10s do not regulate the bulk turnover of NTA substrates. Using protein steady-state and cycloheximide-chase degradation assays in yeast and Arabidopsis, we showed that turnover of ER-localized SQUALENE EPOXIDASE 1 (AtSQE1), a critical sterol biosynthesis enzyme, is mediated by AtDOA10s. Degradation of AtSQE1 in planta did not depend on NTA, but Nt-acetyltransferases indirectly impacted its turnover in yeast, indicating kingdom-specific differences in NTA and cellular proteostasis. Our work suggests that, in contrast to yeast and mammals, targeting of Nt-acetylated proteins is not a major function of DOA10-like E3 ligases in Arabidopsis and provides further insight into plant ERAD and the conservation of regulatory mechanisms controlling sterol biosynthesis in eukaryotes.


Assuntos
Arabidopsis , Proteínas de Saccharomyces cerevisiae , Animais , Acetilação , Arabidopsis/genética , Arabidopsis/metabolismo , Mamíferos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Esqualeno Mono-Oxigenase/metabolismo , Esteróis , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
J Exp Bot ; 73(18): 6013-6033, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35768189

RESUMO

The N-terminus is a frequent site of protein modifications. Referring primarily to knowledge gained from land plants, here we review the modifications that change protein N-terminal residues and provide updated information about the associated machinery, including that in Archaeplastida. These N-terminal modifications include many proteolytic events as well as small group additions such as acylation or arginylation and oxidation. Compared with that of the mitochondrion, the plastid-dedicated N-terminal modification landscape is far more complex. In parallel, we extend this review to plastid-containing Chromalveolata including Stramenopiles, Apicomplexa, and Rhizaria. We report a well-conserved machinery, especially in the plastid. Consideration of the two most abundant proteins on Earth-Rubisco and actin-reveals the complexity of N-terminal modification processes. The progressive gene transfer from the plastid to the nuclear genome during evolution is exemplified by the N-terminus modification machinery, which appears to be one of the latest to have been transferred to the nuclear genome together with crucial major photosynthetic landmarks. This is evidenced by the greater number of plastid genes in Paulinellidae and red algae, the most recent and fossil recipients of primary endosymbiosis.


Assuntos
Actinas , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/metabolismo , Actinas/metabolismo , Filogenia , Plastídeos/genética , Plastídeos/metabolismo , Simbiose/genética , Evolução Molecular
5.
Mol Syst Biol ; 16(7): e9464, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32633465

RESUMO

Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N-α-acetylation (NTA) and ε-lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility that the same GCN5-related N-acetyltransferase (GNAT) can perform both functions has been debated. Here, we discovered a new family of plastid-localized GNATs, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA specificities. Furthermore, inactivation of GNAT2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo. In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNATs may also possess these previously underappreciated broader enzymatic activities.


Assuntos
Arabidopsis/metabolismo , Lisina/química , Acetiltransferases N-Terminal/metabolismo , Proteínas de Plantas/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Acetilação , Arabidopsis/enzimologia , Arabidopsis/genética , Cloroplastos/enzimologia , Cloroplastos/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Epigenoma , Escherichia/genética , Escherichia/metabolismo , Técnicas de Inativação de Genes , Genoma de Planta , Técnicas In Vitro , Acetiltransferases N-Terminal/química , Acetiltransferases N-Terminal/genética , Peptídeos/química , Peptídeos/genética , Filogenia , Proteínas de Plantas/genética , Plastídeos/enzimologia , Proteínas Recombinantes , Espectrometria de Massas em Tandem
6.
Plant Physiol ; 183(4): 1502-1516, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32461302

RESUMO

Nα-terminal acetylation (NTA) is a prevalent protein modification in eukaryotes. In plants, the biological function of NTA remains enigmatic. The dominant N-acetyltransferase (Nat) in Arabidopsis (Arabidopsis thaliana) is NatA, which cotranslationally catalyzes acetylation of ∼40% of the proteome. The core NatA complex consists of the catalytic subunit NAA10 and the ribosome-anchoring subunit NAA15. In human (Homo sapiens), fruit fly (Drosophila melanogaster), and yeast (Saccharomyces cerevisiae), this core NatA complex interacts with NAA50 to form the NatE complex. While in metazoa, NAA50 has N-acetyltransferase activity, yeast NAA50 is catalytically inactive and positions NatA at the ribosome tunnel exit. Here, we report the identification and characterization of Arabidopsis NAA50 (AT5G11340). Consistent with its putative function as a cotranslationally acting Nat, AtNAA50-EYFP localized to the cytosol and the endoplasmic reticulum but also to the nuclei. We demonstrate that purified AtNAA50 displays Nα-terminal acetyltransferase and lysine-ε-autoacetyltransferase activity in vitro. Global N-acetylome profiling of Escherichia coli cells expressing AtNAA50 revealed conservation of NatE substrate specificity between plants and humans. Unlike the embryo-lethal phenotype caused by the absence of AtNAA10 and AtNAA15, loss of NAA50 expression resulted in severe growth retardation and infertility in two Arabidopsis transfer DNA insertion lines (naa50-1 and naa50-2). The phenotype of naa50-2 was rescued by the expression of HsNAA50 or AtNAA50. In contrast, the inactive ScNAA50 failed to complement naa50-2 Remarkably, loss of NAA50 expression did not affect NTA of known NatA substrates and caused the accumulation of proteins involved in stress responses. Overall, our results emphasize a relevant role of AtNAA50 in plant defense and development, which is independent of the essential NatA activity.


Assuntos
Acetiltransferases/metabolismo , Acetiltransferases/genética , Animais , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
7.
Plant Physiol ; 182(2): 792-806, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31744933

RESUMO

N∝-terminal acetylation (NTA) is one of the most abundant protein modifications in eukaryotes. In humans, NTA is catalyzed by seven Nα-acetyltransferases (NatA-F and NatH). Remarkably, the plant Nat machinery and its biological relevance remain poorly understood, although NTA has gained recognition as a key regulator of crucial processes such as protein turnover, protein-protein interaction, and protein targeting. In this study, we combined in vitro assays, reverse genetics, quantitative N-terminomics, transcriptomics, and physiological assays to characterize the Arabidopsis (Arabidopsis thaliana) NatB complex. We show that the plant NatB catalytic (NAA20) and auxiliary subunit (NAA25) form a stable heterodimeric complex that accepts canonical NatB-type substrates in vitro. In planta, NatB complex formation was essential for enzymatic activity. Depletion of NatB subunits to 30% of the wild-type level in three Arabidopsis T-DNA insertion mutants (naa20-1, naa20-2, and naa25-1) caused a 50% decrease in plant growth. A complementation approach revealed functional conservation between plant and human catalytic NatB subunits, whereas yeast NAA20 failed to complement naa20-1 Quantitative N-terminomics of approximately 1000 peptides identified 32 bona fide substrates of the plant NatB complex. In vivo, NatB was seen to preferentially acetylate N termini starting with the initiator Met followed by acidic amino acids and contributed 20% of the acetylation marks in the detected plant proteome. Global transcriptome and proteome analyses of NatB-depleted mutants suggested a function of NatB in multiple stress responses. Indeed, loss of NatB function, but not NatA, increased plant sensitivity toward osmotic and high-salt stress, indicating that NatB is required for tolerance of these abiotic stressors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Acetiltransferase N-Terminal B/metabolismo , Plântula/metabolismo , Estresse Fisiológico/genética , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Domínio Catalítico/genética , Biologia Computacional , Perfilação da Expressão Gênica , Ontologia Genética , Técnicas In Vitro , Mutagênese Insercional , Acetiltransferase N-Terminal B/genética , Pressão Osmótica , Proteoma/genética , Proteoma/metabolismo , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Estresse Fisiológico/efeitos da radiação
8.
Plant Cell ; 30(3): 543-562, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29453228

RESUMO

N-terminal myristoylation, a major eukaryotic protein lipid modification, is difficult to detect in vivo and challenging to predict in silico. We developed a proteomics strategy involving subfractionation of cellular membranes, combined with separation of hydrophobic peptides by mass spectrometry-coupled liquid chromatography to identify the Arabidopsis thaliana myristoylated proteome. This approach identified a starting pool of 8837 proteins in all analyzed cellular fractions, comprising 32% of the Arabidopsis proteome. Of these, 906 proteins contain an N-terminal Gly at position 2, a prerequisite for myristoylation, and 214 belong to the predicted myristoylome (comprising 51% of the predicted myristoylome of 421 proteins). We further show direct evidence of myristoylation in 72 proteins; 18 of these myristoylated proteins were not previously predicted. We found one myristoylation site downstream of a predicted initiation codon, indicating that posttranslational myristoylation occurs in plants. Over half of the identified proteins could be quantified and assigned to a subcellular compartment. Hierarchical clustering of protein accumulation combined with myristoylation and S-acylation data revealed that N-terminal double acylation influences redirection to the plasma membrane. In a few cases, MYR function extended beyond simple membrane association. This study identified hundreds of N-acylated proteins for which lipid modifications could control protein localization and expand protein function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Códon de Iniciação/genética , Processamento de Proteína Pós-Traducional , Proteoma/genética , Proteoma/metabolismo
9.
New Phytol ; 228(2): 554-569, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32548857

RESUMO

In humans and plants, N-terminal acetylation plays a central role in protein homeostasis, affects 80% of proteins in the cytoplasm and is catalyzed by five ribosome-associated N-acetyltransferases (NatA-E). Humans also possess a Golgi-associated NatF (HsNAA60) that is essential for Golgi integrity. Remarkably, NAA60 is absent in fungi and has not been identified in plants. Here we identify and characterize the first plasma membrane-anchored post-translationally acting N-acetyltransferase AtNAA60 in the reference plant Arabidopsis thaliana by the combined application of reverse genetics, global proteomics, live-cell imaging, microscale thermophoresis, circular dichroism spectroscopy, nano-differential scanning fluorometry, intrinsic tryptophan fluorescence and X-ray crystallography. We demonstrate that AtNAA60, like HsNAA60, is membrane-localized in vivo by an α-helical membrane anchor at its C-terminus, but in contrast to HsNAA60, AtNAA60 localizes to the plasma membrane. The AtNAA60 crystal structure provides insights into substrate-binding, the broad substrate specificity and the catalytic mechanism probed by structure-based mutagenesis. Characterization of the NAA60 loss-of-function mutants (naa60-1 and naa60-2) uncovers a plasma membrane-localized substrate of AtNAA60 and the importance of NAA60 during high salt stress. Our findings provide evidence for the plant-specific evolution of a plasma membrane-anchored N-acetyltransferase that is vital for adaptation to stress.


Assuntos
Arabidopsis , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Complexo de Golgi/metabolismo , Estresse Salino
10.
Nat Chem Biol ; 14(7): 671-679, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29892081

RESUMO

An organism's entire protein modification repertoire has yet to be comprehensively mapped. N-myristoylation (MYR) is a crucial eukaryotic N-terminal protein modification. Here we mapped complete Homo sapiens and Arabidopsis thaliana myristoylomes. The crystal structures of human modifier NMT1 complexed with reactive and nonreactive target-mimicking peptide ligands revealed unexpected binding clefts and a modifier recognition pattern. This information allowed integrated mapping of myristoylomes using peptide macroarrays, dedicated prediction algorithms, and in vivo mass spectrometry. Global MYR profiling at the genomic scale identified over a thousand novel, heterogeneous targets in both organisms. Surprisingly, MYR involved a non-negligible set of overlapping targets with N-acetylation, and the sequence signature marks for a third proximal acylation-S-palmitoylation-were genomically imprinted, allowing recognition of sequences exhibiting both acylations. Together, the data extend the N-end rule concept for Gly-starting proteins to subcellular compartmentalization and reveal the main neighbors influencing protein modification profiles and consequent cell fate.


Assuntos
Metiltransferases/química , Metiltransferases/genética , Algoritmos , Arabidopsis , Humanos , Metiltransferases/metabolismo , Modelos Moleculares
11.
Biochim Biophys Acta Proteins Proteom ; 1866(2): 348-355, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29101077

RESUMO

Unexpected peptide deformylase (PDF) genes were recently retrieved in numerous marine phage genomes. While various hypotheses dealing with the occurrence of these intriguing sequences have been made, no further characterization and functional studies have been described thus far. In this study, we characterize the bacteriophage Vp16 PDF enzyme, as representative member of the newly identified C-terminally truncated viral PDFs. We show here that conditions classically used for bacterial PDFs lead to an enzyme exhibiting weak activity. Nonetheless, our integrated biophysical and biochemical approaches reveal specific effects of pH and metals on Vp16 PDF stability and activity. A novel purification protocol taking in account these data allowed strong improvement of Vp16 PDF specific activity to values similar to those of bacterial PDFs. We next show that Vp16 PDF is as sensitive to the natural inhibitor compound of PDFs, actinonin, as bacterial PDFs. Comparison of the 3D structures of Vp16 and E. coli PDFs bound to actinonin also reveals that both PDFs display identical substrate binding mode. We conclude that bacteriophage Vp16 PDF protein has functional peptide deformylase activity and we suggest that encoded phage PDFs might be important for viral fitness.


Assuntos
Amidoidrolases/química , Bacteriófagos/enzimologia , Vibrio parahaemolyticus/virologia , Proteínas Virais/química , Amidoidrolases/genética , Bacteriófagos/genética , Domínio Catalítico , Estabilidade Enzimática , Vibrio parahaemolyticus/genética , Proteínas Virais/genética
13.
Plant Cell ; 27(5): 1547-62, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25966763

RESUMO

Nod-like receptors (NLRs) serve as immune receptors in plants and animals. The stability of NLRs is tightly regulated, though its mechanism is not well understood. Here, we show the crucial impact of N-terminal acetylation on the turnover of one plant NLR, Suppressor of NPR1, Constitutive 1 (SNC1), in Arabidopsis thaliana. Genetic and biochemical analyses of SNC1 uncovered its multilayered regulation by different N-terminal acetyltransferase (Nat) complexes. SNC1 exhibits a few distinct N-terminal isoforms generated through alternative initiation and N-terminal acetylation. Its first Met is acetylated by N-terminal acetyltransferase complex A (NatA), while the second Met is acetylated by N-terminal acetyltransferase complex B (NatB). Unexpectedly, the NatA-mediated acetylation serves as a degradation signal, while NatB-mediated acetylation stabilizes the NLR protein, thus revealing antagonistic N-terminal acetylation of a single protein substrate. Moreover, NatA also contributes to the turnover of another NLR, RESISTANCE TO P. syringae pv maculicola 1. The intricate regulation of protein stability by Nats is speculated to provide flexibility for the target protein in maintaining its homeostasis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Acetiltransferases N-Terminal/metabolismo , Acetilação , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Clonagem Molecular , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Acetiltransferases N-Terminal/genética , Estabilidade Proteica , Plântula/enzimologia , Plântula/genética , Alinhamento de Sequência , Nicotiana/enzimologia , Nicotiana/genética
14.
BMC Bioinformatics ; 18(1): 182, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28320318

RESUMO

BACKGROUND: Characterization of mature protein N-termini by large scale proteomics is challenging. This is especially true for proteins undergoing cleavage of transit peptides when they are targeted to specific organelles, such as mitochondria or chloroplast. Protein neo-N-termini can be located up to 100-150 amino acids downstream from the initiator methionine and are not easily predictable. Although some bioinformatics tools are available, they usually require extensive manual validation to identify the exact N-terminal position. The situation becomes even more complex when post-translational modifications take place at the neo-N-terminus. Although N-terminal acetylation occurs mostly in the cytosol, it is also observed in some organelles such as chloroplast. To date, no bioinformatics tool is available to define mature protein starting positions, the associated N-terminus acetylation status and/or yield for each proteoform. In this context, we have developed the EnCOUNTer tool (i) to score all characterized peptides using discriminating parameters to identify bona fide mature protein N-termini and (ii) to determine the N-terminus acetylation yield of the most reliable ones. RESULTS: Based on large scale proteomics analyses using the SILProNAQ methodology, tandem mass spectrometry favoured the characterization of thousands of peptides. Data processing using the EnCOUNTer tool provided an efficient and rapid way to extract the most reliable mature protein N-termini. Selected peptides were subjected to N-terminus acetylation yield determination. In an A. thaliana cell lysate, 1232 distinct proteotypic N-termini were characterized of which 648 were located at the predicted protein N-terminus (position 1/2) and 584 were located further downstream (starting at position > 2). A large number of these N-termini were associated with various well-defined maturation processes occurring on organelle-targeted proteins (mitochondria, chloroplast and peroxisome), secreted proteins or membrane-targeted proteins. It was also possible to highlight some protein alternative starts, splicing variants or erroneous protein sequence predictions. CONCLUSIONS: The EnCOUNTer tool provides a unique way to extract accurately the most relevant mature proteins N-terminal peptides from large scale experimental datasets. Such data processing allows the identification of the exact N-terminus position and the associated acetylation yield.


Assuntos
Organelas/imunologia , Transporte Proteico/imunologia , Proteômica/métodos , Acetilação
15.
Biochim Biophys Acta ; 1864(5): 531-50, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26555180

RESUMO

The ribosome is the cell's protein-making factory, a huge protein-RNA complex, that is essential to life. Determining the high-resolution structures of the stable "core" of this factory was among the major breakthroughs of the past decades, and was awarded the Nobel Prize in 2009. Now that the mysteries of the ribosome appear to be more traceable, detailed understanding of the mechanisms that regulate protein synthesis includes not only the well-known steps of initiation, elongation, and termination but also the less comprehended features of the co-translational events associated with the maturation of the nascent chains. The ribosome is a platform for co-translational events affecting the nascent polypeptide, including protein modifications, folding, targeting to various cellular compartments for integration into membrane or translocation, and proteolysis. These events are orchestrated by ribosome-associated protein biogenesis factors (RPBs), a group of a dozen or more factors that act as the "welcoming committee" for the nascent chain as it emerges from the ribosome. In plants these factors have evolved to fit the specificity of different cellular compartments: cytoplasm, mitochondria and chloroplast. This review focuses on the current state of knowledge of these factors and their interaction around the exit tunnel of dedicated ribosomes. Particular attention has been accorded to the plant system, highlighting the similarities and differences with other organisms.


Assuntos
Substâncias Macromoleculares/metabolismo , Plantas/genética , Biossíntese de Proteínas/genética , Ribossomos/genética , Substâncias Macromoleculares/química , Plantas/metabolismo , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Proteólise , Ribossomos/química , Ribossomos/metabolismo
16.
Plant Cell ; 25(5): 1756-73, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23673980

RESUMO

N-myristoylation is a crucial irreversible eukaryotic lipid modification allowing a key subset of proteins to be targeted at the periphery of specific membrane compartments. Eukaryotes have conserved N-myristoylation enzymes, involving one or two N-myristoyltransferases (NMT1 and NMT2), among which NMT1 is the major enzyme. In the postembryonic developmental stages, defects in NMT1 lead to aberrant cell polarity, flower differentiation, fruit maturation, and innate immunity; however, no specific NMT1 target responsible for such deficiencies has hitherto been identified. Using a confocal microscopy forward genetics screen for the identification of Arabidopsis thaliana secretory mutants, we isolated STINGY, a recessive mutant with defective Golgi traffic and integrity. We mapped STINGY to a substitution at position 160 of Arabidopsis NMT1 (NMT1A160T). In vitro kinetic studies with purified NMT1A160T enzyme revealed a significant reduction in its activity due to a remarkable decrease in affinity for both myristoyl-CoA and peptide substrates. We show here that this recessive mutation is responsible for the alteration of Golgi traffic and integrity by predominantly affecting the Golgi membrane/cytosol partitioning of ADP-ribosylation factor proteins. Our results provide important functional insight into N-myristoylation in plants by ascribing postembryonic functions of Arabidopsis NMT1 that involve regulation of the functional and morphological integrity of the plant endomembranes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complexo de Golgi/metabolismo , Metiltransferases/metabolismo , Acil Coenzima A/química , Acil Coenzima A/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Immunoblotting , Metiltransferases/química , Metiltransferases/genética , Microscopia Confocal , Modelos Moleculares , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Ligação Proteica , Estrutura Terciária de Proteína , Proteômica/métodos , Homologia de Sequência de Aminoácidos
17.
Plant Cell ; 25(3): 1056-77, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23543785

RESUMO

N-terminal fatty acylations (N-myristoylation [MYR] and S-palmitoylation [PAL]) are crucial modifications affecting 2 to 4% of eukaryotic proteins. The role of these modifications is to target proteins to membranes. Predictive tools have revealed unexpected targets of these acylations in Arabidopsis thaliana and other plants. However, little is known about how N-terminal lipidation governs membrane compartmentalization of proteins in plants. We show here that h-type thioredoxins (h-TRXs) cluster in four evolutionary subgroups displaying strictly conserved N-terminal modifications. It was predicted that one subgroup undergoes only MYR and another undergoes both MYR and PAL. We used plant TRXs as a model protein family to explore the effect of MYR alone or MYR and PAL in the same family of proteins. We used a high-throughput biochemical strategy to assess MYR of specific TRXs. Moreover, various TRX-green fluorescent protein fusions revealed that MYR localized protein to the endomembrane system and that partitioning between this membrane compartment and the cytosol correlated with the catalytic efficiency of the N-myristoyltransferase acting at the N terminus of the TRXs. Generalization of these results was obtained using several randomly selected Arabidopsis proteins displaying a MYR site only. Finally, we demonstrated that a palmitoylatable Cys residue flanking the MYR site is crucial to localize proteins to micropatching zones of the plasma membrane.


Assuntos
Arabidopsis/metabolismo , Membrana Celular/metabolismo , Ácidos Graxos/metabolismo , Lipídeos de Membrana/metabolismo , Tiorredoxina h/metabolismo , Acilação , Sequência de Aminoácidos , Arabidopsis/classificação , Arabidopsis/genética , Sítios de Ligação , Membrana Celular/genética , Cisteína/genética , Cisteína/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/metabolismo , Filogenia , Transporte Proteico , Tiorredoxina h/genética
18.
Proteomics ; 15(14): 2503-18, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26017780

RESUMO

A proteome wide analysis was performed in Escherichia coli to identify the impact on protein N-termini of actinonin, an antibiotic specifically inhibiting peptide deformylase (PDF). A strategy and tool suite (SILProNaQ) was employed to provide large-scale quantitation of N-terminal modifications. In control conditions, more than 1000 unique N-termini were identified with 56% showing initiator methionine removal. Additional modifications corresponded to partial or complete Nα-acetylation (10%) and N-formyl retention (5%). Among the proteins undergoing these N-terminal modifications, 140 unique N-termini from translocated membrane proteins were highlighted. The very early time-course impact of actinonin was followed after addition of bacteriostatic concentrations of the drug. Under these conditions, 26% of all proteins did not undergo deformylation any longer after 10 min, a value reaching more than 60% of all characterized proteins after 40 min of treatment. The N-formylation ratio measured on individual proteins increased with the same trend. Upon early PDF inhibition, two major categories of proteins retained their N-formyl group: a large number of inner membrane proteins and many proteins involved in protein synthesis including factors assisting the nascent chains in early cotranslational events. All MS data have been deposited in the ProteomeXchange with identifiers PXD001979, PXD002012 and PXD001983 (http://proteomecentral.proteomexchange.org/dataset/PXD001979, http://proteomecentral.proteomexchange.org/dataset/PXD002012 and http://proteomecentral.proteomexchange.org/dataset/PXD001983).


Assuntos
Amidoidrolases/antagonistas & inibidores , Antibacterianos/farmacologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Sequência de Aminoácidos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Ácidos Hidroxâmicos/farmacologia , Metionina/análise , Metionina/metabolismo , Dados de Sequência Molecular , Proteoma/química , Proteoma/metabolismo
19.
Proteomics ; 15(14): 2426-35, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25951519

RESUMO

Protein N(α) -terminal acetylation represents one of the most abundant protein modifications of higher eukaryotes. In humans, six N(α) -acetyltransferases (Nats) are responsible for the acetylation of approximately 80% of the cytosolic proteins. N-terminal protein acetylation has not been evidenced in organelles of metazoans, but in higher plants is a widespread modification not only in the cytosol but also in the chloroplast. In this study, we identify and characterize the first organellar-localized Nat in eukaryotes. A primary sequence-based search in Arabidopsis thaliana revealed seven putatively plastid-localized Nats of which AT2G39000 (AtNAA70) showed the highest conservation of the acetyl-CoA binding pocket. The chloroplastic localization of AtNAA70 was demonstrated by transient expression of AtNAA70:YFP in Arabidopsis mesophyll protoplasts. Homology modeling uncovered a significant conservation of tertiary structural elements between human HsNAA50 and AtNAA70. The in vivo acetylation activity of AtNAA70 was demonstrated on a number of distinct protein N(α) -termini with a newly established global acetylome profiling test after expression of AtNAA70 in E. coli. AtNAA70 predominately acetylated proteins starting with M, A, S and T, providing an explanation for most protein N-termini acetylation events found in chloroplasts. Like HsNAA50, AtNAA70 displays N(ε) -acetyltransferase activity on three internal lysine residues. All MS data have been deposited in the ProteomeXchange with identifier PXD001947 (http://proteomecentral.proteomexchange.org/dataset/PXD001947).


Assuntos
Arabidopsis/enzimologia , Acetiltransferases N-Terminal/análise , Plastídeos/enzimologia , Acetilação , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Acetiltransferases N-Terminal/genética , Acetiltransferases N-Terminal/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Conformação Proteica , Proteômica , Espectrometria de Massas em Tandem
20.
Analyst ; 140(21): 7234-45, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26401526

RESUMO

We evaluate the potential of native mass spectrometry (MS) and ion mobility (IM-MS) for the screening of protein : ligand complexes when very subtle conformational changes are involved. As a proof of concept, we investigate the interactions between a peptide deformylase (PDF1B), a promising target for the development of new antibiotics, and three of its specific inhibitors that bind in different modes. First, real-time native MS reveals two types of ligands, both interacting in a 1 : 1 stoichiometry with PDF1B but with different affinities and gas phase stabilities. Conformational IM-MS screening then highlights two very close but significantly distinct ligand-induced conformations with collision cross sections that differ by less than 1%. Real-time IM-MS is used to monitor not only the dynamics of ligand binding to apoPDF1B but also the switching between holo conformations. This study provides additional evidence that the most potent ligands inhibit peptide deformylases through a slow-tight binding mechanism, in agreement with previous structural and enzymology studies. Furthermore, this approach, wherein the characteristics obtained by native MS are combined with IM-MS conformational screening, prove valuable in characterizing extremely subtle dynamic conformational changes induced when ligands bind to protein assemblies. We discuss the promise and limitations of IM-MS in the context of detection of very small conformational changes induced upon ligand binding.


Assuntos
Amidoidrolases/química , Antibacterianos/química , Ligantes , Espectrometria de Massas/métodos , Conformação Proteica , Arabidopsis/enzimologia , Ligação Competitiva , Soluções Tampão , Cristalografia por Raios X , Íons , Cinética , Ligação Proteica , Proteínas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa