Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Plant J ; 116(1): 303-319, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37164361

RESUMO

Olive tree (Olea europaea L. subsp. europaea var. europaea) is one of the most important species of the Mediterranean region and one of the most ancient species domesticated. The availability of whole genome assemblies and annotations of olive tree cultivars and oleaster (O. europaea subsp. europaea var. sylvestris) has contributed to a better understanding of genetic and genomic differences between olive tree cultivars. However, compared to other plant species there is still a lack of genomic resources for olive tree populations that span the entire Mediterranean region. In the present study we developed the most complete genomic variation map and the most comprehensive catalog/resource of molecular variation to date for 89 olive tree genotypes originating from the entire Mediterranean basin, revealing the genetic diversity of this commercially significant crop tree and explaining the divergence/similarity among different variants. Additionally, the monumental ancient tree 'Throuba Naxos' was studied to characterize the potential origin or routes of olive tree domestication. Several candidate genes known to be associated with key agronomic traits, including olive oil quality and fruit yield, were uncovered by a selective sweep scan to be under selection pressure on all olive tree chromosomes. To further exploit the genomic and phenotypic resources obtained from the current work, genome-wide association analyses were performed for 23 morphological and two agronomic traits. Significant associations were detected for eight traits that provide valuable candidates for fruit tree breeding and for deeper understanding of olive tree biology.


Assuntos
Olea , Olea/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Mapeamento Cromossômico , Genômica
2.
J Exp Bot ; 75(9): 2740-2753, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38366668

RESUMO

Ascorbic acid (AsA) plays an indispensable role in plants, serving as both an antioxidant and a master regulator of the cellular redox balance. Ascorbate oxidase (AO) is a blue copper oxidase that is responsible for the oxidation of AsA with the concomitant production of water. For many decades, AO was erroneously postulated as an enzyme without any obvious advantage, as it decreases the AsA pool size and thus is expected to weaken plant stress resistance. It was only a decade ago that this perspective shifted towards the fundamental role of AO in orchestrating both AsA and oxygen levels by influencing the overall redox balance in the extracellular matrix. Consistent with its localization in the apoplast, AO is involved in cell expansion, division, resource allocation, and overall plant yield. An increasing number of transgenic studies has demonstrated that AO can also facilitate communication between the surrounding environment and the cell, as its gene expression is highly responsive to factors such as hormonal signaling, oxidative stress, and mechanical injury. This review aims to describe the multiple functions of AO in plant growth, development, and stress resilience, and explore any additional roles the enzyme might have in fruits during the course of ripening.


Assuntos
Ascorbato Oxidase , Ascorbato Oxidase/metabolismo , Ascorbato Oxidase/genética , Plantas/enzimologia , Plantas/metabolismo , Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Ascórbico/metabolismo , Desenvolvimento Vegetal
3.
BMC Genomics ; 22(1): 341, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980145

RESUMO

BACKGROUND: Summer squash (Cucurbita pepo: Cucurbitaceae) are a popular horticultural crop for which there is insufficient genomic and transcriptomic information. Gene expression atlases are crucial for the identification of genes expressed in different tissues at various plant developmental stages. Here, we present the first comprehensive gene expression atlas for a summer squash cultivar, including transcripts obtained from seeds, shoots, leaf stem, young and developed leaves, male and female flowers, fruits of seven developmental stages, as well as primary and lateral roots. RESULTS: In total, 27,868 genes and 2352 novel transcripts were annotated from these 16 tissues, with over 18,000 genes common to all tissue groups. Of these, 3812 were identified as housekeeping genes, half of which assigned to known gene ontologies. Flowers, seeds, and young fruits had the largest number of specific genes, whilst intermediate-age fruits the fewest. There also were genes that were differentially expressed in the various tissues, the male flower being the tissue with the most differentially expressed genes in pair-wise comparisons with the remaining tissues, and the leaf stem the least. The largest expression change during fruit development was early on, from female flower to fruit two days after pollination. A weighted correlation network analysis performed on the global gene expression dataset assigned 25,413 genes to 24 coexpression groups, and some of these groups exhibited strong tissue specificity. CONCLUSIONS: These findings enrich our understanding about the transcriptomic events associated with summer squash development and ripening. This comprehensive gene expression atlas is expected not only to provide a global view of gene expression patterns in all major tissues in C. pepo but to also serve as a valuable resource for functional genomics and gene discovery in Cucurbitaceae.


Assuntos
Cucurbita , Cucurbita/genética , Flores/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Polinização , RNA-Seq
4.
Biochem Genet ; 57(6): 747-766, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30997627

RESUMO

Beans are one of the most important staple crops in the world. Runner bean (Phaseolus coccineus L.) is a small-scale agriculture crop compared to common bean (Phaseolusvulgaris). Beans have been introduced to Europe from the Central America to Europe and since then they have been scattered to different geographical regions. This has resulted in the generation of numerous local cultivars and landraces with distinguished characters and adaptive potential. To identify and characterize the underlying genomic variation of two very closely related runner bean cultivars, we performed RNA-Seq with de novo transcriptome assembly in two landraces of P. coccineus, 'Gigantes' and 'Elephantes' phenotypically distinct, differing in seed size and shape. The cleaned reads generated 37,379 and 37,774 transcripts for 'Gigantes' and 'Elephantes,' respectively. A total of 1896 DEGs were identified between the two cultivars, 1248 upregulated in 'Elephantes' and 648 upregulated in 'Gigantes.' A significant upregulation of defense-related genes was observed in 'Elephantes,' among those, numerous members of the AP2-EREBP, WRKY, NAC, and bHLH transcription factor families. In total, 3956 and 4322 SSRs were identified in 'Gigantes' and 'Elephantes,' respectively. Trinucleotide repeats were the most dominant repeat motif, accounting for 41.9% in 'Gigantes' and 40.1% in 'Elephantes' of the SSRs identified, followed by dinucleotide repeats (29.1% in both cultivars). Additionally, 19,281 putative SNPs were identified, among those 3161 were non-synonymous, thus having potential functional implications. High-confidence non-synonymous SNPs were successfully validated with an HRM assay, which can be directly adopted for P. coccineus molecular breeding. These results significantly expand the number of polymorphic markers within P. coccineus genus, enabling the robust identification of runner bean cultivars, the construction of high-resolution genetic maps, potentiating genome-wide association studies. They finally contribute to the genetic reservoir for the improvement of the closely related and intercrossable Phaseolus vulgaris.


Assuntos
Produtos Agrícolas/genética , Variação Genética , Genoma de Planta , Phaseolus/genética , Transcriptoma , Marcadores Genéticos , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética
5.
BMC Plant Biol ; 14: 328, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25430515

RESUMO

BACKGROUND: Postharvest ripening of apple (Malus x domestica) can be slowed down by low temperatures, and a combination of low O2 and high CO2 levels. While this maintains the quality of most fruit, occasionally storage disorders such as flesh browning can occur. This study aimed to explore changes in the apple transcriptome associated with a flesh browning disorder related to controlled atmosphere storage using RNA-sequencing techniques. Samples from a browning-susceptible cultivar ('Braeburn') were stored for four months under controlled atmosphere. Based on a visual browning index, the inner and outer cortex of the stored apples was classified as healthy or affected tissue. RESULTS: Over 600 million short single-end reads were mapped onto the Malus consensus coding sequence set, and differences in the expression profiles between healthy and affected tissues were assessed to identify candidate genes associated with internal browning in a tissue-specific manner. Genes involved in lipid metabolism, secondary metabolism, and cell wall modifications were highly modified in the affected inner cortex, while energy-related and stress-related genes were mostly altered in the outer cortex. The expression levels of several of them were confirmed using qRT-PCR. Additionally, a set of novel browning-specific differentially expressed genes, including pyruvate dehydrogenase and 1-aminocyclopropane-1-carboxylate oxidase, was validated in apples stored for various periods at different controlled atmosphere conditions, giving rise to potential biomarkers associated with high risk of browning development. CONCLUSIONS: The gene expression data presented in this study will help elucidate the molecular mechanism of browning development in apples at controlled atmosphere storage. A conceptual model, including energy-related (linked to the tricarboxylic acid cycle and the electron transport chain) and lipid-related genes (related to membrane alterations, and fatty acid oxidation), for browning development in apple is proposed, which may be relevant for future studies towards improving the postharvest life of apple.


Assuntos
Armazenamento de Alimentos , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Transcriptoma , Biomarcadores , Temperatura Baixa , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Fatores de Tempo
6.
BMC Plant Biol ; 14: 11, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24401128

RESUMO

BACKGROUND: Solanum lycopersicum or tomato is extensively studied with respect to the ethylene metabolism during climacteric ripening, focusing almost exclusively on fruit pericarp. In this work the ethylene biosynthesis pathway was examined in all major tomato fruit tissues: pericarp, septa, columella, placenta, locular gel and seeds. The tissue specific ethylene production rate was measured throughout fruit development, climacteric ripening and postharvest storage. All ethylene intermediate metabolites (1-aminocyclopropane-1-carboxylic acid (ACC), malonyl-ACC (MACC) and S-adenosyl-L-methionine (SAM)) and enzyme activities (ACC-oxidase (ACO) and ACC-synthase (ACS)) were assessed. RESULTS: All tissues showed a similar climacteric pattern in ethylene productions, but with a different amplitude. Profound differences were found between tissue types at the metabolic and enzymatic level. The pericarp tissue produced the highest amount of ethylene, but showed only a low ACC content and limited ACS activity, while the locular gel accumulated a lot of ACC, MACC and SAM and showed only limited ACO and ACS activity. Central tissues (septa, columella and placenta) showed a strong accumulation of ACC and MACC. These differences indicate that the ethylene biosynthesis pathway is organized and regulated in a tissue specific way. The possible role of inter- and intra-tissue transport is discussed to explain these discrepancies. Furthermore, the antagonistic relation between ACO and E8, an ethylene biosynthesis inhibiting protein, was shown to be tissue specific and developmentally regulated. In addition, ethylene inhibition by E8 is not achieved by a direct interaction between ACO and E8, as previously suggested in literature. CONCLUSIONS: The Ethylene biosynthesis pathway and E8 show a tissue specific and developmental differentiation throughout tomato fruit development and ripening.


Assuntos
Etilenos/metabolismo , Solanum lycopersicum/metabolismo , Aminoácido Oxirredutases/metabolismo , Aminoácidos Cíclicos/metabolismo , Regulação da Expressão Gênica de Plantas , Liases/metabolismo , Solanum lycopersicum/fisiologia
7.
Sci Rep ; 14(1): 6836, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514719

RESUMO

Insect-based diets are gaining interest as potential ingredients in improving poultry gut health. This study assessed the dietary treatment with whole dried Tenebrio molitor larvae (TM) on broiler chickens' gut microbiota and morphology. 120 Ross-308 broilers received treated diets with 5% (TM5) and 10% (TM10) replacement ratio in a 35-day trial. Intestinal histomorphometry was assessed, as well as claudin-3 expression pattern and ileal and caecal digesta for microbial community diversity. Null hypothesis was tested with two-way ANOVA considering the intestinal segment and diet as main factors. The TM5 group presented higher villi in the duodenum and ileum compared to the other two (P < 0.001), while treated groups showed shallower crypts in the duodenum (P < 0.001) and deeper in the jejunum and ileum than the control (P < 0.001). Treatments increased the caecal Firmicutes/Bacteroidetes ratio and led to significant changes at the genus level. While Lactobacilli survived in the caecum, a significant reduction was evident in the ileum of both groups, mainly owed to L. aviarius. Staphylococci and Methanobrevibacter significantly increased in the ileum of the TM5 group. Results suggest that dietary supplementation with whole dried TM larvae has no adverse effect on the intestinal epithelium formation and positively affects bacterial population richness and diversity.


Assuntos
Microbioma Gastrointestinal , Tenebrio , Animais , Galinhas/microbiologia , Ração Animal/análise , Dieta/veterinária , Larva , Suplementos Nutricionais/análise
8.
Plant Physiol ; 160(3): 1613-29, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23001142

RESUMO

To identify the genetic factors underlying the regulation of fruit vitamin C (L-ascorbic acid [AsA]) concentrations, quantitative trait loci (QTL) studies were carried out in an F1 progeny derived from a cross between the apple (Malus × domestica) cultivars Telamon and Braeburn over three years. QTL were identified for AsA, glutathione, total antioxidant activity in both flesh and skin tissues, and various quality traits, including flesh browning. Four regions on chromosomes 10, 11, 16, and 17 contained stable fruit AsA-QTL clusters. Mapping of AsA metabolic genes identified colocations between orthologs of GDP-L-galactose phosphorylase (GGP), dehydroascorbate reductase (DHAR), and nucleobase-ascorbate transporter within these QTL clusters. Of particular interest are the three paralogs of MdGGP, which all colocated within AsA-QTL clusters. Allelic variants of MdGGP1 and MdGGP3 derived from the cultivar Braeburn parent were also consistently associated with higher fruit total AsA concentrations both within the mapping population (up to 10-fold) and across a range of commercial apple germplasm (up to 6-fold). Striking differences in the expression of the cv Braeburn MdGGP1 allele between fruit from high- and low-AsA genotypes clearly indicate a key role for MdGGP1 in the regulation of fruit AsA concentrations, and this MdGGP allele-specific single-nucleotide polymorphism marker represents an excellent candidate for directed breeding for enhanced fruit AsA concentrations. Interestingly, colocations were also found between MdDHAR3-3 and a stable QTL for browning in the cv Telamon parent, highlighting links between the redox status of the AsA pool and susceptibility to flesh browning.


Assuntos
Alelos , Ácido Ascórbico/metabolismo , Frutas/genética , Malus/enzimologia , Malus/genética , Monoéster Fosfórico Hidrolases/genética , Homologia de Sequência de Aminoácidos , Antioxidantes/metabolismo , Sequência de Bases , Vias Biossintéticas/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Estudos de Associação Genética , Variação Genética , Glutationa/metabolismo , Guanosina Difosfato/metabolismo , Monoéster Fosfórico Hidrolases/química , Folhas de Planta/genética , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável
9.
Plant Physiol Biochem ; 203: 108080, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37812990

RESUMO

Although amelioration of drought stress by Plant Growth Promoting Rhizobacteria (PGPR) is a well-documented phenomenon, the combined molecular and metabolic mechanisms governing this process remain unclear. In these lines, the present study aimed to provide new insights in the underlying drought attenuating mechanisms of tomato plants inoculated with a PGP Pseudomonas putida strain, by using a combination of metabolomic and transcriptomic approaches. Following Differentially Expressed Gene analysis, it became evident that inoculation resulted in a less disturbed plant transcriptome upon drought stress. Untargeted metabolomics highlighted the differential metabolite accumulation upon inoculation, as well as the less metabolic reprograming and the lower accumulation of stress-related metabolites for inoculated stressed plants. These findings were in line with morpho-physiological evidence of drought stress mitigation in the inoculated plants. The redox state modulation, the more efficient nitrogen assimilation, as well as the differential changes in amino acid metabolism, and the induction of the phenylpropanoid biosynthesis pathway, were the main drought-attenuating mechanisms in the SAESo11-inoculated plants. Shifts in pathways related to hormonal signaling were also evident upon inoculation at a transcript level and in conjunction with carbon metabolism regulation, possibly contributed to a drought-attenuation preconditioning. The identified signatory molecules of SAESo11-mediated priming against drought included aspartate, myo-inositol, glutamate, along with key genes related to trehalose, tryptophan and cysteine synthesis. Taken together, SAESo11-inoculation provides systemic effects encompassing both metabolic and regulatory functions, supporting both seedling growth and drought stress amelioration.


Assuntos
Pseudomonas , Solanum lycopersicum , Pseudomonas/fisiologia , Transcriptoma , Resistência à Seca , Solanum lycopersicum/genética , Metaboloma , Secas , Estresse Fisiológico/genética
10.
iScience ; 26(1): 105917, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36691616

RESUMO

The term "terroir" has been widely employed to link differential geographic phenotypes with sensorial signatures of agricultural food products, influenced by agricultural practices, soil type, and climate. Nowadays, the geographical indications labeling has been developed to safeguard the quality of plant-derived food that is linked to a certain terroir and is generally considered as an indication of superior organoleptic properties. As the dynamics of agroecosystems are highly intricate, consisting of tangled networks of interactions between plants, microorganisms, and the surrounding environment, the recognition of the key molecular components of terroir fingerprinting remains a great challenge to protect both the origin and the safety of food commodities. Furthermore, the contribution of microbiome as a potential driver of the terroir signature has been underestimated. Herein, we present a first comprehensive view of the multi-omic landscape related to transcriptome, proteome, epigenome, and metagenome of the popular Protected Geographical Indication potatoes of Naxos.

11.
Front Plant Sci ; 14: 1267340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818313

RESUMO

Introduction: Tomato is a high economic value crop worldwide with recognized nutritional properties and diverse postharvest potential. Nowadays, there is an emerging awareness about the exploitation and utilization of underutilized traditional germplasm in modern breeding programs. In this context, the existing diversity among Greek accessions in terms of their postharvest life and nutritional value remains largely unexplored. Methods: Herein, a detailed evaluation of 130 tomato Greek accessions for postharvest and nutritional characteristics was performed, using metabolomics and transcriptomics, leading to the selection of accessions with these interesting traits. Results: The results showed remarkable differences among tomato Greek accessions for overall ripening parameters (color, firmness) and weight loss. On the basis of their postharvest performance, a balance between short shelf life (SSL) and long shelf life (LSL) accessions was revealed. Metabolome analysis performed on 14 selected accessions with contrasting shelf-life potential identified a total of 206 phytonutrients and volatile compounds. In turn, transcriptome analysis in fruits from the best SSL and the best LSL accessions revealed remarkable differences in the expression profiles of transcripts involved in key metabolic pathways related to fruit quality and postharvest potential. Discussion: The pathways towards cell wall synthesis, polyamine synthesis, ABA catabolism, and steroidal alkaloids synthesis were mostly induced in the LSL accession, whereas those related to ethylene biosynthesis, cell wall degradation, isoprenoids, phenylpropanoids, ascorbic acid and aroma (TomloxC) were stimulated in the SSL accession. Overall, these data would provide valuable insights into the molecular mechanism towards enhancing shelf-life and improving flavor and aroma of modern tomato cultivars.

12.
PeerJ ; 11: e15043, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37013148

RESUMO

Dill (Anethum graveolens L.) is an aromatic herb widely used in the food industry, with several commercial cultivars available with different qualitative characteristics. Commercial cultivars are usually preferred over landraces due to their higher yield and also the lack of improved landraces than can be commercialized. In Greece, however, traditional dill landraces are cultivated by local communities. Many are conserved in the Greek Gene Bank and the aim here was to investigate and compare the morphological, genetic, and chemical biodiversity of twenty-two Greek landraces and nine modern/commercial cultivars. Multivariate analysis of the morphological descriptors, molecular markers, and essential oil and polyphenol composition revealed that the Greek landraces were clearly distinguished compared with modern cultivars at the level of phenological, molecular and chemical traits. Landraces were typically taller, with larger umbels, denser foliage, and larger leaves. Plant height, density of foliage, density of feathering as well as aroma characteristics were desirable traits observed for some landraces, such as T538/06 and GRC-1348/04, which were similar or superior to those of some commercial cultivars. Polymorphic loci for inter-simple sequence repeat (ISSR) and start codon targeted (SCoT) molecular markers were 76.47% and 72.41% for landraces, and 68.24% and 43.10% for the modern cultivars, respectively. Genetic divergence was shown, but not complete isolation, indicating that some gene flow may have occurred between landraces and cultivars. The major constituent in all dill leaf essential oils was α-phellandrene (54.42-70.25%). Landraces had a higher α-phellandrene and dill ether content than cultivars. Two dill landraces were rich in chlorogenic acid, the main polyphenolic compound determined. The study highlighted for the first-time Greek landraces with desirable characteristics regarding quality, yield, and harvest time suitable for breeding programs to develop new dill cultivars with superior features.


Assuntos
Anethum graveolens , Essências Florais , Óleos Voláteis , Anethum graveolens/genética , Genótipo , Melhoramento Vegetal , Óleos Voláteis/química , Análise Multivariada
13.
BMC Plant Biol ; 12: 239, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23245200

RESUMO

BACKGROUND: To gain insight into the regulation of fruit ascorbic acid (AsA) pool in tomatoes, a combination of metabolite analyses, non-labelled and radiolabelled substrate feeding experiments, enzyme activity measurements and gene expression studies were carried out in fruits of the 'low-' and 'high-AsA' tomato cultivars 'Ailsa Craig' and 'Santorini' respectively. RESULTS: The two cultivars exhibited different profiles of total AsA (totAsA, AsA + dehydroascorbate) and AsA accumulation during ripening, but both displayed a characteristic peak in concentrations at the breaker stage. Substrate feeding experiments demonstrated that the L-galactose pathway is the main AsA biosynthetic route in tomato fruits, but that substrates from alternative pathways can increase the AsA pool at specific developmental stages. In addition, we show that young fruits display a higher AsA biosynthetic capacity than mature ones, but this does not lead to higher AsA concentrations due to either enhanced rates of AsA breakdown ('Ailsa Craig') or decreased rates of AsA recycling ('Santorini'), depending on the cultivar. In the later stages of ripening, differences in fruit totAsA-AsA concentrations of the two cultivars can be explained by differences in the rate of AsA recycling activities. Analysis of the expression of AsA metabolic genes showed that only the expression of one orthologue of GDP-L-galactose phosphorylase (SlGGP1), and of two monodehydroascorbate reductases (SlMDHAR1 and SlMDHAR3) correlated with the changes in fruit totAsA-AsA concentrations during fruit ripening in 'Ailsa Craig', and that only the expression of SlGGP1 was linked to the high AsA concentrations found in red ripe 'Santorini' fruits. CONCLUSIONS: Results indicate that 'Ailsa Craig' and 'Santorini' use complementary mechanisms to maintain the fruit AsA pool. In the low-AsA cultivar ('Ailsa Craig'), alternative routes of AsA biosynthesis may supplement biosynthesis via L-galactose, while in the high-AsA cultivar ('Santorini'), enhanced AsA recycling activities appear to be responsible for AsA accumulation in the later stages of ripening. Gene expression studies indicate that expression of SlGGP1 and two orthologues of SlMDHAR are closely correlated with totAsA-AsA concentrations during ripening and are potentially good candidates for marker development for breeding and selection.


Assuntos
Ácido Ascórbico/biossíntese , Frutas/química , Solanum lycopersicum/química , Vias Biossintéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glutationa/análise , Solanum lycopersicum/classificação , Solanum lycopersicum/genética
14.
J Plant Physiol ; 271: 153658, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35245824

RESUMO

A total of 11 potential plant growth promoting rhizobacteria previously isolated from naturally stressed environments were evaluated for various traits of interest for a beneficial symbiosis with plants, including colonization ability, biofilm formation, motility, exopolysaccharide production and salt tolerance. The vast majority of the strains were found to possess multiple plant growth promoting traits. Nevertheless, the intensity varied among isolates, with those originated from tomato plants being more efficient colonizers. The strain SAESo11, genetically characterized as a Pseudomonas putida member was selected for further investigation of its potential to alleviate drought stress in tomato seedlings. Inoculation with SAESo11 mitigated the negative effects of drought stress as indicated by growth and photosynthetic indices. Furthermore, bacterial inoculation enhanced H2O2 content and malondialdehyde levels in colonized plants. Drought treatment did not further alter the oxidative status of these plants. Similarly, total phenolic content and antioxidant enzyme activity were induced in plant tissues in response to drought stress only at the absence of inoculum. These results indicated that inoculation with the selected strain imposed plants at a priming state, that enabled them to respond more robustly at the exposure to drought stress and efficiently attenuated the drought-induced injury. This state of plant alertness mediated by SAESo11 occurred at no cost to growth, highlighting its role as a potential plant priming agent.


Assuntos
Pseudomonas putida , Solanum lycopersicum , Secas , Peróxido de Hidrogênio , Sementes , Estresse Fisiológico
15.
Plants (Basel) ; 11(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35214906

RESUMO

The traditionally edible aerial parts of rock samphire (Crithmum maritimum L.) could be a valuable functional food or feed ingredient due to their high antioxidant capacity, ascorbic acid content, and rich content in secondary metabolites such as phenolics and flavonoids. The first objective of this study was to evaluate eighteen genotypes derived from different regions of Greece regarding the phytochemical contents of their soluble extracts in total phenolics, total flavonoids, and individual polyphenols as determined by LC-MS analysis, as well as ascorbic acid content and their antioxidant capacity as determined by different assays, including ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid), DPPH (2,2-diphenyl-1-picrylhydrazyl radical scavenging activity), and FRAP (ferric reducing antioxidant power) assays. The second objective of the study was the molecular characterization of native Greek C. maritimum genotypes. Great variation among genotypes was observed in terms of the antioxidant capacity, ascorbic acid content, and phenolic compounds (total phenolic content and total flavonoid content), as well as in caffeolquinic acids and flavonoids. The principal component analysis highlighted genotypes with a higher potential in antioxidants and polyphenolics. The most promising genotypes were G9 from Kefalonia, followed by G4 from Ikaria, where both clearly exhibited a similar response with high values of evaluated traits. The molecular characterization of genotypes revealed low variability and low to moderate genetic diversity between populations. Our data indicated that the rock samphire germplasm collection from the Balkan Botanic Garden of Kroussia could serve as an important source of documented genetic material and, thus, it is suggested for further investigation to provide insight regarding cultivation and agro-processing aspects, artificial selection, or plant breeding aimed at developing C. maritimum genotypes of high-bioactive value.

16.
Plant Physiol Biochem ; 193: 124-138, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36356544

RESUMO

L-Ascorbic acid (AsA), a strong antioxidant, serves as an enzyme cofactor and redox status marker, modulating a plethora of biological processes. As tomato commercial varieties and hybrids possess relatively low amounts of AsA, the improvement of fruit AsA represents a strategic goal for enhanced human health. Previously, we have suggested that GDP-L-Galactose phosphorylase (GGP) and L-galactose-1-phosphate phosphatase (GPP) can serve as possible targets for AsA manipulation in tomato (Solanum lycopersicon L.) fruit. To this end, we produced and evaluated T3 transgenic tomato plants carrying these two genes under the control of CaMV-35S and two fruit specific promoters, PPC2 and PG-GGPI. The transgenic lines had elevated levels of AsA, with the PG-GGP1 line containing 3-fold more AsA than WT, without affecting fruit characteristics. Following RNA-Seq analysis, 164 and 13 DEGs were up- or down-regulated, respectively, between PG-GGP1 and WT pink fruits. PG-GGP1 fruit had a distinct number of up-regulated transcripts associated with cell wall modification, ethylene biosynthesis and signaling, pollen fertility and carotenoid metabolism. The elevated AsA accumulation resulted in the up regulation of AsA associated transcripts and alternative biosynthetic pathways suggesting that the entire metabolic pathway was influenced, probably via master regulation. We show here that AsA-fortification of tomato ripe fruit via GGP1 overexpression under the action of a fruit specific promoter PG affects fruit development and ripening, reduces ethylene production, and increased the levels of sugars, and carotenoids, supporting a robust database to further explore the role of AsA induced genes for agronomically important traits, breeding programs and precision gene editing approaches.


Assuntos
Valor Nutritivo , Solanum lycopersicum , Ácido Ascórbico/química , Etilenos/química , Frutas/química , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/química , Solanum lycopersicum/genética , Fosfatos/química , Monoéster Fosfórico Hidrolases/genética , Melhoramento Vegetal , Plantas Geneticamente Modificadas/química
17.
Genes (Basel) ; 12(5)2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066421

RESUMO

Ascorbic acid (AsA) is an essential multifaceted phytonutrient for both the human diet and plant growth. Optimum levels of AsA accumulation combined with balanced redox homeostasis are required for normal plant development and defense response to adverse environmental stimuli. Notwithstanding its moderate AsA levels, tomatoes constitute a good source of vitamin C in the human diet. Therefore, the enhancement of AsA levels in tomato fruit attracts considerable attention, not only to improve its nutritional value but also to stimulate stress tolerance. Genetic regulation of AsA concentrations in plants can be achieved through the fine-tuning of biosynthetic, recycling, and transport mechanisms; it is also linked to changes in the whole fruit metabolism. Emerging evidence suggests that tomato synthesizes AsA mainly through the l-galactose pathway, but alternative pathways through d-galacturonate or myo-inositol, or seemingly unrelated transcription and regulatory factors, can be also relevant in certain developmental stages or in response to abiotic factors. Considering the recent advances in our understanding of AsA regulation in model and other non-model species, this review attempts to link the current consensus with novel technologies to provide a comprehensive strategy for AsA enhancement in tomatoes, without any detrimental effect on plant growth or fruit development.


Assuntos
Ácido Ascórbico/metabolismo , Solanum lycopersicum/metabolismo , Estresse Fisiológico , Ácido Ascórbico/genética , Biofortificação/métodos , Solanum lycopersicum/genética , Solanum lycopersicum/normas , Melhoramento Vegetal/métodos
18.
Front Plant Sci ; 12: 713984, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484277

RESUMO

Plant-associated beneficial strains inhabiting plants grown under harsh ecosystems can help them cope with abiotic stress factors by positively influencing plant physiology, development, and environmental adaptation. Previously, we isolated a potential plant growth promoting strain (AXSa06) identified as Pseudomonas oryzihabitans, possessing 1-aminocyclopropane-1-carboxylate deaminase activity, producing indole-3-acetic acid and siderophores, as well as solubilizing inorganic phosphorus. In this study, we aimed to further evaluate the effects of AXSa06 seed inoculation on the growth of tomato seedlings under excess salt (200 mM NaCl) by deciphering their transcriptomic and metabolomic profiles. Differences in transcript levels and metabolites following AXSa06 inoculation seem likely to have contributed to the observed difference in salt adaptation of inoculated plants. In particular, inoculations exerted a positive effect on plant growth and photosynthetic parameters, imposing plants to a primed state, at which they were able to respond more robustly to salt stress probably by efficiently activating antioxidant metabolism, by dampening stress signals, by detoxifying Na+, as well as by effectively assimilating carbon and nitrogen. The primed state of AXSa06-inoculated plants is supported by the increased leaf lipid peroxidation, ascorbate content, as well as the enhanced activities of antioxidant enzymes, prior to stress treatment. The identified signatory molecules of AXSa06-mediated salt tolerance included the amino acids aspartate, threonine, serine, and glutamate, as well as key genes related to ethylene or abscisic acid homeostasis and perception, and ion antiporters. Our findings represent a promising sustainable solution to improve agricultural production under the forthcoming climate change conditions.

19.
Funct Plant Biol ; 47(7): 651-658, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375995

RESUMO

Understanding the molecular mode(s) of plant tolerance to heat stress (HS) is crucial since HS is a potential threat to sustainable agriculture and global crop production. Polyamines (PAs) seem to exert multifaceted effects in plant growth and development and responses to abiotic and biotic stresses, presumably via their homeostasis, chemical interactions and contribution to hydrogen peroxide (H2O2) cellular 'signatures'. Downregulation of the apoplastic POLYAMINE OXIDASE (PAO) gene improved thermotolerance in tobacco (Nicotiana tabacum L.) transgenics. However, in the present work we show that transgenic tobacco plants with antisense-mediated S-ADENOSYL-L-METHIONINE DECARBOXYLASE silencing (AS-NtSAMDC) exhibited enhanced sensitivity and delayed responses to HS which was accompanied by profound injury upon HS removal (recovery), as assessed by phenological, physiological and biochemical characteristics. In particular, the AS-NtSAMDC transgenics exhibited significantly reduced rate of photosynthesis, as well as enzymatic and non-enzymatic antioxidants. These transgenics suffered irreversible damage, which significantly reduced their growth potential upon return to normal conditions. These data reinforce the contribution of increased PA homeostasis to tolerance, and can move forward our understanding on the PA-mediated mechanism(s) conferring tolerance to HS that might be targeted via traditional or biotechnological breeding for developing HS tolerant plants.


Assuntos
Peróxido de Hidrogênio , Nicotiana , Carboxiliases , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Peróxido de Hidrogênio/metabolismo , Melhoramento Vegetal , Nicotiana/metabolismo
20.
Microorganisms ; 8(11)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142812

RESUMO

The aim of the study was to investigate the bacterial community diversity and structure by means of 16S rRNA gene high-throughput amplicon sequencing, in the rhizosphere and phyllosphere of halophytes and drought-tolerant plants in Mediterranean ecosystems with different soil properties. The locations of the sampled plants included alkaline, saline-sodic soils, acidic soils, and the volcanic soils of Santorini Island, differing in soil fertility. Our results showed high bacterial richness overall with Proteobacteria and Actinobacteria dominating in terms of OTUs number and indicated that variable bacterial communities differed depending on the plant's compartment (rhizosphere and phyllosphere), the soil properties and location of sampling. Furthermore, a shared pool of generalist bacterial taxa was detected independently of sampling location, plant species, or plant compartment. We conclude that the rhizosphere and phyllosphere of native plants in stressed Mediterranean ecosystems consist of common bacterial assemblages contributing to the survival of the plant, while at the same time the discrete soil properties and environmental pressures of each habitat drive the development of a complementary bacterial community with a distinct structure for each plant and location. We suggest that this trade-off between generalist and specialist bacterial community is tailored to benefit the symbiosis with the plant.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa