RESUMO
BACKGROUND: CRISPR-Cas9 technology has advanced in vivo gene therapy for disorders like hemophilia A, notably through the successful targeted incorporation of the F8 gene into the Alb locus in hepatocytes, effectively curing this disorder in mice. However, thoroughly evaluating the safety and specificity of this therapy is essential. Our study introduces a novel methodology to analyze complex insertion sequences at the on-target edited locus, utilizing barcoded long-range PCR, CRISPR RNP-mediated deletion of unedited alleles, magnetic bead-based long amplicon enrichment, and nanopore sequencing. RESULTS: We identified the expected F8 insertions and various fragment combinations resulting from the in vivo linearization of the double-cut plasmid donor. Notably, our research is the first to document insertions exceeding ten kbp. We also found that a small proportion of these insertions were derived from sources other than donor plasmids, including Cas9-sgRNA plasmids, genomic DNA fragments, and LINE-1 elements. CONCLUSIONS: Our study presents a robust method for analyzing the complexity of on-target editing, particularly for in vivo long insertions, where donor template integration can be challenging. This work offers a new tool for quality control in gene editing outcomes and underscores the importance of detailed characterization of edited genomic sequences. Our findings have significant implications for enhancing the safety and effectiveness of CRISPR-Cas9 gene therapy in treating various disorders, including hemophilia A.
Assuntos
Hemofilia A , Sequenciamento por Nanoporos , Camundongos , Animais , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Hemofilia A/genética , Hemofilia A/terapia , Edição de Genes/métodos , DNARESUMO
Nitrogen (N) resorption is an important pathway of N conservation, contributing to an important proportion of plant N requirement. However, whether the ratio of N resorption to N requirement may be affected by environmental factors, mycorrhizal types or atmospheric CO2 concentration remains unclear. Here, we conducted a meta-analysis on the impacts of environmental factors and mycorrhizal types on this ratio. We found this ratio in ectomycorrhizal (EM) trees decreased with mean annual precipitation, mean annual temperature, soil total N content and atmospheric CO2 concentration and was significantly lower than that in arbuscular mycorrhizal (AM) trees. An in situ 15 N tracing experiment further confirmed that AM trees have a stronger reliance on N resorption than EM trees. Our study suggests that AM and EM trees potentially have different strategies for alleviation of progressive N limitation, highlighting the necessity of incorporating plant mycorrhizal types into Earth System Models.
Assuntos
Micorrizas , Árvores , Nitrogênio/metabolismo , Dióxido de Carbono/metabolismo , Plantas , Solo , Microbiologia do Solo , Florestas , Raízes de Plantas/metabolismoRESUMO
Electrosynthesis of H2O2 provides an environmentally friendly alternative to the traditional anthraquinone method employed in industry, but suffers from impurities and restricted yield rate and concentration of H2O2. Herein, we demonstrated a Ni-phthalocyanine-based covalent-organic framework (COF, denoted as BBL-PcNi) with a higher inherent conductivity of 1.14 × 10-5 S m-1, which exhibited an ultrahigh current density of 530 mA cm-2 with a Faradaic efficiency (H2O2) of â¼100% at a low cell voltage of 3.5 V. Notably, this high level of performance is maintained over a continuous operation of 200 h without noticeable degradation. When integrated into a scale-up membrane electrode assembly electrolyzer and operated at â¼3300 mA at a very low cell voltage of 2 V, BBL-PcNi continuously yielded a pure H2O2 solution with medical-grade concentration (3.5 wt %), which is at least 3.5 times higher than previously reported catalysts and 1.5 times the output of the traditional anthraquinone process. A mechanistic study revealed that enhancing the π-conjugation to reduce the band gap of the molecular catalytic sites integrated into a COF is more effective to enhance its inherent electron transport ability, thereby significantly improving the electrocatalytic performance for H2O2 generation.
RESUMO
It is crucial to achieve continuous production of highly concentrated and pure C2 chemicals through the electrochemical CO2 reduction reaction (eCO2RR) for artificial carbon cycling, yet it has remained unattainable until now. Despite one-pot tandem catalysis (dividing the eCO2RR to C2 into two catalytical reactions of CO2 to CO and CO to C2) offering the potential for significantly enhancing reaction efficiency, its mechanism remains unclear and its performance is unsatisfactory. Herein, we selected different CO2-to-CO catalysts and CO-to-acetate catalysts to construct several tandem catalytic systems for the eCO2RR to acetic acid. Among them, a tandem catalytic system comprising a covalent organic framework (PcNi-DMTP) and a metal-organic framework (MAF-2) as CO2-to-CO and CO-to-acetate catalysts, respectively, exhibited a faradaic efficiency of 51.2% with a current density of 410 mA cm-2 and an ultrahigh acetate yield rate of 2.72 mmol m-2 s-1 under neutral conditions. After electrolysis for 200 h, 1 cm-2 working electrode can continuously produce 20 mM acetic acid aqueous solution with a relative purity of 95+%. Comprehensive studies revealed that the performance of tandem catalysts is influenced not only by the CO supply-demand relationship and electron competition between the two catalytic processes in the one-pot tandem system but also by the performance of the CO-to-C2 catalyst under diluted CO conditions.
RESUMO
BACKGROUND: Although DHFR gene amplification has long been known as a major mechanism for methotrexate (MTX) resistance in cancer, the early changes and detailed development of the resistance are not yet fully understood. METHODS: We performed genomic, transcriptional and proteomic analyses of human colon cancer cells with sequentially increasing levels of MTX-resistance. RESULTS: The genomic amplification evolved in three phases (pre-amplification, homogenously staining region (HSR) and extrachromosomal DNA (ecDNA)). We confirm that genomic amplification and increased expression of DHFR, with formation of HSRs and especially ecDNAs, is the major driver of resistance. However, DHFR did not play a detectable role in the early phase. In the late phase (ecDNA), increase in FAM151B protein level may also have an important role by decreasing sensitivity to MTX. In addition, although MSH3 and ZFYVE16 may be subject to different posttranscriptional regulations and therefore protein expressions are decreased in ecDNA stages compared to HSR stages, they still play important roles in MTX resistance. CONCLUSION: The study provides a detailed evolutionary trajectory of MTX-resistance and identifies new targets, especially ecDNAs, which could help to prevent drug resistance. It also presents a proof-of-principal approach which could be applied to other cancer drug resistance studies.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Amplificação de Genes , Metotrexato , Tetra-Hidrofolato Desidrogenase , Humanos , Metotrexato/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Antimetabólitos Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genômica/métodosRESUMO
BACKGROUND: 13-15% of breast cancer/BC patients diagnosed as pathological complete response/pCR after neoadjuvant systemic therapy/NST suffer from recurrence. This study aims to estimate the rationality of organoid forming potential/OFP for more accurate evaluation of NST efficacy. METHODS: OFPs of post-NST residual disease/RD were checked and compared with clinical approaches to estimate the recurrence risk. The phenotypes of organoids were classified via HE staining and ER, PR, HER2, Ki67 and CD133 immuno-labeling. The active growing organoids were subjected to drug sensitivity tests. RESULTS: Of 62 post-NST BC specimens, 24 were classified as OFP-I with long-term active organoid growth, 19 as OFP-II with stable organoid growth within 3 weeks, and 19 as OFP-III without organoid formation. Residual tumors were overall correlated with OFP grades (P < 0.001), while 3 of the 18 patients (16.67%) pathologically diagnosed as tumor-free (ypT0N0M0) showed tumor derived-organoid formation. The disease-free survival/DFS of OFP-I cases was worse than other two groups (Log-rank P < 0.05). Organoids of OFP-I/-II groups well maintained the biological features of their parental tumors and were resistant to the drugs used in NST. CONCLUSIONS: The OFP would be a complementary parameter to improve the evaluation accuracy of NST efficacy of breast cancers.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Terapia Neoadjuvante , Intervalo Livre de Doença , Receptor ErbB-2 , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêuticoRESUMO
Breast cancer severely affects women health. 70% of breast cancer are estrogen receptor positive. Breast cancer stem cells are a group of tumor with plasticity, causing tumor relapse and metastasis. RUNX3 is a tumor suppressor frequently inactivated in estrogen receptor positive breast cancer. However, the mechanism of how RUNX3 is involved in the regualation of cancer stem cell traits in estrogen receptor positive breast cancer remains elusive. In this study, we utilized cut-tag assay to investigate the binding profile RUNX3 in BT474 and T47D cell, and confirmed EXOSC4 as the bona-fide target of RUNX3; RUNX3 could bind to the promoter are of EXOSC4 to suppress its expression. Furthermore, EXOSC4 could increase the colony formation, cell invasion and mammosphere formation ability of breast cancer cells and upregulate the the expression of SOX2 and ALDH1. Consistent with these findings, EXOSC4 was associated with poorer survival for Luminal B/Her2 breast cancer patiens. At last, we confirmed that EXOSC4 mediated the tumor suppressive role of RUNX3 in breast cancer cells. In conclusion, we demonstrate that RUNX3 directly binds to the promoter region of EXOSC4, leading to the suppression of EXOSC4 expression and exerting a tumor-suppressive effect in estrogen receptor postivive breast cancer cells.
Assuntos
Neoplasias da Mama , Subunidade alfa 3 de Fator de Ligação ao Core , Regiões Promotoras Genéticas , Feminino , Humanos , Família Aldeído Desidrogenase 1/metabolismo , Família Aldeído Desidrogenase 1/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Retinal Desidrogenase/metabolismo , Retinal Desidrogenase/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB1/genéticaRESUMO
BACKGROUND: TBK1 positively regulates the growth factor-mediated mTOR signaling pathway by phosphorylating mTOR. However, it remains unclear how the TBK1-mTOR signaling pathway is regulated. Considering that STING not only interacts with TBK1 but also with MARCH1, we speculated that MARCH1 might regulate the mTOR signaling pathway by targeting TBK1. The aim of this study was to determine whether MARCH1 regulates the mTOR signaling pathway by targeting TBK1. METHODS: The co-immunoprecipitation (Co-IP) assay was used to verify the interaction between MARCH1 with STING or TBK1. The ubiquitination of STING or TBK1 was analyzed using denatured co-immunoprecipitation. The level of proteins detected in the co-immunoprecipitation or denatured co-immunoprecipitation samples were determined by Western blotting. Stable knocked-down cells were constructed by infecting lentivirus bearing the related shRNA sequences. Scratch wound healing and clonogenic cell survival assays were used to detect the migration and proliferation of breast cancer cells. RESULTS: We showed that MARCH1 played an important role in growth factor-induced the TBK1- mTOR signaling pathway. MARCH1 overexpression attenuated the growth factor-induced activation of mTOR signaling pathway, whereas its deficiency resulted in the opposite effect. Mechanistically, MARCH1 interacted with and promoted the K63-linked ubiquitination of TBK1. This ubiquitination of TBK1 then attenuated its interaction with mTOR, thereby inhibiting the growth factor-induced mTOR signaling pathway. Importantly, faster proliferation induced by MARCH1 deficiency was weakened by mTOR, STING, or TBK1 inhibition. CONCLUSION: MARCH1 suppressed growth factors mediated the mTOR signaling pathway by targeting the STING-TBK1-mTOR axis.
Assuntos
Proliferação de Células , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Serina-Treonina Quinases TOR , Ubiquitina-Proteína Ligases , Ubiquitinação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Humanos , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Linhagem Celular Tumoral , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Feminino , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Movimento CelularRESUMO
BACKGROUND: Despite evidence supporting the high correlation of the novel platelet-to-albumin ratio (PAR) with survival in diverse malignancies, its prognostic relevance in nasopharyngeal carcinoma (NPC) remains underexplored. This study aimed to examine the link between PAR and overall survival (OS) in NPC and to establish a predictive model based on this biomarker. METHODS: We retrospectively assembled a cohort consisting of 858 NPC patients who underwent concurrent chemoradiotherapy (CCRT). Utilizing the maximally selected log-rank method, we ascertained the optimal cut-off point for the PAR. Subsequently, univariate and multivariate Cox proportional hazards models were employed to discern factors significantly associated with OS and to construct a predictive nomogram. Further, we subjected the nomogram's predictive accuracy to rigorous independent validation. RESULTS: The discriminative optimal PAR threshold was determined to be 4.47, effectively stratifying NPC patients into two prognostically distinct subgroups (hazard ratio [HR] = 0.53; 95% confidence interval [CI]: 0.28-0.98, P = 0.042). A predictive nomogram was formulated using the results from multivariate analysis, which revealed age greater than 45 years, T stage, N stage, and PAR score as independent predictors of OS. The nomogram demonstrated a commendable predictive capability for OS, with a C-index of 0.69 (95% CI: 0.64-0.75), surpassing the performance of the conventional staging system, which had a C-index of 0.56 (95% CI: 0.65-0.74). CONCLUSIONS: In the context of NPC patients undergoing CCRT, the novel nutritional-inflammatory biomarker PAR emerges as a promising, cost-efficient, easily accessible, non-invasive, and potentially valuable predictor of prognosis. The predictive efficacy of the nomogram incorporating the PAR score exceeded that of the conventional staging approach, thereby indicating its potential as an enhanced prognostic tool in this clinical setting.
Assuntos
Quimiorradioterapia , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Nomogramas , Humanos , Feminino , Masculino , Estudos Retrospectivos , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/mortalidade , Carcinoma Nasofaríngeo/sangue , Carcinoma Nasofaríngeo/patologia , Quimiorradioterapia/métodos , Prognóstico , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/mortalidade , Neoplasias Nasofaríngeas/sangue , Neoplasias Nasofaríngeas/patologia , Adulto , Plaquetas/patologia , Idoso , Albumina Sérica/análise , Estadiamento de Neoplasias , Adulto Jovem , Modelos de Riscos Proporcionais , Contagem de Plaquetas , Biomarcadores Tumorais/sangueRESUMO
BACKGROUND: The influence of SARS-CoV-2 infection after embryo transfer on early pregnancy outcomes in in vitro fertilization or intracytoplasmic sperm injection-embryo transfer treatment remains inadequately understood. This knowledge gap endures despite an abundance of studies investigating the repercussions of preceding SARS-CoV-2 infection on early pregnancy outcomes in spontaneous pregnancies. OBJECTIVE: This study aimed to investigate the association between SARS-CoV-2 infection within 10 weeks after embryo transfer and early pregnancy outcomes in patients undergoing in vitro fertilization/intracytoplasmic sperm injection treatment. STUDY DESIGN: This prospective cohort study was conducted at a single public in vitro fertilization center in China. Female patients aged 20 to 39 years, with a body mass index ranging from 18 to 30 kg/m2, undergoing in vitro fertilization/intracytoplasmic sperm injection treatment, were enrolled between September 2022 and December 2022, with follow-up extended until March 2023. The study tracked SARS-CoV-2 infection time (≤14 days, ≤28 days, and ≤10 weeks after embryo transfer), symptoms, vaccination status, the interval between vaccination and embryo transfer, and early pregnancy outcomes, encompassing biochemical pregnancy rate, implantation rate, clinical pregnancy rate, and early miscarriage rate. The study used single-factor analysis and multivariate logistic regression to examine the association between SARS-CoV-2 infection status, along with other relevant factors, and the early pregnancy outcomes. RESULTS: A total of 857 female patients undergoing in vitro fertilization/intracytoplasmic sperm injection treatment were analyzed. In the first stage, SARS-CoV-2 infection within 14 days after embryo transfer did not have a significant negative association with the biochemical pregnancy rate (adjusted odds ratio, 0.74; 95% confidence interval, 0.51-1.09). In the second stage, SARS-CoV-2 infection within 28 days after embryo transfer had no significant association with the implantation rate (36.6% in infected vs 44.0% in uninfected group; P=.181). No statistically significant association was found with the clinical pregnancy rate after adjusting for confounding factors (adjusted odds ratio, 0.69; 95% confidence interval, 0.56-1.09). In the third stage, SARS-CoV-2 infection within 10 weeks after embryo transfer had no significant association with the early miscarriage rate (adjusted odds ratio, 0.77; 95% confidence interval, 0.35-1.71). CONCLUSION: Our study suggests that SARS-CoV-2 infection within 10 weeks after embryo transfer may not be negatively associated with the biochemical pregnancy rate, implantation rate, clinical pregnancy rate, and early miscarriage rate in patients undergoing in vitro fertilization/intracytoplasmic sperm injection treatment. It is important to note that these findings are specific to the target population of in vitro fertilization/intracytoplasmic sperm injection patients aged 20 to 39 years, without previous SARS-CoV-2 infection, and with a body mass index of 18 to 30 kg/m2. This information offers valuable insights, addressing current concerns and providing a clearer understanding of the actual risk associated with SARS-CoV-2 infection after embryo transfer.
Assuntos
Aborto Espontâneo , COVID-19 , Gravidez , Humanos , Masculino , Feminino , Resultado da Gravidez , Aborto Espontâneo/epidemiologia , Aborto Espontâneo/etiologia , Estudos Prospectivos , COVID-19/terapia , COVID-19/etiologia , SARS-CoV-2 , Sêmen , Fertilização in vitro/efeitos adversos , Transferência Embrionária , Taxa de Gravidez , Estudos RetrospectivosRESUMO
A Gram-stain-negative, aerobic, rod-shaped and halotolerant bacterium, designated as strain ASW11-75T, was isolated from intertidal sediments in Qingdao, PR China, and identified using a polyphasic taxonomic approach. Growth of strain ASW11-75T occurred at 10-45â°C (optimum, 37â°C), pH 6.5-9.0 (optimum, pH 8.0) and 0.5-18.0â% NaCl concentrations (optimum, 2.5â%). Phylogenetic analyses based on 16S rRNA gene sequences and 1179 single-copy orthologous clusters indicated that strain ASW11-75T is affiliated with the genus Marinobacter. Strain ASW11-75T showed highest 16S rRNA gene sequence similarity to 'Marinobacter arenosus' CAU 1620T (98.5â%). The digital DNA-DNA hybridization and average nucleotide identity values between strain ASW11-75T and its closely related strains (Marinobacter salarius R9SW1T, Marinobacter similis A3d10T, 'Marinobacter arenosus' CAU 1620T, Marinobacter sediminum R65T, Marinobacter salinus Hb8T, Marinobacter alexandrii LZ-8T and Marinobacter nauticus ATCC 49840T) were 19.8-24.5â% and 76.6-80.7â%, respectively. The predominant cellular fatty acids were C16â:â0, C18â:â1 ω9c and C16â:â0 N alcohol. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified aminophospholipid and two unidentified lipids. The major isoprenoid quinone was ubiquinone-9. The genomic DNA G+C content was 62.2âmol%. Based on genomic and gene function analysis, strain ASW11-75T had lower protein isoelectric points with higher ratios of acidic residues to basic residues and possessed genes related to ion transport and organic osmoprotectant uptake, implying its potential tolerance to salt. The results of polyphasic characterization indicated strain ASW11-75T represents a novel Marinobacter species, for which the name Marinobacter qingdaonensis sp. nov. with the type strain ASW11-75T is proposed. The type strain is ASW11-75T (=KCTC 82497T=MCCC 1K05587T).
Assuntos
Ácidos Graxos , Marinobacter , Ácidos Graxos/química , Fosfolipídeos/química , Água do Mar/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Composição de Bases , DNA Bacteriano/genética , Técnicas de Tipagem BacterianaRESUMO
AIM: Diabetic cognitive impairment (DCI), considered one of the most severe and commonly overlooked complications of diabetes, has shown inconsistent findings regarding the metabolic profiles in DCI patients. This systematic review and meta-analysis aimed to identify dysregulated metabolites as potential biomarkers for early DCI, providing valuable insights into the underlying pathophysiological mechanisms. MATERIALS AND METHODS: A systematic search of four databases, namely PubMed, Embase, Web of Science and Cochrane, was conducted up to March 2024. Subsequently, a qualitative review of clinical studies was performed followed by a meta-analysis of metabolite markers. Finally, the sources of heterogeneity were explored through subgroup and sensitivity analyses. RESULTS: A total of 774 unique publications involving 4357 participants and the identification of multiple metabolites were retrieved. Of these, 13 clinical studies reported metabolite differences between the DCI and control groups. Meta-analysis was conducted for six brain metabolites and two metabolite ratios. The results revealed a significant increase in myo-inositol (MI) concentration and decreases in glutamate (Glu), Glx (glutamate and glutamine) and N-acetylaspartate/creatine (NAA/Cr) ratios in DCI, which have been identified as the most sensitive metabolic biomarkers for evaluating DCI progression. Notably, brain metabolic changes associated with cognitive impairment are more pronounced in type 2 diabetes mellitus than in type 1 diabetes mellitus, and the hippocampus emerged as the most sensitive brain region regarding metabolic changes associated with DCI. CONCLUSIONS: Our results suggest that MI, Glu, and Glx concentrations and NAA/Cr ratios within the hippocampus may serve as metabolic biomarkers for patients with early-stage DCI.
Assuntos
Biomarcadores , Disfunção Cognitiva , Humanos , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/diagnóstico , Biomarcadores/metabolismo , Encéfalo/metabolismo , Complicações do Diabetes/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismoRESUMO
OBJECTIVE: Susceptibility weighted imaging (SWI) of neonatal hypoxic-ischemic brain injury can provide assistance in the prognosis of neonatal hypoxic-ischemic encephalopathy (HIE). We propose a convolutional neural network model to classify SWI images with HIE. MATERIALS AND METHODS: Due to the lack of a large dataset, transfer learning method with fine-tuning a pre-trained ResNet 50 is introduced. We randomly select 11 datasets from patients with normal neurology outcomes (n = 31) and patients with abnormal neurology outcomes (n = 11) at 24 months of age to avoid bias in classification due to any imbalance in the data. RESULTS: We develop a rule-based system to improve the classification performance, with an accuracy of 0.93 ± 0.09. We also compute heatmaps produced by the Grad-CAM technique to analyze which areas of SWI images contributed more to the classification patients with abnormal neurology outcome. CONCLUSION: Such regions that are important in the classification accuracy can interpret the relationship between the brain regions affected by hypoxic-ischemic and neurodevelopmental outcomes of infants with HIE at the age of 2 years.
Assuntos
Aprendizado Profundo , Hipóxia-Isquemia Encefálica , Pré-Escolar , Humanos , Recém-Nascido , Encéfalo/diagnóstico por imagem , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Prognóstico , Conjuntos de Dados como AssuntoRESUMO
Coumarins are natural products with benzopyran ring as the parent nucleus. Numerous coumarin derivatives exhibit a variety of pharmacological activities, including antibacterial, anti-inflammatory, antitumor, anti-coagulant, anti-osteoporotic, and insecticidal activities. Therefore, they play an important role in both medicine and agriculture. The development and utilization of coumarin derivatives have attracted increasing attention. The advancement of gene sequencing technology and the rapid progress in synthetic bio-logy have led to significant advancement in the biosynthesis of coumarin derivatives, and has received increasing attention from global researchers. This paper presents a comprehensive overview of the key biosynthesis-related enzymes of coumarin derivatives, such as cytochrome P450 enzyme(CYP450), prenyltransferase(PT), UDP-glucosyltransferase(UGT). Additionally, the pharmacological activities of these enzymes, including anti-tumor, anti-inflammatory, antioxidant, and antibacterial activities, are systematically summarized. This review aims to provide a valuable reference for the biosynthesis of coumarin derivatives and further exploration of their medicinal potential.
Assuntos
Cumarínicos , Cumarínicos/química , Cumarínicos/farmacologia , Cumarínicos/metabolismo , Humanos , Animais , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismoRESUMO
Histone lactylation (Hla) is a metabolically stress-related histone modification that featured in specific gene expression regulation. However, the role of Hla in the pathogenesis of lung adenocarcinoma (LUAD) remains unexplored. Through bioinformatics analysis, we found that BZW2 exhibited an elevated level of expression in LUAD tissues, which was associated with a poor prognosis. Flow cytometry and TUNEL assay were used to analyze the apoptosis of LUAD cells and tissues, respectively. The effect of the cell function experiment on the LUAD cell phenotype was analyzed. An XF 96 Extracellular Flux Analyzer measured the ECAR value, and kits were used to detect lactate production and glucose consumption. Animal experiments were performed for further verification. Cell experiments showed that BZW2 fostered the malignant progression of LUAD by promoting glycolysis-mediated lactate production and lactylation of IDH3G. In a compelling in vivo validation, the inhibition of Hla could suppress the malignant progression of LUAD. Knockdown of BZW2 combined with 2-DG treatment significantly repressed tumor growth in mice. BZW2 could regulate the progression of LUAD through glycolysis-mediated IDH3G lactylation, offering a theoretical basis for the targeted treatment of LUAD with glycolysis and Hla.
Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Animais , Camundongos , Adenocarcinoma de Pulmão/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glicólise , Histonas , Ácido Láctico , Neoplasias Pulmonares/genéticaRESUMO
It is a very important but still challenging task to develop bifunctional electrocatalysts for highly efficient CO2 overall splitting. Herein, we report a stable metal-organic framework (denoted as PcNi-Co-O), composed of (2,3,9,10,16,17,23,24-octahydroxyphthalocyaninato)nickel(II) (PcNi-(O-)8) ligands and the planar CoO4 nodes, for CO2 overall splitting. When working as both cathode and anode catalysts (i.e., PcNi-Co-O||PcNi-Co-O), PcNi-Co-O achieved a commercial-scale current density of 123 mA cm-2 (much higher than the reported values (0.2-12 mA cm-2)) with a Faradic efficiency (CO) of 98% at a low cell voltage of 4.4 V. Mechanism studies suggested the synergistic effects between two active sites, namely, (i) electron transfer from CoO4 to PcNi sites under electric fields, resulting in the raised oxidizability/reducibility of CoO4/PcNi sites, respectively; (ii) the energy-level matching of cathode and anode catalysts can reduce the energy barrier of electron transfer between them and improve the performance of CO2 overall splitting.
RESUMO
Cold stress affects the growth and development of cucumbers. Whether the BPC2 transcription factor participates in cold tolerance and its regulatory mechanism in plants have not been reported. Here, we used wild-type (WT) cucumber seedlings and two mutant Csbpc2 lines as materials. The underlying mechanisms were studied by determining the phenotype, physiological and biochemical indicators, and transcriptome after cold stress. The results showed that CsBPC2 knockout reduced cucumber cold tolerance by increasing the chilling injury index, relative electrical conductivity and malondialdehyde (MDA) content and decreasing antioxidant enzyme activity. We then conducted RNA sequencing (RNA-seq) to explore transcript-level changes in Csbpc2 mutants. A large number of differentially expressed genes (1032) were identified and found to be unique in Csbpc2 mutants. However, only 489 down-regulated genes related to the synthesis and transport of amino acids and vitamins were found to be enriched through GO analysis. Moreover, both RNA-seq and qPT-PCR techniques revealed that CsBPC2 knockout also decreased the expression of some key cold-responsive genes, such as CsICE1, CsCOR413IM2, CsBZR1 and CsBZR2. These results strongly suggested that CsBPC2 knockout not only affected cold function genes but also decreased the levels of some key metabolites under cold stress. In conclusion, this study reveals for the first time that CsBPC2 is essential for cold tolerance in cucumber and provides a reference for research on the biological function of BPC2 in other plants.
Assuntos
Resposta ao Choque Frio , Cucumis sativus , Resposta ao Choque Frio/genética , Transcriptoma , Fatores de Transcrição/genética , Plântula/genética , Antioxidantes/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica de PlantasRESUMO
Proper regulation of p53 signaling is critical for the maintenance of hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs). The hematopoietic cell-specific mechanisms regulating p53 activity remain largely unknown. Here, we demonstrate that conditional deletion of acidic leucine-rich nuclear phosphoprotein 32B (ANP32B) in hematopoietic cells impairs repopulation capacity and postinjury regeneration of HSCs. Mechanistically, ANP32B forms a repressive complex with p53 and thus inhibits the transcriptional activity of p53 in hematopoietic cells, and p53 deletion rescues the functional defect in Anp32b-deficient HSCs. Of great interest, ANP32B is highly expressed in leukemic cells from patients with chronic myelogenous leukemia (CML). Anp32b deletion enhances p53 transcriptional activity to impair LSC function in a murine CML model and exhibits synergistic therapeutic effects with tyrosine kinase inhibitors in inhibiting CML propagation. In summary, our findings provide a novel strategy to enhance p53 activity in LSCs by inhibiting ANP32B and identify ANP32B as a potential therapeutic target in treating CML.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Células-Tronco Neoplásicas/patologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Células Cultivadas , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Camundongos , Células-Tronco Neoplásicas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Proteína Supressora de Tumor p53/genéticaRESUMO
We propose and demonstrate a high-performance distributed dynamic absolute strain sensing technique by synthesizing φ-OTDR and BOTDR. The technique synthesizes the relative strain obtained by the φ-OTDR part and the initial strain offset estimated by fitting the relative strain with the absolute strain signal from the BOTDR part. As a result, it provides not only the characteristics of high sensing accuracy and high sampling rate like φ-OTDR, but also the absolute strain measurement and the large sensing dynamic range like BOTDR. The experiment results indicate the proposed technique can realize the distributed dynamic absolute strain sensing with a sensing dynamic range of over 2500 µÉ, a peak-to-peak amplitude of 1165 µÉ, and a wide frequency response range from 0.1 to over 30â Hz over a sensing range of about 1â km.
RESUMO
BACKGROUND: Circulating zinc (Zn) concentrations are lower than normal in patients with Parkinson disease (PD). It is unknown whether Zn deficiency increases the susceptibility to PD. OBJECTIVES: The study aimed to investigate the effect of dietary Zn deficiency on behaviors and dopaminergic neurons in a mouse model of PD and to explore potential mechanisms. METHODS: Male C57BL/6J mice aged 8-10 wk were fed Zn adequate (ZnA; 30 µg/g) or Zn deficient (ZnD; <5 µg/g) diet throughout the experiments. Six weeks later 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was injected to generate the PD model. Controls were injected with saline. Thus, 4 groups (Saline-ZnA, Saline-ZnD, MPTP-ZnA, and MPTP-ZnD) were formed. The experiment lasted 13 wk. Open field test, rotarod test, immunohistochemistry, and RNA sequencing were performed. Data were analyzed with t-test, 2-factor ANOVA, or Kruskal-Wallis test. RESULTS: Both MPTP and ZnD diet treatments led to a significant reduction in blood Zn concentrations (PMPTP = 0.012, PZn = 0.014), reduced total distance traveled (PMPTP < 0.001, PZn = 0.031), and affected the degeneration of dopaminergic neurons in the substantia nigra (PMPTP < 0.001, PZn = 0.020). In the MPTP-treated mice, the ZnD diet significantly reduced total distance traveled by 22.4% (P = 0.026), decreased latency to fall by 49.9% (P = 0.026), and reduced dopaminergic neurons by 59.3% (P = 0.002) compared with the ZnA diet. RNA sequencing analysis revealed a total of 301 differentially expressed genes (156 upregulated; 145 downregulated) in the substantia nigra of ZnD mice compared with ZnA mice. The genes were involved in a number of processes, including protein degradation, mitochondria integrity, and α-synuclein aggregation. CONCLUSIONS: Zn deficiency aggravates movement disorders in PD mice. Our results support previous clinical observations and suggest that appropriate Zn supplementation may be beneficial for PD.