Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 180(6): 1212-1227.e14, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32169215

RESUMO

The paternal genome undergoes a massive exchange of histone with protamine for compaction into sperm during spermiogenesis. Upon fertilization, this process is potently reversed, which is essential for parental genome reprogramming and subsequent activation; however, it remains poorly understood how this fundamental process is initiated and regulated. Here, we report that the previously characterized splicing kinase SRPK1 initiates this life-beginning event by catalyzing site-specific phosphorylation of protamine, thereby triggering protamine-to-histone exchange in the fertilized oocyte. Interestingly, protamine undergoes a DNA-dependent phase transition to gel-like condensates and SRPK1-mediated phosphorylation likely helps open up such structures to enhance protamine dismissal by nucleoplasmin (NPM2) and enable the recruitment of HIRA for H3.3 deposition. Remarkably, genome-wide assay for transposase-accessible chromatin sequencing (ATAC-seq) analysis reveals that selective chromatin accessibility in both sperm and MII oocytes is largely erased in early pronuclei in a protamine phosphorylation-dependent manner, suggesting that SRPK1-catalyzed phosphorylation initiates a highly synchronized reorganization program in both parental genomes.


Assuntos
Cromatina/metabolismo , Protaminas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Cromatina/fisiologia , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/fisiologia , Fertilização/genética , Histonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oócitos/metabolismo , Oócitos/fisiologia , Fosforilação , Protamina Quinase/genética , Protamina Quinase/metabolismo , Protaminas/genética , Proteínas Serina-Treonina Quinases/fisiologia , Splicing de RNA/genética , Splicing de RNA/fisiologia , Espermatozoides/metabolismo , Fatores de Transcrição/metabolismo , Zigoto/metabolismo
2.
Nature ; 561(7724): E43, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30013121

RESUMO

In this Letter, affiliation number 1 was originally missing from the HTML; the affiliations were missing for author Ming-Yow Hung in the HTML; and the Fig. 4 legend erroneously referred to panels a-h, instead of a-g. These errors have been corrected online.

3.
Nature ; 558(7709): 301-306, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875409

RESUMO

Oxidized phospholipids (OxPL) are ubiquitous, are formed in many inflammatory tissues, including atherosclerotic lesions, and frequently mediate proinflammatory changes 1 . Because OxPL are mostly the products of non-enzymatic lipid peroxidation, mechanisms to specifically neutralize them are unavailable and their roles in vivo are largely unknown. We previously cloned the IgM natural antibody E06, which binds to the phosphocholine headgroup of OxPL, and blocks the uptake of oxidized low-density lipoprotein (OxLDL) by macrophages and inhibits the proinflammatory properties of OxPL2-4. Here, to determine the role of OxPL in vivo in the context of atherogenesis, we generated transgenic mice in the Ldlr-/- background that expressed a single-chain variable fragment of E06 (E06-scFv) using the Apoe promoter. E06-scFv was secreted into the plasma from the liver and macrophages, and achieved sufficient plasma levels to inhibit in vivo macrophage uptake of OxLDL and to prevent OxPL-induced inflammatory signalling. Compared to Ldlr-/- mice, Ldlr -/- E06-scFv mice had 57-28% less atherosclerosis after 4, 7 and even 12 months of 1% high-cholesterol diet. Echocardiographic and histologic evaluation of the aortic valves demonstrated that E06-scFv ameliorated the development of aortic valve gradients and decreased aortic valve calcification. Both cholesterol accumulation and in vivo uptake of OxLDL were decreased in peritoneal macrophages, and both peritoneal and aortic macrophages had a decreased inflammatory phenotype. Serum amyloid A was decreased by 32%, indicating decreased systemic inflammation, and hepatic steatosis and inflammation were also decreased. Finally, the E06-scFv prolonged life as measured over 15 months. Because the E06-scFv lacks the functional effects of an intact antibody other than the ability to bind OxPL and inhibit OxLDL uptake in macrophages, these data support a major proatherogenic role of OxLDL and demonstrate that OxPL are proinflammatory and proatherogenic, which E06 counteracts in vivo. These studies suggest that therapies inactivating OxPL may be beneficial for reducing generalized inflammation, including the progression of atherosclerosis, aortic stenosis and hepatic steatosis.


Assuntos
Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Hipercolesterolemia/metabolismo , Inflamação/metabolismo , Fosfolipídeos/antagonistas & inibidores , Fosfolipídeos/metabolismo , Animais , Estenose da Valva Aórtica/tratamento farmacológico , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Apoptose , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Colesterol/administração & dosagem , Colesterol/farmacologia , Progressão da Doença , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , Hipercolesterolemia/patologia , Imunoglobulina M/genética , Imunoglobulina M/imunologia , Imunoglobulina M/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/patologia , Lipoproteínas LDL/metabolismo , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxirredução , Fosfolipídeos/química , Fosfolipídeos/imunologia , Fosforilcolina/imunologia , Receptores de LDL/deficiência , Receptores de LDL/genética , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/uso terapêutico
4.
Mol Cell ; 59(6): 931-40, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26365380

RESUMO

Glaucoma, a blinding neurodegenerative disease, whose risk factors include elevated intraocular pressure (IOP), age, and genetics, is characterized by accelerated and progressive retinal ganglion cell (RGC) death. Despite decades of research, the mechanism of RGC death in glaucoma is still unknown. Here, we demonstrate that the genetic effect of the SIX6 risk variant (rs33912345, His141Asn) is enhanced by another major POAG risk gene, p16INK4a (cyclin-dependent kinase inhibitor 2A, isoform INK4a). We further show that the upregulation of homozygous SIX6 risk alleles (CC) leads to an increase in p16INK4a expression, with subsequent cellular senescence, as evidenced in a mouse model of elevated IOP and in human POAG eyes. Our data indicate that SIX6 and/or IOP promotes POAG by directly increasing p16INK4a expression, leading to RGC senescence in adult human retinas. Our study provides important insights linking genetic susceptibility to the underlying mechanism of RGC death and provides a unified theory of glaucoma pathogenesis.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , Glaucoma de Ângulo Aberto/metabolismo , Proteínas de Homeodomínio/fisiologia , Células Ganglionares da Retina/fisiologia , Transativadores/fisiologia , Sequência de Aminoácidos , Animais , Estudos de Casos e Controles , Morte Celular , Linhagem Celular , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/patologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Regulação para Cima
5.
J Neurosci Res ; 99(10): 2625-2645, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34212416

RESUMO

The homeodomain transcription factors sine oculis homeobox 3 (Six3) and ventral anterior homeobox 1 (Vax1) are required for brain development. Their expression in specific brain areas is maintained in adulthood, where their functions are poorly understood. To identify the roles of Six3 and Vax1 in neurons, we conditionally deleted each gene using Synapsincre , a promoter targeting maturing neurons, and generated Six3syn and Vax1syn mice. Six3syn and Vax1syn females, but not males, had reduced fertility, due to impairment of the luteinizing hormone (LH) surge driving ovulation. In nocturnal rodents, the LH surge requires a precise timing signal from the brain's circadian pacemaker, the suprachiasmatic nucleus (SCN), near the time of activity onset. Indeed, both Six3syn and Vax1syn females had impaired rhythmic SCN output, which was associated with weakened Period 2 molecular clock function in both Six3syn and Vax1syn mice. These impairments were associated with a reduction of the SCN neuropeptide vasoactive intestinal peptide in Vax1syn mice and a modest weakening of SCN timekeeping function in both Six3syn and Vax1syn mice. Changes in SCN function were associated with mistimed peak PER2::LUC expression in the SCN and pituitary in both Six3syn and Vax1syn females. Interestingly, Six3syn ovaries presented reduced sensitivity to LH, causing reduced ovulation during superovulation. In conclusion, we have identified novel roles of the homeodomain transcription factors SIX3 and VAX1 in neurons, where they are required for proper molecular circadian clock function, SCN rhythmic output, and female fertility.


Assuntos
Ritmo Circadiano/fisiologia , Proteínas do Olho/metabolismo , Fertilidade/fisiologia , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/metabolismo , Corrida/fisiologia , Núcleo Supraquiasmático/metabolismo , Animais , Proteínas do Olho/genética , Feminino , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células NIH 3T3 , Proteínas do Tecido Nervoso/genética , Neuropeptídeos/genética , Proteína Homeobox SIX3
6.
Neuroendocrinology ; 109(3): 200-207, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30261489

RESUMO

Haploinsufficiency occurs when loss of one copy of a diploid gene (hemizygosity) causes a phenotype. It is relatively rare, in that most genes can produce sufficient mRNA and protein from a single copy to prevent any loss of normal activity and function. Reproduction is a complex process relying on migration of GnRH neurons from the olfactory placode to the hypothalamus during development. We have studied 3 different homeodomain genes Otx2, Vax1, and Six3 and found that the deletion of one allele for any of these genes in mice produces subfertility or infertility in one or both sexes, despite the presence of one intact allele. All 3 heterozygous mice have reduced numbers of GnRH neurons, but the mechanisms of subfertility differ significantly. This review compares the subfertility phenotypes and their mechanisms.


Assuntos
Proteínas do Olho/genética , Haploinsuficiência , Proteínas de Homeodomínio/genética , Infertilidade/genética , Proteínas do Tecido Nervoso/genética , Neuropeptídeos/genética , Fatores de Transcrição Otx/genética , Animais , Proteínas do Olho/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Proteínas de Homeodomínio/metabolismo , Infertilidade/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Fatores de Transcrição Otx/metabolismo , Fenótipo , Proteína Homeobox SIX3
7.
Neuroendocrinology ; 108(4): 328-342, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30739114

RESUMO

There is an increasing trend in studies utilizing cell-specific deletion of genes through conditional gene deletion by CRE recombination. Despite numerous advantages, this strategy also has limitations such as ectopic CRE-expression and germline recombination. Two commonly used gonadotropin-releasing hormone (Gnrh)-driven CRE-expressing mice both target GnRH neurons. However, a direct comparison of the cells targeted and their phenotypic outcome have not yet been presented. To compare where recombination takes place, we crossed the Gnrh-cre and Lhrh-cre lines with the Rosa26-LacZ reporter mouse. Lhrh-cre allowed recombination of the Rosa26-LacZ gene in ∼700 cells, which is comparable to the GnRH neuronal population. Surprisingly, there were > 20 times more LacZ expressing cells in the adult Gnrh-cre:Rosa26-LacZ than the Lhrh-cre:Rosa26-LacZ brain. The greatest differences in targeting of the Gnrh-cre and Lhrh-cre lines were found in the septum, the suprachiasmatic nucleus, and the septohypothalamic area. This difference in cells targeted was present from embryonic day 12. A prior study using the Gnrh-cre to delete the transcription factor Otx2 found fewer GnRH neurons, leading to male and female subfertility. To recapitulate this study, we performed a fertility assay in Otx2:Lhrh-cre mice. We confirmed the requirement for Otx2 in GnRH neuron development, fertility and correct gonadotropin hormone release in Otx2:Lhrh-cre males, but the subfertility was more modest than in Otx2:Gnrh-cre and absent in female Otx2:Lhrh-cre. This suggests that ectopic expression of Gnrh-cre contributes to the reproductive phenotype observed. Finally, the Cre alleles caused germline recombination of the flox allele when transmitted from either parent, generating embryonic lethal knock-out offspring, producing smaller live litters.


Assuntos
Hormônio Liberador de Gonadotropina/genética , Infertilidade/genética , Fatores de Transcrição Otx/genética , Alelos , Animais , Encéfalo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Camundongos Transgênicos , Neurônios/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/metabolismo
8.
J Neurosci ; 36(12): 3506-18, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-27013679

RESUMO

Hypothalamic gonadotropin-releasing hormone (GnRH) neurons are at the apex of the hypothalamic-pituitary-gonadal axis that regulates mammalian fertility. Herein we demonstrate a critical role for the homeodomain transcription factor ventral anterior homeobox 1 (VAX1) in GnRH neuron maturation and show that Vax1 deletion from GnRH neurons leads to complete infertility in males and females. Specifically, global Vax1 knock-out embryos had normal numbers of GnRH neurons at 13 d of gestation, but no GnRH staining was detected by embryonic day 17. To identify the role of VAX1 specifically in GnRH neuron development,Vax1(flox)mice were generated and lineage tracing performed in Vax1(flox/flox):GnRH(cre):RosaLacZ mice. This identified VAX1 as essential for maintaining expression of Gnrh1 The absence of GnRH staining in adult Vax1(flox/flox):GnRH(cre)mice led to delayed puberty, hypogonadism, and infertility. To address the mechanism by which VAX1 maintains Gnrh1 transcription, the capacity of VAX1 to regulate Gnrh1 transcription was evaluated in the GnRH cell lines GN11 and GT1-7. As determined by luciferase and electrophoretic mobility shift assays, we found VAX1 to be a direct activator of the GnRH promoter through binding to four ATTA sites in the GnRH enhancer (E1) and proximal promoter (P), and able to compete with the homeoprotein SIX6 for occupation of the identified ATTA sites in the GnRH promoter. We conclude that VAX1 is expressed in GnRH neurons where it is required for GnRH neuron expression of GnRH and maintenance of fertility in mice. SIGNIFICANCE STATEMENT: Infertility classified as idiopathic hypogonadotropic hypogonadism (IHH) is characterized by delayed or absent sexual maturation and low sex steroid levels due to alterations in neuroendocrine control of the hypothalamic-pituitary-gonadal axis. The incidence of IHH is 1-10 cases per 100,000 births. Although extensive efforts have been invested in identifying genes giving rise to IHH, >50% of cases have unknown genetic origins. We recently showed that haploinsufficiency of ventral anterior homeobox 1 (Vax1) leads to subfertility, making it a candidate in polygenic IHH. In this study, we investigate the mechanism by which VAX1 controls fertility finding that VAX1 is required for maintenance of Gnrh1 gene expression and deletion of Vax1 from GnRH neurons leads to complete infertility.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Proteínas de Homeodomínio/metabolismo , Hipogonadismo/metabolismo , Hipotálamo/metabolismo , Infertilidade/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Animais , Feminino , Fertilidade , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Knockout , Neuropeptídeos/genética
9.
Reprod Biol Endocrinol ; 15(1): 86, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29065928

RESUMO

BACKGROUND: Proper expression of key reproductive hormones from gonadotrope cells of the pituitary is required for pubertal onset and reproduction. To further our understanding of the molecular events taking place during embryonic development, leading to expression of the glycoproteins luteinizing hormone (LH) and follicle-stimulating hormone (FSH), we characterized chromatin structure changes, imparted mainly by histone modifications, in model gonadotrope cell lines. METHODS: We evaluated chromatin status and gene expression profiles by chromatin immunoprecipitation assays, DNase sensitivity assay, and RNA sequencing in three developmentally staged gonadotrope cell lines, αT1-1 (progenitor, expressing Cga), αT3-1 (immature, expressing Cga and Gnrhr), and LßT2 (mature, expressing Cga, Gnrhr, Lhb, and Fshb), to assess changes in chromatin status and transcription factor access of gonadotrope-specific genes. RESULTS: We found the common mRNA α-subunit of LH and FSH, called Cga, to have an open chromatin conformation in all three cell lines. In contrast, chromatin status of Gnrhr is open only in αT3-1 and LßT2 cells. Lhb begins to open in LßT2 cells and was further opened by activin treatment. Histone H3 modifications associated with active chromatin were high on Gnrhr in αT3-1 and LßT2, and Lhb in LßT2 cells, while H3 modifications associated with repressed chromatin were low on Gnrhr, Lhb, and Fshb in LßT2 cells. Finally, chromatin status correlates with the progressive access of LHX3 to Cga and Gnrhr, followed by PITX1 binding to the Lhb promoter. CONCLUSION: Our data show the gonadotrope-specific genes Cga, Gnrhr, Lhb, and Fshb are not only controlled by developmental transcription factors, but also by epigenetic mechanisms that include the modulation of chromatin structure, and histone modifications.


Assuntos
Cromatina/metabolismo , Gonadotrofos/metabolismo , Gonadotropinas/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Gonadotropinas/metabolismo , Camundongos , Células NIH 3T3 , Ligação Proteica , Transcrição Gênica
10.
Biol Reprod ; 93(3): 69, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26203175

RESUMO

Polycystic ovary syndrome (PCOS) pathophysiology is poorly understood, due partly to lack of PCOS animal models fully recapitulating this complex disorder. Recently, a PCOS rat model using letrozole (LET), a nonsteroidal aromatase inhibitor, mimicked multiple PCOS phenotypes, including metabolic features absent in other models. Given the advantages of using genetic and transgenic mouse models, we investigated whether LET produces a similar PCOS phenotype in mice. Pubertal female C57BL/6N mice were treated for 5 wk with LET, which resulted in increased serum testosterone and normal diestrus levels of estradiol, similar to the hyperandrogenemia and follicular phase estrogen levels of PCOS women. As in PCOS, ovaries from LET mice were larger, polycystic, and lacked corpora lutea versus controls. Most LET females were acyclic, and all were infertile. LET females displayed elevated serum LH levels and higher Lhb mRNA in the pituitary. In contrast, serum FSH and Fshb were significantly reduced in LET females, demonstrating differential effects on gonadotropins, as in PCOS. Within the ovary, LET females had higher Cyp17, Cyp19, and Fsh receptor mRNA expression. In the hypothalamus, LET females had higher kisspeptin receptor mRNA expression but lower progesterone receptor mRNA levels. LET females also gained more weight than controls, had increased abdominal adiposity and adipocyte size, elevated adipose inflammatory mRNA levels, and impaired glucose tolerance, mirroring the metabolic phenotype in PCOS women. This is the first report of a LET paradigm in mice that recapitulates both reproductive and metabolic PCOS phenotypes and will be useful to genetically probe the PCOS condition.


Assuntos
Inibidores Enzimáticos/toxicidade , Nitrilas/toxicidade , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/patologia , Reprodução/efeitos dos fármacos , Triazóis/toxicidade , Animais , Corpo Lúteo/metabolismo , Diestro/metabolismo , Ciclo Estral/efeitos dos fármacos , Feminino , Hiperandrogenismo/sangue , Hiperandrogenismo/induzido quimicamente , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Kisspeptinas/biossíntese , Kisspeptinas/genética , Letrozol , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Síndrome do Ovário Policístico/metabolismo , Gravidez , Testosterona/sangue
11.
Front Endocrinol (Lausanne) ; 14: 1269672, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38205198

RESUMO

Background: The suprachiasmatic nucleus (SCN) within the hypothalamus is a key brain structure required to relay light information to the body and synchronize cell and tissue level rhythms and hormone release. Specific subpopulations of SCN neurons, defined by their peptide expression, regulate defined SCN output. Here we focus on the vasoactive intestinal peptide (VIP) expressing neurons of the SCN. SCN VIP neurons are known to regulate circadian rhythms and reproductive function. Methods: To specifically study SCN VIP neurons, we generated a novel knock out mouse line by conditionally deleting the SCN enriched transcription factor, Ventral Anterior Homeobox 1 (Vax1), in VIP neurons (Vax1Vip; Vax1fl/fl:VipCre). Results: We found that Vax1Vip females presented with lengthened estrous cycles, reduced circulating estrogen, and increased depressive-like behavior. Further, Vax1Vip males and females presented with a shortened circadian period in locomotor activity and ex vivo SCN circadian period. On a molecular level, the shortening of the SCN period was driven, at least partially, by a direct regulatory role of VAX1 on the circadian clock genes Bmal1 and Per2. Interestingly, Vax1Vip females presented with increased expression of arginine vasopressin (Avp) in the paraventricular nucleus, which resulted in increased circulating corticosterone. SCN VIP and AVP neurons regulate the reproductive gonadotropin-releasing hormone (GnRH) and kisspeptin neurons. To determine how the reproductive neuroendocrine network was impacted in Vax1Vip mice, we assessed GnRH sensitivity to a kisspeptin challenge in vivo. We found that GnRH neurons in Vax1Vip females, but not males, had an increased sensitivity to kisspeptin, leading to increased luteinizing hormone release. Interestingly, Vax1Vip males showed a small, but significant increase in total sperm and a modest delay in pubertal onset. Both male and female Vax1Vip mice were fertile and generated litters comparable in size and frequency to controls. Conclusion: Together, these data identify VAX1 in SCN VIP neurons as a neurological overlap between circadian timekeeping, female reproduction, and depressive-like symptoms in mice, and provide novel insight into the role of SCN VIP neurons.


Assuntos
Neuropeptídeos , Fatores de Transcrição , Masculino , Feminino , Animais , Camundongos , Peptídeo Intestinal Vasoativo , Kisspeptinas/genética , Sêmen , Núcleo Supraquiasmático , Reprodução , Neurônios , Ritmo Circadiano , Hormônio Liberador de Gonadotropina , Proteínas de Homeodomínio
12.
JCI Insight ; 8(3)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36602867

RESUMO

Pathogenic SRY-box transcription factor 2 (SOX2) variants typically cause severe ocular defects within a SOX2 disorder spectrum that includes hypogonadotropic hypogonadism. We examined exome-sequencing data from a large, well-phenotyped cohort of patients with idiopathic hypogonadotropic hypogonadism (IHH) for pathogenic SOX2 variants to investigate the underlying pathogenic SOX2 spectrum and its associated phenotypes. We identified 8 IHH individuals harboring heterozygous pathogenic SOX2 variants with variable ocular phenotypes. These variant proteins were tested in vitro to determine whether a causal relationship between IHH and SOX2 exists. We found that Sox2 was highly expressed in the hypothalamus of adult mice and colocalized with kisspeptin 1 (KISS1) expression in the anteroventral periventricular nucleus of adult female mice. In vitro, shRNA suppression of mouse SOX2 protein in Kiss-expressing cell lines increased the levels of human kisspeptin luciferase (hKiss-luc) transcription, while SOX2 overexpression repressed hKiss-luc transcription. Further, 4 of the identified SOX2 variants prevented this SOX2-mediated repression of hKiss-luc. Together, these data suggest that pathogenic SOX2 variants contribute to both anosmic and normosmic forms of IHH, attesting to hypothalamic defects in the SOX2 disorder spectrum. Our study describes potentially novel mechanisms contributing to SOX2-related disease and highlights the necessity of SOX2 screening in IHH genetic evaluation irrespective of associated ocular defects.


Assuntos
Hipogonadismo , Adulto , Animais , Feminino , Humanos , Camundongos , Heterozigoto , Hipogonadismo/genética , Mutação , Fenótipo , Fatores de Transcrição SOXB1/genética
13.
J Neurosci ; 31(2): 426-38, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21228153

RESUMO

The hypothalamus, pituitary, and gonads coordinate to direct the development and regulation of reproductive function in mammals. Control of the hypothalamic-pituitary-gonadal axis is dependent on correct migration of gonadotropin-releasing hormone (GnRH) neurons from the nasal placode to the hypothalamus, followed by proper synthesis and pulsatile secretion of GnRH, functions absent in patients with hypogonadal hypogonadism. In this study, we identify sine oculis-related homeobox 6 (Six6) as a novel factor necessary for proper targeting of GnRH expression to the limited population of GnRH neurons within the adult mouse hypothalamus and demonstrate that it is required for proper reproductive function in both male and female mice. Female Six6-null mice exhibit a striking decrease in fertility, failing to progress through the estrous cycle normally, show any signs of successful ovulation, or produce litters. Although basal gonadotropin production in these mice is relatively normal, analysis of GnRH expression reveals a dramatic decrease in total GnRH neuron numbers. We show that expression of Six6 is dramatically increased during GnRH neuronal maturation and that overexpression of Six6 induces GnRH transcription in neuronal cells. Finally, we demonstrate that this induction in GnRH expression is mediated via binding of Six6 to evolutionarily conserved ATTA sites located within the GnRH proximal promoter. Together, these data indicate that Six6 plays an important role in the regulation of GnRH expression and hypothalamic control of fertility.


Assuntos
Fertilidade/fisiologia , Hormônio Liberador de Gonadotropina/biossíntese , Proteínas de Homeodomínio/fisiologia , Hipotálamo/metabolismo , Reprodução/fisiologia , Transativadores/fisiologia , Animais , Linhagem Celular , Ciclo Estral/fisiologia , Feminino , Hormônio Liberador de Gonadotropina/genética , Proteínas de Homeodomínio/genética , Hipotálamo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/metabolismo , Ovulação/fisiologia , Gravidez , Regiões Promotoras Genéticas , Fatores Sexuais , Transativadores/genética , Transcrição Gênica
14.
Endocrinology ; 163(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34967900

RESUMO

For billions of years before electric light was invented, life on Earth evolved under the pattern of light during the day and darkness during the night. Through evolution, nearly all organisms internalized the temporal rhythm of Earth's 24-hour rotation and evolved self-sustaining biological clocks with a ~24-hour rhythm. These internal rhythms are called circadian rhythms, and the molecular constituents that generate them are called molecular circadian clocks. Alignment of molecular clocks with the environmental light-dark rhythms optimizes physiology and behavior. This phenomenon is particularly true for reproductive function, in which seasonal breeders use day length information to time yearly changes in fertility. However, it is becoming increasingly clear that light-induced disruption of circadian rhythms can negatively impact fertility in nonseasonal breeders as well. In particular, the luteinizing hormone surge promoting ovulation is sensitive to circadian disruption. In this review, we will summarize our current understanding of the neuronal networks that underlie circadian rhythms and the luteinizing hormone surge.


Assuntos
Ritmo Circadiano/fisiologia , Hormônio Luteinizante/metabolismo , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Relógios Circadianos , Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano , Feminino , Hormônio Liberador de Gonadotropina , Hipotálamo , Kisspeptinas , Luz , Masculino , Neuropeptídeos/fisiologia , Roedores , Núcleo Supraquiasmático/fisiologia , Fatores de Transcrição/fisiologia
15.
Mol Cell Endocrinol ; 546: 111577, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35121076

RESUMO

The homeodomain transcription factor SIX3 is a known regulator of eye, nose, and forebrain development, and has recently been implicated in female reproduction. Germline heterozygosity of SIX3 is sufficient to cause subfertility, but the cell populations that mediate this role are unknown. The neuropeptide kisspeptin is a critical component of the reproductive axis and plays roles in sexual maturation, ovulation, and the maintenance of gonadotropin secretion. We used Cre-Lox technology to remove Six3 specifically from kisspeptin neurons in mice to test the hypothesis that SIX3 in kisspeptin neurons is required for reproduction. We found that loss of Six3 in kisspeptin neurons causes subfertility and estrous cycle irregularities in females, but no effect in males. Overall, we find that SIX3 expression in kisspeptin neurons is an important contributor to female fertility.


Assuntos
Proteínas do Olho , Proteínas de Homeodomínio , Infertilidade , Kisspeptinas , Proteínas do Tecido Nervoso , Neurônios , Animais , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Reprodução/fisiologia , Proteína Homeobox SIX3
16.
Mol Metab ; 57: 101431, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34974160

RESUMO

OBJECTIVE: The increasing prevalence of obesity makes it important to increase the understanding of the maturation and function of the neuronal integrators and regulators of metabolic function. METHODS: Behavioral, molecular, and physiological analyses of transgenic mice with Sine oculis 3 (Six3) deleted in mature neurons using the Synapsincreallele. RESULTS: Conditional deletion of the homeodomain transcription factor Six3 in mature neurons causes dwarfism and weakens circadian wheel-running activity rhythms but increases general activity at night, and improves metabolic function, without impacting pubertal onset or fertility in males. The reduced growth in 6-week-old Six3fl/fl:Synapsincre (Six3syn) males correlates with increased somatostatin (SS) expression in the hypothalamus and reduced growth hormone (GH) in the pituitary. In contrast, 12-week-old Six3syn males have increased GH release, despite an increased number of the inhibitory SS neurons in the periventricular nucleus. GH is important in glucose metabolism, muscle function, and bone health. Interestingly, Six3syn males have improved glucose tolerance at 7, 12, and 18 weeks of age, which, in adulthood, is associated with increased % lean mass and increased metabolic rates. Further, 12-week-old Six3syn males have reduced bone mineralization and a lower bone mineral density, indicating that reduced GH levels during early life cause a long-term reduction in bone mineralization. CONCLUSION: Our study points to the novel role of Six3 in post-proliferative neurons to regulate metabolic function through SS neuron control of GH release.


Assuntos
Nanismo , Proteínas de Homeodomínio , Animais , Nanismo/genética , Nanismo/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo
17.
Front Endocrinol (Lausanne) ; 13: 956169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992114

RESUMO

Disruptions to the circadian system alter reproductive capacity, particularly in females. Mice lacking the core circadian clock gene, Bmal1, are infertile and have evidence of neuroendocrine disruption including the absence of the preovulatory luteinizing hormone (LH) surge and enhanced responsiveness to exogenous kisspeptin. Here, we explore the role of Bmal1 in suprachiasmatic nucleus (SCN) neuron populations known to project to the neuroendocrine axis. We generated four mouse lines using Cre/Lox technology to create conditional deletion of Bmal1 in arginine vasopressin (Bmal1fl/fl:Avpcre ), vasoactive intestinal peptide (Bmal1fl/fl:Vipcre ), both (Bmal1fl/fl:Avpcre+Vipcre ), and neuromedin-s (Bmal1fl/fl:Nmscre ) neurons. We demonstrate that the loss of Bmal1 in these populations has substantial effects on home-cage circadian activity and temperature rhythms. Despite this, we found that female mice from these lines demonstrated normal estrus cycles, fecundity, kisspeptin responsiveness, and inducible LH surge. We found no evidence of reproductive disruption in constant darkness. Overall, our results indicate that while conditional Bmal1 knockout in AVP, VIP, or NMS neurons is sufficient to disrupted locomotor activity, this disruption is insufficient to recapitulate the neuroendocrine reproductive effects of the whole-body Bmal1 knockout.


Assuntos
Neurônios do Núcleo Supraquiasmático , Peptídeo Intestinal Vasoativo , Animais , Arginina Vasopressina/genética , Ritmo Circadiano/fisiologia , Feminino , Fertilidade , Kisspeptinas/genética , Hormônio Luteinizante , Camundongos , Núcleo Supraquiasmático/metabolismo , Neurônios do Núcleo Supraquiasmático/metabolismo
18.
Hum Mol Genet ; 18(2): 248-60, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18930956

RESUMO

Prader-Willi syndrome (PWS) is a complex genetic disorder characterized by hyperphagia, obesity and hypogonadotrophic hypogonadism, all highly suggestive of hypothalamic dysfunction. The NDN gene, encoding the MAGE family protein, necdin, maps to the PWS chromosome region and is highly expressed in mature hypothalamic neurons. Adult mice lacking necdin have reduced numbers of gonadotropin-releasing hormone (GnRH) neurons, but the mechanism for this reduction is unknown. Herein, we show that, although necdin is not expressed in an immature, migratory GnRH neuronal cell line (GN11), high levels are present in a mature GnRH neuronal cell line (GT1-7). Furthermore, overexpression of necdin activates GnRH transcription through cis elements bound by the homeodomain repressor Msx that are located in the enhancer and promoter of the GnRH gene, and knock-down of necdin expression reduces GnRH gene expression. In fact, overexpression of Necdin relieves Msx repression of GnRH transcription through these elements and necdin co-immunoprecipitates with Msx from GnRH neuronal cells, indicating that necdin may activate GnRH gene expression by preventing repression of GnRH gene expression by Msx. Finally, necdin is necessary for generation of the full complement of GnRH neurons during mouse development and extension of GnRH axons to the median eminence. Together, these results indicate that lack of necdin during development likely contributes to the hypogonadotrophic hypogonadal phenotype in individuals with PWS.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hormônio Liberador de Gonadotropina/genética , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/crescimento & desenvolvimento , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Síndrome de Prader-Willi/metabolismo , Animais , Linhagem Celular , Hormônio Liberador de Gonadotropina/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Proteínas Nucleares/genética , Síndrome de Prader-Willi/embriologia , Síndrome de Prader-Willi/genética , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
19.
Biol Reprod ; 84(3): 466-75, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21076077

RESUMO

Peroxisome proliferators-activated receptor gamma (PPARG) ligands improve insulin sensitivity in type 2 diabetes and polycystic ovarian syndrome (PCOS). Despite clinical studies showing normalization of pituitary responsiveness to gonadotropin-releasing hormone (GnRH) in patients with PCOS, the precise role of PPARG in regulating the hypothalamic-pituitary-gonadal axis remains unclear. In the present study, we tested the hypothesis that the PPARG agonist rosiglitazone has a direct effect on the pituitary. In mouse LbetaT2 immortalized gonadotrophs, rosiglitazone treatment inhibited GnRH stimulation of the stress kinases p38MAPK and MAPKs/JNKs, but did not alter activation of ERKs, both in the presence and absence of activin. Furthermore, p38MAPK signaling was critical for both Lhb and Fshb promoter activity, and rosiglitazone suppressed the GnRH-mediated induction of Lhb and Fshb mRNA. Depletion of PPARG using a lentivirally encoded short hairpin RNA abolishes the effect of rosiglitazone to suppress activation of JNKs and induction of the transcription factors EGR1 and FOS as well as the gonadotropin genes Lhb and Fshb. Lastly, we show conditional knockout of Pparg in pituitary gonadotrophs caused an increase in luteinizing hormone levels in female mice, a decrease in follicle-stimulating hormone in male mice, and a fertility defect characterized by reduced litter size. Taken together, our data support a direct role for PPARG in modulating pituitary function in vitro and in vivo.


Assuntos
Gonadotrofos/metabolismo , Gonadotrofos/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , PPAR gama/fisiologia , Ativinas/metabolismo , Ativinas/fisiologia , Animais , Linhagem Celular Transformada , Células Cultivadas , Feminino , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos , Camundongos Knockout , Especificidade de Órgãos/genética , PPAR gama/agonistas , PPAR gama/genética , PPAR gama/metabolismo , Adeno-Hipófise/citologia , Adeno-Hipófise/metabolismo , Adeno-Hipófise/fisiologia , Rosiglitazona , Transdução de Sinais/genética , Tiazolidinedionas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Endocrinology ; 162(4)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33539533

RESUMO

In this study, we found that loss of the circadian clock gene Bmal1 causes disruptions throughout the growth hormone (GH) axis, from hepatic gene expression to production of urinary pheromones and pheromone-dependent behavior. First, we show that Bmal1 knockout (KO) males elicit reduced aggressive responses from wild-type (WT) males and secrete lower levels of major urinary proteins (MUPs); however, we also found that a liver-specific KO of Bmal1 (liver-Bmal1-KO) produces a similar reduction in MUP secretion without a defect in aggressive behavior, indicating that the decrease in elicited aggression arises from another factor. We then shifted our investigation to determine the cause of MUP dysregulation in Bmal1 KO animals. Because the pulse pattern of GH drives sexually dimorphic expression of hepatic genes including MUPs, we examined GH pulsatility. We found that Bmal1 KO males have a female-like pattern of GH release, whereas liver-Bmal1-KO mice are not significantly different from either WT or Bmal1 KO. Since differential patterns of GH release regulate the transcription of many sexually dimorphic genes in the liver, we then examined hepatic gene transcription in Bmal1 KO and liver-Bmal1-KO mice. We found that while some female-predominant genes increase in the Bmal1 KO, there was no decrease in male-predominant genes, and little change in the liver-Bmal1-KO. We also found disrupted serum insulin growth factor 1 (IGF-1) and liver Igf1 messenger RNA in the Bmal1 KO mice, which may underlie the disrupted GH release. Overall, our findings differentiate between GH-pulse-driven and circadian-driven effects on hepatic genes, and the functional consequences of altered GH pulsatility.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Ritmo Circadiano , Expressão Gênica , Hormônio do Crescimento/genética , Fígado/metabolismo , Fatores de Transcrição ARNTL/genética , Agressão , Animais , Comportamento Animal , Feminino , Hormônio do Crescimento/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas/genética , Proteínas/metabolismo , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa