Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 398
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(5): e1011411, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37253057

RESUMO

Seneca virus A (SVA) is an emerging novel picornavirus that has recently been identified as the causative agent of many cases of porcine vesicular diseases in multiple countries. In addition to cleavage of viral polyprotein, the viral 3C protease (3Cpro) plays an important role in the regulation of several physiological processes involved in cellular antiviral responses by cleaving critical cellular proteins. Through a combination of crystallography, untargeted lipidomics, and immunoblotting, we identified the association of SVA 3Cpro with an endogenous phospholipid molecule, which binds to a unique region neighboring the proteolytic site of SVA 3Cpro. Our lipid-binding assays showed that SVA 3Cpro displayed preferred binding to cardiolipin (CL), followed by phosphoinositol-4-phosphate (PI4P) and sulfatide. Importantly, we found that the proteolytic activity of SVA 3Cpro was activated in the presence of the phospholipid, and the enzymatic activity is inhibited when the phospholipid-binding capacity decreased. Interestingly, in the wild-type SVA 3Cpro-substrate peptide structure, the cleavage residue cannot form a covalent binding to the catalytic cysteine residue to form the acyl-enzyme intermediate observed in several picornaviral 3Cpro structures. We observed a decrease in infectivity titers of SVA mutants harboring mutations that impaired the lipid-binding ability of 3Cpro, indicating a positive regulation of SVA infection capacity mediated by phospholipids. Our findings reveal a mutual regulation between the proteolytic activity and phospholipid-binding capacity in SVA 3Cpro, suggesting that endogenous phospholipid may function as an allosteric activator that regulate the enzyme's proteolytic activity during infection.


Assuntos
Cisteína Endopeptidases , Picornaviridae , Animais , Suínos , Cisteína Endopeptidases/metabolismo , Proteases Virais 3C/metabolismo , Peptídeo Hidrolases/metabolismo , Regulação Alostérica , Fosfolipídeos , Proteínas Virais/metabolismo
2.
BMC Bioinformatics ; 25(1): 156, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38641811

RESUMO

BACKGROUND: Accurately identifying drug-target interaction (DTI), affinity (DTA), and binding sites (DTS) is crucial for drug screening, repositioning, and design, as well as for understanding the functions of target. Although there are a few online platforms based on deep learning for drug-target interaction, affinity, and binding sites identification, there is currently no integrated online platforms for all three aspects. RESULTS: Our solution, the novel integrated online platform Drug-Online, has been developed to facilitate drug screening, target identification, and understanding the functions of target in a progressive manner of "interaction-affinity-binding sites". Drug-Online platform consists of three parts: the first part uses the drug-target interaction identification method MGraphDTA, based on graph neural networks (GNN) and convolutional neural networks (CNN), to identify whether there is a drug-target interaction. If an interaction is identified, the second part employs the drug-target affinity identification method MMDTA, also based on GNN and CNN, to calculate the strength of drug-target interaction, i.e., affinity. Finally, the third part identifies drug-target binding sites, i.e., pockets. The method pt-lm-gnn used in this part is also based on GNN. CONCLUSIONS: Drug-Online is a reliable online platform that integrates drug-target interaction, affinity, and binding sites identification. It is freely available via the Internet at http://39.106.7.26:8000/Drug-Online/ .


Assuntos
Aprendizado Profundo , Interações Medicamentosas , Sítios de Ligação , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos
3.
BMC Genomics ; 25(1): 406, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724906

RESUMO

Most proteins exert their functions by interacting with other proteins, making the identification of protein-protein interactions (PPI) crucial for understanding biological activities, pathological mechanisms, and clinical therapies. Developing effective and reliable computational methods for predicting PPI can significantly reduce the time-consuming and labor-intensive associated traditional biological experiments. However, accurately identifying the specific categories of protein-protein interactions and improving the prediction accuracy of the computational methods remain dual challenges. To tackle these challenges, we proposed a novel graph neural network method called GNNGL-PPI for multi-category prediction of PPI based on global graphs and local subgraphs. GNNGL-PPI consisted of two main components: using Graph Isomorphism Network (GIN) to extract global graph features from PPI network graph, and employing GIN As Kernel (GIN-AK) to extract local subgraph features from the subgraphs of protein vertices. Additionally, considering the imbalanced distribution of samples in each category within the benchmark datasets, we introduced an Asymmetric Loss (ASL) function to further enhance the predictive performance of the method. Through evaluations on six benchmark test sets formed by three different dataset partitioning algorithms (Random, BFS, DFS), GNNGL-PPI outperformed the state-of-the-art multi-category prediction methods of PPI, as measured by the comprehensive performance evaluation metric F1-measure. Furthermore, interpretability analysis confirmed the effectiveness of GNNGL-PPI as a reliable multi-category prediction method for predicting protein-protein interactions.


Assuntos
Algoritmos , Biologia Computacional , Redes Neurais de Computação , Mapeamento de Interação de Proteínas , Mapeamento de Interação de Proteínas/métodos , Biologia Computacional/métodos , Mapas de Interação de Proteínas , Humanos , Proteínas/metabolismo
4.
J Chem Inf Model ; 64(7): 2878-2888, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37610162

RESUMO

The prediction of the drug-target affinity (DTA) plays an important role in evaluating molecular druggability. Although deep learning-based models for DTA prediction have been extensively attempted, there are rare reports on multimodal models that leverage various fusion strategies to exploit heterogeneous information from multiple different modalities of drugs and targets. In this study, we proposed a multimodal deep model named MMDTA, which integrated the heterogeneous information from various modalities of drugs and targets using a hybrid fusion strategy to enhance DTA prediction. To achieve this, MMDTA first employed convolutional neural networks (CNNs) and graph convolutional networks (GCNs) to extract diverse heterogeneous information from the sequences and structures of drugs and targets. It then utilized a hybrid fusion strategy to combine and complement the extracted heterogeneous information, resulting in the fused modal information for predicting drug-target affinity through the fully connected (FC) layers. Experimental results demonstrated that MMDTA outperformed the competitive state-of-the-art deep learning models on the widely used benchmark data sets, particularly with a significantly improved key evaluation metric, Root Mean Square Error (RMSE). Furthermore, MMDTA exhibited excellent generalization and practical application performance on multiple different data sets. These findings highlighted MMDTA's accuracy and reliability in predicting the drug-target binding affinity. For researchers interested in the source data and code, they are accessible at http://github.com/dldxzx/MMDTA.


Assuntos
Benchmarking , Sistemas de Liberação de Medicamentos , Humanos , Reprodutibilidade dos Testes , Redes Neurais de Computação , Pesquisadores
5.
Ecotoxicol Environ Saf ; 272: 116044, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295732

RESUMO

5-Methoxy-N-methyl-N-isopropyltryptamine (5-MeO-MiPT) is a novel psychoactive substance exhibiting a tryptamine structure. Despite its increasing prevalence, the environmental impact of 5-MeO-MiPT remains unexplored. Our prior investigation revealed that 5-MeO-MiPT induced inhibited spontaneous movement and prompted anxiety-like behavior in adult zebrafish-a validated toxicological model. To elucidate this phenomenon and establish a correlation between metabolomics and behavioral changes induced by 5-MeO-MiPT, zebrafish were administered varying drug concentrations. Zebrafishes were subjected to injections of different 5-MeO-MiPT concentrations. Subsequent metabolomic analysis of endogenous metabolites affected by the drug unveiled substantial variations in metabolic levels between the control group and the drug-injected cohorts. A total of 22 distinct metabolites emerged as potential biomarkers. Further scrutiny identified seven pathways significantly influenced by 5-MeO-MiPT. A focused exploration into amino acid metabolism, lipid metabolism, and energy metabolism unveiled that the metabolic repercussions of 5-MeO-MiPT on zebrafish resulted in observable brain damage. Notably, the study identified a consequential disruption in the liver-brain pathway. The comprehensive metabolomic approach employed herein effectively discerned the impact of 5-MeO-MiPT on zebrafish metabolism. This approach also shed light on the mechanism underpinning the anxiety-like behavior observed in zebrafish post-drug injection. Specifically, our findings indicate that 5-MeO-MiPT induces brain damage, particularly within the liver-brain pathway.


Assuntos
5-Metoxitriptamina/análogos & derivados , Triptaminas , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Triptaminas/toxicidade , Triptaminas/metabolismo , Metabolômica/métodos , Fígado/metabolismo
6.
Environ Toxicol ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056589

RESUMO

Naringin, a bioflavonoid compound from grapefruit or citrus, exerts anticancer activities on cervical, thyroid, colon, brain, liver, lung, thyroid, and breast cancers. The present investigation addressed exploring the anticancer effects of naringin on nasopharyngeal carcinoma (NPC) cells. Naringin exhibits a cytotoxic effect on NPC-TW 039 and NPC-TW 076 cells with IC50 372/328 and 394/307 µM for 24 or 48 h, respectively, while causing little toxicity toward normal gingival epithelial (SG) cells (>500/500 µM). We established that naringin triggered G1 arrest is achieved by suppressing cyclin D1, cyclin A, and CDK2, and upregulating p21 protein in NPC cells. Exposure of NPC cells to naringin caused a series of events leading to apoptosis including morphology change (cell shrinkage and membrane blebbing) and chromatin condensation. Annexin V and PI staining indicated that naringin treatment promotes necrosis and late apoptosis in NPC cells. DiOC6 staining showed a decline in the mitochondrial membrane potential by naringin treatment, which was followed with cytochrome c release, Apaf-1/caspase-9/-3 activation, PARP cleavage, and EndoG expression in NPC cells. Naringin upregulated proapoptotic Bax and decreased antiapoptotic Bcl-xL expression, and dysregulated Bax/Bcl-xL ratio in NPC cells. Notably, naringin enhanced death receptor-related t-Bid expression. Furthermore, an increased Ca2+ release by naringin treatment which instigated endoplasmic reticulum stress-associated apoptosis through increased IRE1, ATF-6, GRP78, GADD153, and caspase-12 expression in NPC cells. In addition, naringin triggers ROS production, and inhibition of naringin-induced ROS generation by antioxidant N-acetylcysteine resulted in the prevention of G1 arrest and apoptosis in NPC cells. Naringin-induced ROS-mediated G1 arrest and mitochondrial-, death receptor-, and endoplasmic reticulum stress-mediated apoptosis may be a promising strategy for treating NPC.

7.
J Asian Nat Prod Res ; : 1-10, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869213

RESUMO

Liquiritigenin is a natural medicine. However, its inhibitory effect and its potential mechanism on bladder cancer (BCa) remain to be explored. It was found that it could be visualized that the transplanted tumours in the low-dose liquiritigenin -treated group and the high-dose liquiritigenin -treated group were smaller than those in the model group. Liquiritigenin treatment led to alterations in Lachnoclostridium, Escherichia-Shigella, Alistipes and Akkermansia. Non-targeted metabolomics analysis showed that a total of multiple differential metabolites were identified between the model group and the high-dose liquiritigenin-treated group. This provides a new direction and rationale for the antitumour effects of liquiritigenin.

8.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39125787

RESUMO

The utility of the mitochondrial genomes (mitogenomes) in analyzing the evolutionary history of animals has been proven. Five deep-sea corals (Bathypathes sp.1, Bathypathes sp.2, Schizopathidae 1, Trissopathes sp., and Leiopathes sp.) were collected in the South China Sea (SCS). Initially, the structures and collinearity of the five deep-sea coral mitogenomes were analyzed. The gene arrangements in the five deep-sea coral mitogenomes were similar to those in the order Antipatharia, which evidenced their conservation throughout evolutionary history. Additionally, to elucidate the slow evolutionary rates in Hexacorallia mitogenomes, we conducted comprehensive analyses, including examining phylogenetic relationships, performing average nucleotide identity (ANI) analysis, and assessing GC-skew dissimilarity combining five deep-sea coral mitogenomes and 522 reference Hexacorallia mitogenomes. Phylogenetic analysis using 13 conserved proteins revealed that species clustered together at the order level, and they exhibited interspersed distributions at the family level. The ANI results revealed that species had significant similarities (identity > 85%) within the same order, while species from different orders showed notable differences (identity < 80%). The investigation of the Hexacorallia mitogenomes also highlighted that the GC-skew dissimilarity was highly significant at the order level, but not as pronounced at the family level. These results might be attributed to the slow evolution rate of Hexacorallia mitogenomes and provide evidence of mitogenomic diversity. Furthermore, divergence time analysis revealed older divergence times assessed via mitogenomes compared with nuclear data, shedding light on significant evolutionary events shaping distinct orders within Hexacorallia corals. Those findings provide new insights into understanding the slow evolutionary rates of deep-sea corals in all lineages of Hexacorallia using their mitogenomes.


Assuntos
Antozoários , Evolução Molecular , Genoma Mitocondrial , Filogenia , Antozoários/genética , Antozoários/classificação , Animais , Composição de Bases
9.
Molecules ; 29(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39125019

RESUMO

Identifying the catalytic regioselectivity of enzymes remains a challenge. Compared to experimental trial-and-error approaches, computational methods like molecular dynamics simulations provide valuable insights into enzyme characteristics. However, the massive data generated by these simulations hinder the extraction of knowledge about enzyme catalytic mechanisms without adequate modeling techniques. Here, we propose a computational framework utilizing graph-based active learning from molecular dynamics to identify the regioselectivity of ginsenoside hydrolases (GHs), which selectively catalyze C6 or C20 positions to obtain rare deglycosylated bioactive compounds from Panax plants. Experimental results reveal that the dynamic-aware graph model can excellently distinguish GH regioselectivity with accuracy as high as 96-98% even when different enzyme-substrate systems exhibit similar dynamic behaviors. The active learning strategy equips our model to work robustly while reducing the reliance on dynamic data, indicating its capacity to mine sufficient knowledge from short multi-replica simulations. Moreover, the model's interpretability identified crucial residues and features associated with regioselectivity. Our findings contribute to the understanding of GH catalytic mechanisms and provide direct assistance for rational design to improve regioselectivity. We presented a general computational framework for modeling enzyme catalytic specificity from simulation data, paving the way for further integration of experimental and computational approaches in enzyme optimization and design.


Assuntos
Ginsenosídeos , Simulação de Dinâmica Molecular , Ginsenosídeos/química , Ginsenosídeos/metabolismo , Especificidade por Substrato , Hidrolases/química , Hidrolases/metabolismo , Panax/química , Panax/enzimologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-37755238

RESUMO

A novel bacterium, strain QS115T, was isolated from deep-sea sediment collected from the South China Sea at a depth of 1151 m. Phylogenetic analyses based on 16S rRNA gene sequences indicated that QS115T was most closely related to Parasedimentitalea marina W43T, with similarity of 98.21 %. Strain QS115T shared 82.39 % average nucleotide identity, 26.3 % digital DNA-DNA hybridization and 85.32 % average amino acid identity with P. marina W43T. Cells of strain QS115T were Gram-stain-negative, rod-shaped and grew optimally at 10 °C, pH 7.5 and 2 % (w/v) NaCl. The principal fatty acids were summed feature 8 (C18 : 1 ω7c/ω6c), the major respiratory quinone was ubiquinone-10 and predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, glycophospholipid, phosphatidylglycerol and phosphatidylcholine. Polyphasic analyses of physiological and phenotypic characteristics and genomic studies suggested that strain QS115T represents a novel species of the genus Parasedimentitalea, for which the name Parasedimentitalea psychrophila sp. nov. is proposed (type strain QS115T=MCCC 1K04395T=JCM 34219T).


Assuntos
Ácidos Graxos , Fosfolipídeos , Ácidos Graxos/química , Fosfolipídeos/química , Água do Mar/microbiologia , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Composição de Bases , Técnicas de Tipagem Bacteriana , Ubiquinona/química , Bactérias/genética
11.
BMC Anesthesiol ; 23(1): 233, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37434138

RESUMO

BACKGROUND: This investigation aimed to evaluate the impact of continuous pericapsular nerve group (PENG) block and continuous fascia iliac compartment block (FICB) on postoperative pain following total hip arthroplasty (THA). METHODS: This prospective, randomized, and controlled trial recruited a cohort of fifty-seven patients with unilateral femoral neck fractures from Xi'an Aerospace General Hospital in northwest China between July 2020 and November 2021. These patients were randomly assigned to two groups: the continuous PENG block group (PENG group, n = 29) and the continuous FICB group (FICB group, n = 28). Under ultrasound guidance, PENG block and FICB procedures were performed prior to spinal anesthesia, utilizing 20 ml of 0.25% ropivacaine for PENG block and 30 ml of 0.25% ropivacaine for FICB. Subsequently, a catheter was inserted. All study participants received a standardized postoperative multimodal analgesic regimen, including intravenous administration of 30 mg Ketorolac tromethamine every eight hours and patient-controlled neural analgesia (PCNA) after surgery. Numerical rating scale (NRS) scores at rest and during exercise were recorded at various time points: prior to block (T0), 30 min post-blockade (T1), and 6 h (T2), 12 h (T3), 24 h (T4), and 48 h (T5) postoperatively. Additional data collected encompassed postoperative quadriceps muscle strength, the time of initial ambulation after surgery, the number of effective PCNA activations, rescue analgesia requirements, and occurrences of adverse events (such as nausea and vomiting, hematoma, infection, catheter detachment, or displacement) within 48 h following surgery. RESULTS: In the PENG group, the resting NRS pain scores exhibited lower values at T1, T4, and T5 than those at T0. Furthermore, exercise NRS pain scores at T1-T5 were lower in the PENG group than in the FICB group. Similarly, during the same postoperative period, the PENG group demonstrated enhanced quadriceps strength on the affected side compared to the FICB group. Additionally, the PENG group displayed earlier postoperative ambulation and reduced occurrences of effective PCNA activations and rescue analgesia requirements compared to the FICB group. CONCLUSION: Continuous PENG block exhibited superior analgesic efficacy after THA compared to continuous FICB, promoting recovery of quadriceps strength on the affected side and facilitating early postoperative ambulation. TRIAL REGISTRATION: This clinical trial was registered in the China Clinical Trials Center ( http://www.chictr.org.cn ) on 20/07/2020, with the registration number ChiCTR2000034821.


Assuntos
Artroplastia de Quadril , Músculo Quadríceps , Humanos , Manejo da Dor , Artroplastia de Quadril/efeitos adversos , Nervo Femoral , Antígeno Nuclear de Célula em Proliferação , Estudos Prospectivos , Ropivacaina , Fáscia , Analgesia Controlada pelo Paciente , Dor
12.
Metab Brain Dis ; 38(4): 1351-1364, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36905560

RESUMO

BACKGROUND: Histone deacetylase (HDAC) inhibitor-based therapeutic drug tolerance is a major obstacle to glioblastoma (GBM) treatment. Meanwhile, non-coding RNAs have been reported to be involved in the regulation of HDAC inhibitor (SAHA) tolerance in some human tumors. However, the relationship between circular RNAs (circRNAs) and SAHA tolerance is still unknown. Herein, we explored the role and mechanism of circ_0000741 on SAHA tolerance in GBM. METHODS: Circ_0000741, microRNA-379-5p (miR-379-5p), and tripartite motif-containing 14 (TRIM14) level were detected by real-time quantitative polymerase chain reaction (RT-qPCR). (4-5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), Colony formation, flow cytometry, and transwell assays were used to detect SAHA tolerance, proliferation, apoptosis, and invasion in SAHA-tolerant GBM cells. Western blot analysis of protein levels of E-cadherin, N-cadherin, and TRIM14. After Starbase2.0 analysis, the binding between miR-379-5p and circ_0000741 or TRIM14 was proved using a dual-luciferase reporter. The role of circ_0000741 on drug tolerance was assessed using a xenograft tumor model in vivo. RESULTS: Circ_0000741 and TRIM14 were upregulated, and miR-379-5p was reduced in SAHA-tolerant GBM cells. Furthermore, circ_0000741 absence reduced SAHA tolerance, suppressed proliferation, invasion, and induced apoptosis in SAHA-tolerant GBM cells. Mechanistically, circ_0000741 might affect TRIM14 content via sponging miR-379-5p. Besides, circ_0000741 silencing enhanced the drug sensitivity of GBM in vivo. CONCLUSION: Circ_0000741 might accelerate SAHA tolerance by regulating the miR-379-5p/TRIM14 axis, which provided a promising therapeutic target for GBM treatment.


Assuntos
Glioblastoma , MicroRNAs , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Inibidores de Histona Desacetilases/farmacologia , RNA Circular/genética , Tolerância a Medicamentos , MicroRNAs/genética , Proliferação de Células , Proteínas com Motivo Tripartido , Peptídeos e Proteínas de Sinalização Intracelular
13.
Molecules ; 28(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37049906

RESUMO

1,1,1-Trichloroethane (1,1,1-TCA) is a typical organochloride solvent in groundwater that poses threats to human health and the environment due to its carcinogenesis and bioaccumulation. In this study, a novel composite with nanoscale zero-valent iron (nZVI) supported by polycaprolac-tone (PCL)-modified biochar (nZVI@PBC) was synthesized via solution intercalation and liquid-phase reduction to address the 1,1,1-TCA pollution problem in groundwater. The synergy effect and improvement mechanism of 1,1,1-TCA removal from simulated groundwater in the presence of nZVI@PBC coupling with Shewanella putrefaciens CN32 were investigated. The results were as follows: (1) The composite surface was rough and porous, and PCL and nZVI were loaded uniformly onto the biochar surface as micro-particles and nanoparticles, respectively; (2) the optimal mass ratio of PCL, biochar, and nZVI was 1:7:2, and the optimal composite dosage was 1.0% (w/v); (3) under the optimal conditions, nZVI@PBC + CN32 exhibited excellent removal performance for 1,1,1-TCA, with a removal rate of 82.98% within 360 h, while the maximum removal rate was only 41.44% in the nZVI + CN32 treatment; (4) the abundance of CN32 and the concentration of adsorbed Fe(II) in the nZVI@PBC + CN32 treatment were significantly higher than that in control treatments, while the total organic carbon (TOC) concentration first increased and then decreased during the culture process; (5) the major improvement mechanisms include the nZVI-mediated chemical reductive dechlorination and the CN32-mediated microbial dissimilatory iron reduction. In conclusion, the nZVI@PBC composite coupling with CN32 can be a potential technique to apply for 1,1,1-TCA removal in groundwater.


Assuntos
Água Subterrânea , Shewanella putrefaciens , Poluentes Químicos da Água , Humanos , Ferro , Carvão Vegetal , Poluentes Químicos da Água/análise , Adsorção
14.
Bull Environ Contam Toxicol ; 111(1): 9, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37358629

RESUMO

Taipu River is an important transboundary river and drinking water source in the Yangtze River Delta, China. This study collected 15 topsoil samples along the Taipu River banks and subsequently determined the polycyclic aromatic hydrocarbons (PAHs) concentrations, sources, and ecological and health risks. The sum of toxic 15 PAHs concentrations ranged from 83.13 to 28342.53 ng/g, with a mean of 2828.69 ng/g. High molecular weight (HMW) PAHs were the dominant components and Indene (1,2,3, -cd) benzopyrene (InP) accounted for the highest proportion in individuals. The average PAH concentration in residential land was the highest, followed by those in industrial and agricultural land. The PAH concentration was positively related to contents of total carbon, total nitrogen, ammonium nitrogen, and aminopeptidase activity in soils. The mixed combustion of biomass, coal, and petroleum and traffic emissions could be the primary PAH contributors. The total PAHs at over half of sampling points had relatively high risk quotients and incremental lifetime cancer risk (ILCR) values, posing potential or great ecological threats and health risks.


Assuntos
Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Rios , Solo , Medição de Risco , China
15.
J Environ Sci (China) ; 129: 229-239, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36804238

RESUMO

Chlorine-based disinfectants are widely used for disinfection in wastewater treatment. The mechanism of the effects of chlorinated disinfection by-products on cyanobacteria was unclear. Herein, the physiological effects of chloroacetic acid (CAA) on Microcystis aeruginosa (M. aeruginosa), including acute toxicity, oxidative stress, apoptosis, production of microcystin-LR (MC-LR), and the microcystin transportation-related gene mcyH transcript abundance have been investigated. CAA exposure resulted in a significant change in the cell ultrastructure, including thylakoid damage, disappearance of nucleoid, production of gas vacuoles, increase in starch granule, accumulation of lipid droplets, and disruption of cytoplasm membranes. Meanwhile, the apoptosis rate of M. aeruginosa increased with CAA concentration. The production of MC-LR was affected by CAA, and the transcript abundance of mcyH decreased. Our results suggested that CAA poses acute toxicity to M. aeruginosa, and it could cause oxidative damage, stimulate MC-LR production, and damage cell ultrastructure. This study may provide information about the minimum concentration of CAA in the water environment, which is safe for aquatic organisms, especially during the global coronavirus disease 2019 pandemic period.


Assuntos
COVID-19 , Cianobactérias , Microcystis , Humanos , Microcystis/metabolismo , Desinfecção , Microcistinas/toxicidade
16.
Biochem Biophys Res Commun ; 631: 93-101, 2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36182869

RESUMO

Atherosclerosis (AS) is an inflammatory vascular disease. Branched-chain amino acid transaminase 1 (BCAT1) has been implicated in inflammatory diseases, while its role in AS is unclear yet. In ApoE-/- mice with a high fat diet (HDF), BCAT1 was highly up-regulated and more pronounced in aged than in young ApoE-/- mice, which was abundantly expressed in macrophages located in AS lesions. The function of BCAT1 in AS was explored using lentivirus-mediated BCAT1 overexpression. ApoE-/- mice fed a HFD with BCAT1 overexpression exhibited the worsening lipid deposition and pathological injury of aortic tissues, accompanied by aggravated hyperlipidemia as proved by increased serum triglyceride, total cholesterol, and low-density lipoprotein-cholesterol levels. Immunohistochemical staining of vascular cell adhesion molecule-1 (VCAM-1), monocyte chemoattractant protein-1 (MCP-1), and CD68 in the aortic root plaque suggested that BCAT1 overexpression could induce monocyte-endothelial cell adhesion and macrophages infiltration, thereby contributing inflammatory response by promoting TNF-α, IL-6, and IL-1ß expression. Further, in vivo experiments, lipid accumulation, and inflammatory response induced by oxidized-LDL in RAW267.4 cells were also intensified or alleviated by BCAT1 overexpression or knockdown. Finally, BCAT1 overexpression aggravated AS development. These adverse effects of BCAT1 on hyperlipidemia, lipid accumulation, foaming cell formation, and inflammation suggested that the modulation of BCAT1 might be a potential approach to prevent AS disease.


Assuntos
Aterosclerose , Hiperlipidemias , Transaminases/metabolismo , Aminoácidos de Cadeia Ramificada , Animais , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Quimiocina CCL2/metabolismo , Colesterol/metabolismo , Hiperlipidemias/genética , Interleucina-6 , Lipoproteínas LDL , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Triglicerídeos , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
17.
Sensors (Basel) ; 22(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36236741

RESUMO

The technology of fault diagnosis helps improve the reliability of wind turbines. Difficulties in feature extraction and low confidence in diagnostic results are widespread in the process of deep learning-based fault diagnosis of wind turbine bearings. Therefore, a probabilistic Bayesian parallel deep learning (BayesianPDL) framework is proposed and then achieves fault classification. A parallel deep learning (PDL) framework is proposed to solve the problem of difficult feature extraction of bearing faults. Next, the weights and biases in the PDL framework are converted from deterministic values to probability distributions. In this way, an uncertainty-aware method is explored to achieve reliable machine fault diagnosis. Taking the fault signal of the gearbox output shaft bearing of a wind turbine generator in a wind farm as an example, the diagnostic accuracy of the proposed method can reach 99.14%, and the confidence in diagnostic results is higher than other comparison methods. Experimental results show that the BayesianPDL framework has unique advantages in the fault diagnosis of wind turbine bearings.

18.
J Neurochem ; 157(3): 574-585, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33289070

RESUMO

Nuclear factor (NF)-κB-mediated neuroinflammation is an important mechanism of intracerebral hemorrhage (ICH)-induced neurotoxicity. Silent information regulator 1 (SIRT1) plays a multi-protective effect in a variety of diseases by deacetylating and inhibiting NF-κB/p65. However, the role of SIRT1 in brain damage following ICH remains unclear. We hypothesized that SIRT1 can protect against ICH-induced brain damage by inhibiting neuroinflammation through deacetylating NF-κB/p65. The ICH model was induced in vivo (with collagenase) and in vitro (with hemoglobin). Resveratrol and Ex527 were administered to activate or inhibit SIRT1, respectively. Western blot, immunohistochemistry, and immunofluorescence assays were performed to detect the expression of SIRT1 and p65. Enzyme-linked immunosorbent assays (ELISAs) were used to explore tumor necrosis factor (TNF)-α and interleukin (IL)-1ß release. The neurological score, brain water content, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and brain hemoglobin content were determined to evaluate the neuroprotective effect of SIRT1. SIRT1 expression was decreased, whereas the level of acetylated p65 (Ac-p65) was elevated after ICH in vivo. Moreover, hemoglobin treatment decreased the expression of SIRT1 in vitro. Activation of SIRT1 by resveratrol had a neuroprotective effect, along with decreased levels of Ac-p65, IL-1ß, TNF-α, and apoptosis after ICH. The effect of resveratrol was abolished by the SIRT1 inhibitor Ex527. Our results are consistent with the hypothesis that SIRT1 exerts a neuroprotective effect after ICH by deacetylating p65 to inhibit the NF-κB-dependent inflammatory response.


Assuntos
Hemorragia Cerebral/tratamento farmacológico , Fármacos Neuroprotetores , Sirtuína 1/genética , Fator de Transcrição RelA/efeitos dos fármacos , Acetilação , Animais , Apoptose/efeitos dos fármacos , Hemorragia Cerebral/induzido quimicamente , Colagenases , Encefalite/tratamento farmacológico , Encefalite/patologia , Hemoglobinas , Injeções Intraventriculares , Interleucina-1beta/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Cultura Primária de Células , Resveratrol/uso terapêutico , Sirtuína 1/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Arch Microbiol ; 204(1): 60, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34940943

RESUMO

A Gram stain-positive, rod-shaped, and subterminal endospore-forming bacterium, designated strain YIM B01967T, was isolated from a forest soil sample collected in Ailaoshan National Nature Reserve, Yuxi City, Xinpin county, Yunnan province, China. Strain YIM B01967T showed the highest 16S rRNA gene sequence similarity with Viridibacillus arvi (99.1%) and Viridibacillus arenosi (98.9%). Based on the phylogenetic and 16S rRNA gene sequence results, strain YIM B01967T was affiliated to the genus Viridibacillus. The growth of YIM B01967T was observed at 15-35 °C (optimum, 28 °C), pH 7.0-9.0 (optimum, pH 7.5) and in the presence of 0-2% (w/v) NaCl (optimum in 2% NaCl). The cell wall sugars include ribose, glucose, arabinose, galactose, and mannose. The quinone system consisted of the major compound MK-8 and moderate amounts of MK-7. The major fatty acids (> 10%) included iso-C15:0, anteiso-C15:0, C16:1 ω10c. The major polar lipids profile included DPG, PME. The cell wall peptidoglycan was most likely of the type A4α with an L-Lys-D-Asp interpeptide bridge. The genomic DNA G + C content of strain YIM B01967T was 36.3 mol%. The ANI and digital DNA-DNA hybridization (dDDH) values between strain YIM B01967T and Viridibacillus arvi DSM 16317 T, Viridibacillus arenosi DSM 16319 T were 61.0% and 32.1%, 60.0% and 33.1% based on the draft genome sequence. The results support the conclusion that strain YIM B01967T represents a novel species of the genus Viridibacillus, for which the name Viridibacillus soli sp. nov., is proposed. The type strain is YIM B01967T (= KCTC 43249 T = CGMCC 1.18436 T).


Assuntos
Florestas , Solo , China , DNA Bacteriano/genética , Ácidos Graxos , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
Arch Microbiol ; 203(5): 2653-2658, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33710378

RESUMO

A novel Gram-stain positive, oval-shaped, and non-flagellated bacterium, designated YIM S02566T, was isolated from alpine soil in Shadui Towns, Ganzi County, Ganzi Tibetan Autonomous Prefecture, Sichuan Province, PR China. Growth occurred at 23-35 °C (optimum, 30 °C) in the presence of 0.5-4% (w/v) NaCl (optimum, 1%) and at pH 7.0-8.0 (optimum, pH 7.0). The phylogenetic analysis based on 16S rRNA gene sequence revealed that strain YIM S02566T was most closely related to the genus Aestuariimicrobium, with Aestuariimicrobium kwangyangense R27T and Aestuariimicrobium soli D6T as its closest relative (sequence similarities were 96.3% and 95.4%, respectively). YIM S02566T contained LL-diaminopimelic acid in the cell wall. MK-9(H4) was the predominant menaquinone. The major fatty acid patterns were anteiso-C15:0 (60.0%). The major polar lipid was DPG. The genome size of strain YIM S02566T was 3.1 Mb, comprising 3078 predicted genes with a DNA G + C content of 69.0 mol%. Based on these genotypic, chemotaxonomic and phenotypic evidences, strain YIM S02566T was identified as a novel species in the genus Aestuariimicrobium, for which the name Aestuariimicrobium ganziense sp. nov. is proposed. The type strain is YIM S02566T (= CGMCC 1.18751 T = KCTC 49,477 T).


Assuntos
Propionibacteriaceae/classificação , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases/genética , DNA Bacteriano/genética , Ácido Diaminopimélico/análise , Ácidos Graxos/análise , Fosfolipídeos/análise , Filogenia , Propionibacteriaceae/genética , Propionibacteriaceae/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Tibet
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa