Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Nat Immunol ; 13(12): 1213-21, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23086448

RESUMO

CD46 is a complement regulator with important roles related to the immune response. CD46 functions as a pathogen receptor and is a potent costimulator for the induction of interferon-γ (IFN-γ)-secreting effector T helper type 1 (T(H)1) cells and their subsequent switch into interleukin 10 (IL-10)-producing regulatory T cells. Here we identified the Notch family member Jagged1 as a physiological ligand for CD46. Furthermore, we found that CD46 regulated the expression of Notch receptors and ligands during T cell activation and that disturbance of the CD46-Notch crosstalk impeded induction of IFN-γ and switching to IL-10. Notably, CD4(+) T cells from CD46-deficient patients and patients with hypomorphic mutations in the gene encoding Jagged1 (Alagille syndrome) failed to mount appropriate T(H)1 responses in vitro and in vivo, which suggested that CD46-Jagged1 crosstalk is responsible for the recurrent infections in subpopulations of these patients.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ativação Linfocitária , Proteína Cofatora de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Células Th1/imunologia , Adulto , Síndrome de Alagille/genética , Síndrome de Alagille/imunologia , Animais , Células Cultivadas , Criança , Pré-Escolar , Humanos , Interferon gama/metabolismo , Interleucina-10/imunologia , Interleucina-10/metabolismo , Proteína Jagged-1 , Camundongos , Camundongos SCID , Camundongos Transgênicos , Interferência de RNA , RNA Interferente Pequeno , Proteínas Serrate-Jagged , Células Th1/metabolismo , alfa Catenina/genética
2.
J Biotechnol ; 135(1): 1-15, 2008 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-18395925

RESUMO

Protein-protein interactions represent a major potential drug target for many human diseases, but these are unanimously considered undruggable with small chemical molecules. We have developed 3-SPLINT, a novel technology for the selection of antibodies that are intrinsically endowed with the ability to interfere with a given protein-protein interaction. The selection procedure exploits the recently described yeast SPLINT libraries of intrabodies, adapting them to a reverse-hybrid system, yielding the selection of recombinant antibodies that are able to disrupt a target protein-protein interaction in vivo. This class of antibodies should therefore perturb an individual protein-protein interaction, without perturbing the scaffolding function of the target protein in that complex, or other protein interactions of that same protein. We provide here a proof of concept of the technology, by the de novo selection of antibodies against two distinct interacting protein pairs: the GABARAP, which interact with the gamma2 subunit of GABA(A) receptor, and the p65 protein dimer, involved in the NF-kappaB-mediated signalling transduction pathway. Intrabodies selected against the latter were functionally validated in cells. Such antibodies, by interfering with the dimerization domain of p65, lead to an activation of the NF-kappaB-mediated transcriptional activity, which is normally inhibited by p65 knock-down RNAi. This provides a clear-cut demonstration that interfering with a protein interaction can be functionally very different from physically removing one of the interacting proteins. The 3-SPLINT approach provides a general and finer tool for the functional validation of selected protein interactions in protein networks, and is ideally applied to protein "hubs", displaying multiple distinct interactions. 3-SPLINT will therefore complement RNAi-based approaches, in the toolkit of target validation strategies, and is amenable to the systematic isolation of comprehensive sets of antibodies against most protein-protein interactions of a given protein network.


Assuntos
Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Sistemas de Liberação de Medicamentos/métodos , Biblioteca de Peptídeos , Engenharia de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas/genética , Domínios e Motivos de Interação entre Proteínas/imunologia , Mapeamento de Interação de Proteínas , Anticorpos Monoclonais/metabolismo
3.
J Mol Biol ; 374(3): 641-54, 2007 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-17950312

RESUMO

The selective knock-down of cellular proteins has proven useful for in vivo studies of protein function and RNAi methods are readily available for this purpose. However, interfering directly at the protein level may have distinct advantages, with the intracellular targeting of antibodies (intrabodies) representing an attractive option, although not a general one. We demonstrate a novel, general strategy named suicide (or silencing) intrabody technology (SIT), based on the inducible degradation of intrabodies, which are equipped with proteasome-targeting sequences and thus converted into suicide intrabodies. We show that suicide intrabodies are able to redirect the target cellular proteins upon stimulus administration to the proteolytic machinery, thus resulting in selective protein knock-down. Remarkably, suicide intrabody acts in a catalytic fashion. SIT is a ligand-inducible strategy, potentially applicable to any protein of interest and does not require the engineering of cellular proteolytic enzymes. SIT represents a general approach to confer "neutralizing" properties to any intrabody, a valuable feature, given the present impossibility to select a priori intrinsically neutralizing antibodies. This knock-down strategy, together with available methods to isolate functional intrabodies, should allow the large-scale investigation of intracellular protein networks.


Assuntos
Anticorpos/imunologia , Inativação Gênica , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Sequência de Bases , Linhagem Celular , Primers do DNA , Citometria de Fluxo , Humanos , Ligantes , Reação em Cadeia da Polimerase , Complexo de Endopeptidases do Proteassoma/imunologia , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa