Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 525(7567): 109-13, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26258302

RESUMO

Mitral valve prolapse (MVP) is a common cardiac valve disease that affects nearly 1 in 40 individuals. It can manifest as mitral regurgitation and is the leading indication for mitral valve surgery. Despite a clear heritable component, the genetic aetiology leading to non-syndromic MVP has remained elusive. Four affected individuals from a large multigenerational family segregating non-syndromic MVP underwent capture sequencing of the linked interval on chromosome 11. We report a missense mutation in the DCHS1 gene, the human homologue of the Drosophila cell polarity gene dachsous (ds), that segregates with MVP in the family. Morpholino knockdown of the zebrafish homologue dachsous1b resulted in a cardiac atrioventricular canal defect that could be rescued by wild-type human DCHS1, but not by DCHS1 messenger RNA with the familial mutation. Further genetic studies identified two additional families in which a second deleterious DCHS1 mutation segregates with MVP. Both DCHS1 mutations reduce protein stability as demonstrated in zebrafish, cultured cells and, notably, in mitral valve interstitial cells (MVICs) obtained during mitral valve repair surgery of a proband. Dchs1(+/-) mice had prolapse of thickened mitral leaflets, which could be traced back to developmental errors in valve morphogenesis. DCHS1 deficiency in MVP patient MVICs, as well as in Dchs1(+/-) mouse MVICs, result in altered migration and cellular patterning, supporting these processes as aetiological underpinnings for the disease. Understanding the role of DCHS1 in mitral valve development and MVP pathogenesis holds potential for therapeutic insights for this very common disease.


Assuntos
Caderinas/genética , Caderinas/metabolismo , Prolapso da Valva Mitral/genética , Prolapso da Valva Mitral/patologia , Mutação/genética , Animais , Padronização Corporal/genética , Proteínas Relacionadas a Caderinas , Caderinas/deficiência , Movimento Celular/genética , Cromossomos Humanos Par 11/genética , Feminino , Humanos , Masculino , Camundongos , Valva Mitral/anormalidades , Valva Mitral/embriologia , Valva Mitral/patologia , Valva Mitral/cirurgia , Linhagem , Fenótipo , Estabilidade Proteica , RNA Mensageiro/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445185

RESUMO

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been widely used for disease modeling and drug cardiotoxicity screening. To this end, we recently developed human cardiac organoids (hCOs) for modeling human myocardium. Here, we perform a transcriptomic analysis of various in vitro hiPSC-CM platforms (2D iPSC-CM, 3D iPSC-CM and hCOs) to deduce the strengths and limitations of these in vitro models. We further compared iPSC-CM models to human myocardium samples. Our data show that the 3D in vitro environment of 3D hiPSC-CMs and hCOs stimulates the expression of genes associated with tissue formation. The hCOs demonstrated diverse physiologically relevant cellular functions compared to the hiPSC-CM only models. Including other cardiac cell types within hCOs led to more transcriptomic similarities to adult myocardium. hCOs lack matured cardiomyocytes and immune cells, which limits a complete replication of human adult myocardium. In conclusion, 3D hCOs are transcriptomically similar to myocardium, and future developments of engineered 3D cardiac models would benefit from diversifying cell populations, especially immune cells.


Assuntos
Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Organoides/metabolismo , Transcriptoma , Adulto , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miocárdio/citologia , Miócitos Cardíacos/citologia , Organoides/citologia
3.
J Card Fail ; 26(10): 876-884, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32446948

RESUMO

Heart failure (HF) has traditionally been defined by symptoms of fluid accumulation and poor perfusion, but it is now recognized that specific HF classifications hold prognostic and therapeutic relevance. Specifically, HF with reduced ejection fraction is characterized by reduced left ventricular systolic pump function and dilation and HF with preserved ejection fraction is characterized primarily by abnormal left ventricular filling (diastolic failure) with relatively preserved left ventricular systolic function. These forms of HF are distributed equally among patients with HF and likely require distinctly different strategies to mitigate the morbidity, mortality, and medical resource utilization of this disease. In particular, HF is a significant medical issue within the US Department of Veterans Affairs (VA) hospital system and constitutes a major translational research priority for the VA. Because a common underpinning of both HF with reduced ejection fraction and HF with preserved ejection fraction seems to be changes in the structure and function of the myocardial extracellular matrix, a conference was convened sponsored by the VA, entitled, "Targeting Myocardial Fibrosis in Heart Failure" to explore the extracellular matrix as a potential therapeutic target and to propose specific research directions. The conference was conceptually framed around the hypothesis that although HF with reduced ejection fraction and HF with preserved ejection fraction clearly have distinct mechanisms, they may share modifiable pathways and biological mediators in common. Inflammation and extracellular matrix were identified as major converging themes. A summary of our discussion on unmet challenges and possible solutions to move the field forward, as well as recommendations for future research opportunities, are provided.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Diástole , Fibrose , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/terapia , Humanos , Volume Sistólico , Função Ventricular Esquerda
4.
J Mol Cell Cardiol ; 114: 309-319, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29224834

RESUMO

RATIONALE: Recent evidence indicates that histone deacetylase enzymes (HDACs) contribute to ischemia reperfusion (I/R) injury, and pan-HDAC inhibitors have been shown to be cardioprotective when administered either before an ischemic insult or during reperfusion. We have shown previously that selective inhibition of class I HDACs provides superior cardioprotection when compared to pan-HDAC inhibition in a pretreatment model, but selective class I HDAC inhibition has not been tested during reperfusion, and specific targets of class I HDACs in I/R injury have not been identified. OBJECTIVE: We hypothesized that selective inhibition of class I HDACs with the drug MS-275 (entinostat) during reperfusion would improve recovery from I/R injury in the first hour of reperfusion. METHODS AND RESULTS: Hearts from male Sprague-Dawley rats were subjected to ex vivo I/R injury±MS-275 class I HDAC inhibition during reperfusion alone. MS-275 significantly attenuated I/R injury, as indicated by improved LV function and tissue viability at the end of reperfusion. Unexpectedly, we observed that HDAC1 is present in the mitochondria of cardiac myocytes, but not fibroblasts or endothelial cells. We then designed mitochondria-restricted and mitochondria-excluded HDAC inhibitors, and tested both in our ex vivo I/R model. The selective inhibition of mitochondrial HDAC1 attenuated I/R injury to the same extent as MS-275, whereas the mitochondrial-excluded inhibitor did not. Further assays demonstrated that these effects are attributable to a decrease in SDHA activity and subsequent metabolic ROS production in reperfusion. CONCLUSIONS: We demonstrate for the first time that HDAC1 is present within the mitochondria of cardiac myocytes, and mitochondrial HDAC1 contributes significantly to I/R injury within the first hour of reperfusion.


Assuntos
Mitocôndrias/enzimologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Miócitos Cardíacos/enzimologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Masculino , Mitocôndrias/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/enzimologia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Consumo de Oxigênio/efeitos dos fármacos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/metabolismo , Função Ventricular/efeitos dos fármacos
5.
J Mol Cell Cardiol ; 119: 51-63, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29680681

RESUMO

AIMS: Following an acute myocardial infarction (MI) the extracellular matrix (ECM) undergoes remodeling in order to prevent dilation of the infarct area and maintain cardiac output. Excessive and prolonged inflammation following an MI exacerbates adverse ventricular remodeling. Macrophages are an integral part of the inflammatory response that contribute to this remodeling. Treatment with histone deacetylase (HDAC) inhibitors preserves LV function and myocardial remodeling in the post-MI heart. This study tested whether inhibition of HDAC activity resulted in preserving post-MI LV function through the regulation of macrophage phenotype and early resolution of inflammation. METHODS AND RESULTS: HDAC inhibition does not affect the recruitment of CD45+ leukocytes, CD45+/CD11b+ inflammatory monocytes or CD45+/CD11b+CD86+ inflammatory macrophages for the first 3 days following infarct. Further, HDAC inhibition does not change the high expression level of the inflammatory cytokines in the first days following MI. However, by day 7, there was a significant reduction in the levels of CD45+/Cd11b+ and CD45+/CD11b+/CD86+ cells with HDAC inhibition. Remarkably, HDAC inhibition resulted in the dramatic increase in the recruitment of CD45+/CD11b+/CD206+ alternatively activated macrophages as early as 1 day which remained significantly elevated until 5 days post-MI. qRT-PCR revealed that HDAC inhibitor treatment shifts the cytokine and chemokine environment towards an M2 phenotype with upregulation of M2 markers at 1 and 5 days post-MI. Importantly, HDAC inhibition correlates with significant preservation of both LV ejection fraction and end-diastolic volume and is associated with a significant increase in micro-vessel density in the border zone at 14 days post-MI. CONCLUSION: Inhibition of HDAC activity result in the early recruitment of reparative CD45+/CD11b+/CD206+ macrophages in the post-MI heart and correlates with improved ventricular function and remodeling. This work identifies a very promising therapeutic opportunity to manage macrophage phenotype and enhance resolution of inflammation in the post-MI heart.


Assuntos
Histona Desacetilase 1/genética , Inibidores de Histona Desacetilases/administração & dosagem , Inflamação/tratamento farmacológico , Infarto do Miocárdio/tratamento farmacológico , Cicatrização/genética , Animais , Antígeno B7-2/metabolismo , Antígeno CD11b/metabolismo , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Coração/crescimento & desenvolvimento , Coração/fisiopatologia , Histona Desacetilase 1/antagonistas & inibidores , Humanos , Inflamação/genética , Inflamação/fisiopatologia , Antígenos Comuns de Leucócito/metabolismo , Leucócitos/metabolismo , Macrófagos/metabolismo , Camundongos , Monócitos/efeitos dos fármacos , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Neovascularização Fisiológica/genética , Remodelação Ventricular/efeitos dos fármacos , Remodelação Ventricular/genética , Cicatrização/efeitos dos fármacos
6.
Nucleic Acids Res ; 44(8): 3610-7, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-26704971

RESUMO

Class IIa histone deacetylases (HDACs) are very important for tissue specific gene regulation in development and pathology. Because class IIa HDAC catalytic activity is low, their exact molecular roles have not been fully elucidated. Studies have suggested that class IIa HDACs may serve as a scaffold to recruit the catalytically active class I HDAC complexes to their substrate. Here we directly address whether the class IIa HDAC, HDAC5 may function as a scaffold to recruit co-repressor complexes to promoters. We examined two well-characterized cardiac promoters, the sodium calcium exchanger (Ncx1) and the brain natriuretic peptide (Bnp) whose hypertrophic upregulation is mediated by both class I and IIa HDACs. Selective inhibition of class IIa HDACs did not prevent adrenergic stimulated Ncx1 upregulation, however HDAC5 knockout prevented pressure overload induced Ncx1 upregulation. Using the HDAC5((-/-)) mouse we show that HDAC5 is required for the interaction of the HDAC1/2/Sin3a co-repressor complexes with the Nkx2.5 and YY1 transcription factors and critical for recruitment of the HDAC1/Sin3a co-repressor complex to either the Ncx1 or Bnp promoter. Our novel findings support a non-canonical role of class IIa HDACs in the scaffolding of transcriptional regulatory complexes, which may be relevant for therapeutic intervention for pathologies.


Assuntos
Regulação da Expressão Gênica/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Peptídeo Natriurético Encefálico/genética , Trocador de Sódio e Cálcio/genética , Animais , Gatos , Células Cultivadas , Coração/crescimento & desenvolvimento , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Proteína Homeobox Nkx-2.5/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeo Natriurético Encefálico/metabolismo , Regiões Promotoras Genéticas/genética , Trocador de Sódio e Cálcio/metabolismo , Transcrição Gênica/genética , Ativação Transcricional , Fator de Transcrição YY1/metabolismo
7.
Nano Lett ; 16(7): 4670-8, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27328393

RESUMO

The advancement of human induced pluripotent stem-cell-derived cardiomyocyte (hiPSC-CM) technology has shown promising potential to provide a patient-specific, regenerative cell therapy strategy to treat cardiovascular disease. Despite the progress, the unspecific, underdeveloped phenotype of hiPSC-CMs has shown arrhythmogenic risk and limited functional improvements after transplantation. To address this, tissue engineering strategies have utilized both exogenous and endogenous stimuli to accelerate the development of hiPSC-CMs. Exogenous electrical stimulation provides a biomimetic pacemaker-like stimuli that has been shown to advance the electrical properties of tissue engineered cardiac constructs. Recently, we demonstrated that the incorporation of electrically conductive silicon nanowires to hiPSC cardiac spheroids led to advanced structural and functional development of hiPSC-CMs by improving the endogenous electrical microenvironment. Here, we reasoned that the enhanced endogenous electrical microenvironment of nanowired hiPSC cardiac spheroids would synergize with exogenous electrical stimulation to further advance the functional development of nanowired hiPSC cardiac spheroids. For the first time, we report that the combination of nanowires and electrical stimulation enhanced cell-cell junction formation, improved development of contractile machinery, and led to a significant decrease in the spontaneous beat rate of hiPSC cardiac spheroids. The advancements made here address critical challenges for the use of hiPSC-CMs in cardiac developmental and translational research and provide an advanced cell delivery vehicle for the next generation of cardiac repair.


Assuntos
Estimulação Elétrica , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Nanofios , Diferenciação Celular , Células Cultivadas , Humanos , Silício
8.
Am J Physiol Heart Circ Physiol ; 311(1): H199-206, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27208161

RESUMO

Histone deacetylases (HDACs) play integral roles in many cardiovascular biological processes ranging from transcriptional and translational regulation to protein stabilization and localization. There are 18 known HDACs categorized into 4 classes that can differ on the basis of substrate targets, subcellular localization, and regulatory binding partners. HDACs are classically known for their ability to remove acetyl groups from histone and nonhistone proteins that have lysine residues. However, despite their nomenclature and classical functions, discoveries from many research groups over the past decade have suggested that nondeacetylase roles exist for class IIa HDACs. This is not surprising given that class IIa HDACs have, for example, relatively poor deacetylase capabilities and are often shuttled in and out of nuclei upon specific pathological and nonpathological cardiac events. This review aims to consolidate and elucidate putative nondeacetylase roles for class IIa HDACs and, where possible, highlight studies that provide evidence for their noncanonical roles, especially in the context of cardiovascular maladies. There has been great interest recently in exploring the pharmacological regulators of HDACs for use in therapeutic interventions for treating cardiovascular diseases and inflammation. Thus it is of interest to earnestly consider nonenzymatic and or nondeacetylase roles of HDACs that might be key in potentiating or abrogating pathologies. These noncanonical HDAC functions may possibly yield new mechanisms and targets for drug discovery.


Assuntos
Doenças Cardiovasculares/enzimologia , Histona Desacetilases/metabolismo , Animais , Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/genética , Epigênese Genética , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/química , Humanos , Conformação Proteica , Transdução de Sinais , Relação Estrutura-Atividade
9.
Nano Lett ; 15(5): 2765-72, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25826336

RESUMO

The current inability to derive mature cardiomyocytes from human pluripotent stem cells has been the limiting step for transitioning this powerful technology into clinical therapies. To address this, scaffold-based tissue engineering approaches have been utilized to mimic heart development in vitro and promote maturation of cardiomyocytes derived from human pluripotent stem cells. While scaffolds can provide 3D microenvironments, current scaffolds lack the matched physical/chemical/biological properties of native extracellular environments. On the other hand, scaffold-free, 3D cardiac spheroids (i.e., spherical-shaped microtissues) prepared by seeding cardiomyocytes into agarose microwells were shown to improve cardiac functions. However, cardiomyocytes within the spheroids could not assemble in a controlled manner and led to compromised, unsynchronized contractions. Here, we show, for the first time, that incorporation of a trace amount (i.e., ∼0.004% w/v) of electrically conductive silicon nanowires (e-SiNWs) in otherwise scaffold-free cardiac spheroids can form an electrically conductive network, leading to synchronized and significantly enhanced contraction (i.e., >55% increase in average contraction amplitude), resulting in significantly more advanced cellular structural and contractile maturation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Coração/crescimento & desenvolvimento , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Humanos , Técnicas In Vitro , Nanofios/administração & dosagem , Silício/administração & dosagem , Engenharia Tecidual/métodos , Alicerces Teciduais/química
10.
Am J Physiol Heart Circ Physiol ; 308(11): H1391-401, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25795711

RESUMO

Left ventricular (LV) remodeling, after myocardial infarction (MI), can result in LV dilation and LV pump dysfunction. Post-MI induction of matrix metalloproteinases (MMPs), particularly MMP-2 and MMP-9, have been implicated as causing deleterious effects on LV and extracellular matrix remodeling in the MI region and within the initially unaffected remote zone. Histone deacetylases (HDACs) are a class of enzymes that affect the transcriptional regulation of genes during pathological conditions. We assessed the efficacy of both class I/IIb- and class I-selective HDAC inhibitors on MMP-2 and MMP-9 abundance and determined if treatment resulted in the attenuation of adverse LV and extracellular matrix remodeling and improved LV pump function post-MI. MI was surgically induced in MMP-9 promoter reporter mice and randomized for treatment with a class I/IIb HDAC inhibitor for 7 days post-MI. After MI, LV dilation, LV pump dysfunction, and activation of the MMP-9 gene promoter were significantly attenuated in mice treated with either the class I/IIb HDAC inhibitor tichostatin A or suberanilohydroxamic acid (voronistat) compared with MI-only mice. Immunohistological staining and zymographic levels of MMP-2 and MMP-9 were reduced with either tichostatin A or suberanilohydroxamic acid treatment. Class I HDAC activity was dramatically increased post-MI. Treatment with the selective class I HDAC inhibitor PD-106 reduced post-MI levels of both MMP-2 and MMP-9 and attenuated LV dilation and LV pump dysfunction post-MI, similar to class I/IIb HDAC inhibition. Taken together, these unique findings demonstrate that selective inhibition of class I HDACs may provide a novel therapeutic means to attenuate adverse LV remodeling post-MI.


Assuntos
Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Infarto do Miocárdio/metabolismo , Função Ventricular Esquerda , Animais , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Histona Desacetilase 1/antagonistas & inibidores , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Camundongos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Remodelação Ventricular
11.
J Mol Cell Cardiol ; 72: 138-45, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24632412

RESUMO

While inhibition of class I/IIb histone deacetylases (HDACs) protects the mammalian heart from ischemia reperfusion (IR) injury, class selective effects remain unexamined. We hypothesized that selective inhibition of class I HDACs would preserve left ventricular contractile function following IR in isolated hearts. Male Sprague Dawley rats (n=6 per group) were injected with vehicle (dimethylsulfoxide, 0.63mg/kg), the class I/IIb HDAC inhibitor trichostatin A (1mg/kg), the class I HDAC inhibitor entinostat (MS-275, 10mg/kg), or the HDAC6 (class IIb) inhibitor tubastatin A (10mg/kg). After 24h, hearts were isolated and perfused in Langendorff mode for 30min (Sham) or subjected to 30min global ischemia and 120min global reperfusion (IR). A saline filled balloon attached to a pressure transducer was placed in the LV to monitor contractile function. After perfusion, LV tissue was collected for measurements of antioxidant protein levels and infarct area. At the conclusion of IR, MS-275 pretreatment was associated with significant preservation of developed pressure, rate of pressure generation, rate of pressure relaxation and rate pressure product, as compared to vehicle treated hearts. There was significant reduction of infarct area with MS-275 pretreatment. Contractile function was not significantly restored in hearts treated with trichostatin A or tubastatin A. Mitochondrial superoxide dismutase (SOD2) and catalase protein and mRNA in hearts from animals pretreated with MS-275 were increased following IR, as compared to Sham. This was associated with a dramatic enrichment of nuclear FOXO3a transcription factor, which mediates the expression of SOD2 and catalase. Tubastatin A treatment was associated with significantly decreased catalase levels after IR. Class I HDAC inhibition elicits protection of contractile function following IR, which is associated with increased expression of endogenous antioxidant enzymes. Class I/IIb HDAC inhibition with trichostatin A or selective inhibition of HDAC6 with tubastatin A was not protective. This study highlights the need for the development of new strategies that target specific HDAC isoforms in cardiac ischemia reperfusion.


Assuntos
Benzamidas/farmacologia , Coração/efeitos dos fármacos , Histona Desacetilase 1/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Piridinas/farmacologia , Animais , Catalase/genética , Catalase/metabolismo , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Coração/fisiopatologia , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/antagonistas & inibidores , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Desacetilase 6 de Histona , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Masculino , Contração Miocárdica/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
12.
Exp Eye Res ; 127: 124-31, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25064603

RESUMO

Neuroretinal ischemic injury contributes to several degenerative diseases in the eye and the resulting pathogenic processes involving a series of necrotic and apoptotic events. This study investigates the time and extent of changes in acetylation, and whether this influences function and survival of neuroretinal cells following injury. Studies evaluated the time course of changes in histone deacetylase (HDAC) activity, histone-H3 acetylation and caspase-3 activation levels as well as retinal morphology and function (electroretinography) following ischemia. In addition, the effect of two HDAC inhibitors, trichostatin-A and valproic acid were also investigated. In normal eyes, retinal ischemia produced a significant increase in HDAC activity within 2 h that was followed by a corresponding significant decrease in protein acetylation by 4 h. Activated caspase-3 levels were significantly elevated by 24 h. Treatment with HDAC inhibitors blocked the early decrease in protein acetylation and activation of caspase-3. Retinal immunohistochemistry demonstrated that systemic administration of trichostatin-A or valproic acid, resulted in hyperacetylation of all retinal layers after systemic treatment. In addition, HDAC inhibitors provided a significant functional and structural neuroprotection at seven days following injury relative to vehicle-treated eyes. These results provide evidence that increases in HDAC activity is an early event following retinal ischemia, and are accompanied by corresponding decreases in acetylation in advance of caspase-3 activation. In addition to preserving acetylation status, the administration of HDAC inhibitors suppressed caspase activation and provided structural and functional neuroprotection in model of ischemic retinal injury. Taken together these data provide evidence that decrease in retinal acetylation status is a central event in ischemic retinal injury, and the hyperacetylation induced by HDAC inhibition can provide acute neuroprotection.


Assuntos
Caspase 3/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Degeneração Retiniana/prevenção & controle , Acetilação , Animais , Western Blotting , Sobrevivência Celular , Eletrorretinografia , Feminino , Ácidos Hidroxâmicos/farmacologia , Masculino , Fármacos Neuroprotetores/farmacologia , Ratos Endogâmicos BN , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/fisiopatologia , Degeneração Retiniana/enzimologia , Degeneração Retiniana/fisiopatologia , Neurônios Retinianos/efeitos dos fármacos , Neurônios Retinianos/enzimologia , Neurônios Retinianos/patologia , Ácido Valproico/farmacologia
13.
Adv Mater ; 36(8): e2304615, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37934471

RESUMO

The spleen is an important mediator of both adaptive and innate immunity. As such, attempts to modulate the immune response provided by the spleen may be conducive to improved outcomes for numerous diseases throughout the body. Here, biomimicry is used to rationally design nanomaterials capable of splenic retention and immunomodulation for the treatment of disease in a distant organ, the postinfarct heart. Engineered senescent erythrocyte-derived nanotheranostic (eSENTs) are generated, demonstrating significant uptake by the immune cells of the spleen including T and B cells, as well as monocytes and macrophages. When loaded with suberoylanilide hydroxamic acid (SAHA), the nanoagents exhibit a potent therapeutic effect, reducing infarct size by 14% at 72 h postmyocardial infarction when given as a single intravenous dose 2 h after injury. These results are supportive of the hypothesis that RBC-derived biomimicry may provide new approaches for the targeted modulation of the pathological processes involved in myocardial infarction, thus further experiments to decisively confirm the mechanisms of action are currently underway. This novel concept may have far-reaching applicability for the treatment of a number of both acute and chronic conditions where the immune responses are either stimulated or suppressed by the splenic (auto)immune milieu.


Assuntos
Biomimética , Infarto do Miocárdio , Humanos , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Coração , Imunidade Inata , Imunomodulação
14.
Adv Exp Med Biol ; 961: 125-35, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23224875

RESUMO

Changes in cardiac gene expression contribute to the progression of heart failure by affecting cardiomyocyte growth, function, and survival. The Na(+)-Ca(2+) exchanger gene (Ncx1) is upregulated in hypertrophy and is often found elevated in end-stage heart failure. Studies have shown that the change in its expression contributes to contractile dysfunction. Several transcriptional pathways mediate Ncx1 expression in pathological cardiac remodeling. Both α-adrenergic receptor (α-AR) and ß-adrenergic receptor (ß-AR) signaling can play a role in the regulation of calcium homeostasis in the cardiomyocyte, but chronic activation in periods of cardiac stress contributes to heart failure by mechanisms which include Ncx1 upregulation. Our studies have even demonstrated that NCX1 can directly act as a regulator of "activity-dependent signal transduction" mediating changes in its own expression. Finally, we present evidence that histone deacetylases (HDACs) and histone acetyltransferases (HATs) act as master regulators of Ncx1 expression. We show that many of the transcription factors regulating Ncx1 expression are important in cardiac development and also in the regulation of many other genes in the so-called fetal gene program, which are activated by pathological stimuli. Importantly, studies have revealed that the transcriptional network regulating Ncx1 expression is also mediating many of the other changes in genetic remodeling contributing to the development of cardiac dysfunction and revealed potential therapeutic targets for the treatment of hypertrophy and failure.


Assuntos
Cardiomegalia/metabolismo , Regulação da Expressão Gênica , Insuficiência Cardíaca/metabolismo , Proteínas Musculares/biossíntese , Trocador de Sódio e Cálcio/biossíntese , Transcrição Gênica , Animais , Cálcio/metabolismo , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomegalia/terapia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/terapia , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Proteínas Musculares/genética , Contração Miocárdica/genética , Receptores Adrenérgicos alfa/genética , Receptores Adrenérgicos alfa/metabolismo , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo , Trocador de Sódio e Cálcio/genética
15.
Sci Adv ; 9(31): eadf2898, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540743

RESUMO

Human cardiac organoids hold remarkable potential for cardiovascular disease modeling and human pluripotent stem cell-derived cardiomyocyte (hPSC-CM) transplantation. Here, we show cardiac organoids engineered with electrically conductive silicon nanowires (e-SiNWs) significantly enhance the therapeutic efficacy of hPSC-CMs to treat infarcted hearts. We first demonstrated the biocompatibility of e-SiNWs and their capacity to improve cardiac microtissue engraftment in healthy rat myocardium. Nanowired human cardiac organoids were then engineered with hPSC-CMs, nonmyocyte supporting cells, and e-SiNWs. Nonmyocyte supporting cells promoted greater ischemia tolerance of cardiac organoids, and e-SiNWs significantly improved electrical pacing capacity. After transplantation into ischemia/reperfusion-injured rat hearts, nanowired cardiac organoids significantly improved contractile development of engrafted hPSC-CMs, induced potent cardiac functional recovery, and reduced maladaptive left ventricular remodeling. Compared to contemporary studies with an identical injury model, greater functional recovery was achieved with a 20-fold lower dose of hPSC-CMs, revealing therapeutic synergy between conductive nanomaterials and human cardiac organoids for efficient heart repair.


Assuntos
Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Humanos , Ratos , Animais , Diferenciação Celular , Miocárdio , Isquemia , Infarto do Miocárdio/terapia , Organoides
16.
J Tissue Eng Regen Med ; 16(9): 799-811, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35689600

RESUMO

Acute cardiac injuries occur in 20%-25% of hospitalized COVID-19 patients. Herein, we demonstrate that human cardiac organoids (hCOs) are a viable platform to model the cardiac injuries caused by COVID-19 hyperinflammation. As IL-1ß is an upstream cytokine and a core COVID-19 signature cytokine, it was used to stimulate hCOs to induce the release of a milieu of proinflammatory cytokines that mirror the profile of COVID-19 cytokine storm. The IL-1ß treated hCOs recapitulated transcriptomic, structural, and functional signatures of COVID-19 hearts. The comparison of IL-1ß treated hCOs with cardiac tissue from COVID-19 autopsies illustrated the critical roles of hyper-inflammation in COVID-19 cardiac insults and indicated the cardioprotective effects of endothelium. The IL-1ß treated hCOs thus provide a defined and robust model to assess the efficacy and potential side effects of immunomodulatory drugs, as well as the reversibility of COVID-19 cardiac injuries at baseline and simulated exercise conditions.


Assuntos
COVID-19 , Síndrome da Liberação de Citocina , Cardiopatias , COVID-19/complicações , Síndrome da Liberação de Citocina/virologia , Citocinas/metabolismo , Cardiopatias/virologia , Humanos , Modelos Biológicos , Organoides
17.
bioRxiv ; 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35132419

RESUMO

Acute cardiac injuries occur in 20-25% of hospitalized COVID-19 patients. Despite urgent needs, there is a lack of 3D organotypic models of COVID-19 hearts for mechanistic studies and drug testing. Herein, we demonstrate that human cardiac organoids (hCOs) are a viable platform to model the cardiac injuries caused by COVID-19 hyperinflammation. As IL-1ßis an upstream cytokine and a core COVID-19 signature cytokine, it was used to stimulate hCOs to induce the release of a milieu of proinflammatory cytokines that mirror the profile of COVID-19 cytokine storm. The IL-1 ß treated hCOs recapitulated transcriptomic, structural, and functional signatures of COVID-19 hearts. The comparison of IL-1ß treated hCOs with cardiac tissue from COVID-19 autopsies illustrated the critical roles of hyper-inflammation in COVID-19 cardiac insults and indicated the cardioprotective effects of endothelium. The IL-1ß treated hCOs also provide a viable model to assess the efficacy and potential side effects of immunomodulatory drugs, as well as the reversibility of COVID-19 cardiac injuries at baseline and simulated exercise conditions.

18.
J Biol Chem ; 285(28): 21837-48, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20436166

RESUMO

In severe pressure overload-induced cardiac hypertrophy, a dense, stabilized microtubule network forms that interferes with cardiocyte contraction and microtubule-based transport. This is associated with persistent transcriptional up-regulation of cardiac alpha- and beta-tubulin and microtubule-stabilizing microtubule-associated protein 4 (MAP4). There is also extensive microtubule decoration by MAP4, suggesting greater MAP4 affinity for microtubules. Because the major determinant of this affinity is site-specific MAP4 dephosphorylation, we characterized this in hypertrophied myocardium and then assessed the functional significance of each dephosphorylation site found by mimicking it in normal cardiocytes. We first isolated MAP4 from normal and pressure overload-hypertrophied feline myocardium; volume-overloaded myocardium, which has an equal degree and duration of hypertrophy but normal functional and cytoskeletal properties, served as a control for any nonspecific growth-related effects. After cloning cDNA-encoding feline MAP4 and obtaining its deduced amino acid sequence, we characterized by mass spectrometry any site-specific MAP4 dephosphorylation. Solely in pressure overload-hypertrophied myocardium, we identified striking MAP4 dephosphorylation at Ser-472 in the MAP4 N-terminal projection domain and at Ser-924 and Ser-1056 in the assembly-promoting region of the C-terminal microtubule-binding domain. Site-directed mutagenesis of MAP4 cDNA was then used to switch each serine to non-phosphorylatable alanine. Wild-type and mutated cDNAs were used to construct adenoviruses; microtubule network density, stability, and MAP4 decoration were assessed in normal cardiocytes following an equivalent level of MAP4 expression. The Ser-924 --> Ala MAP4 mutant produced a microtubule phenotype indistinguishable from that seen in pressure overload hypertrophy, such that Ser-924 MAP4 dephosphorylation during pressure overload hypertrophy may be central to this cytoskeletal abnormality.


Assuntos
Cardiomegalia/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animais , Gatos , DNA Complementar/metabolismo , Espectrometria de Massas/métodos , Microscopia Confocal/métodos , Mutação , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Fosforilação , Pressão , Estrutura Terciária de Proteína , Serina/química
19.
J Biol Chem ; 285(49): 38125-40, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-20889984

RESUMO

Increased activity of Ser/Thr protein phosphatases types 1 (PP1) and 2A (PP2A) during maladaptive cardiac hypertrophy contributes to cardiac dysfunction and eventual failure, partly through effects on calcium metabolism. A second maladaptive feature of pressure overload cardiac hypertrophy that instead leads to heart failure by interfering with cardiac contraction and intracellular transport is a dense microtubule network stabilized by decoration with microtubule-associated protein 4 (MAP4). In an earlier study we showed that the major determinant of MAP4-microtubule affinity, and thus microtubule network density and stability, is site-specific MAP4 dephosphorylation at Ser-924 and to a lesser extent at Ser-1056; this was found to be prominent in hypertrophied myocardium. Therefore, in seeking the etiology of this MAP4 dephosphorylation, we looked here at PP2A and PP1, as well as the upstream p21-activated kinase 1, in maladaptive pressure overload cardiac hypertrophy. The activity of each was increased persistently during maladaptive hypertrophy, and overexpression of PP2A or PP1 in normal hearts reproduced both the microtubule network phenotype and the dephosphorylation of MAP4 Ser-924 and Ser-1056 seen in hypertrophy. Given the major microtubule-based abnormalities of contractile and transport function in maladaptive hypertrophy, these findings constitute a second important mechanism for phosphatase-dependent pathology in the hypertrophied and failing heart.


Assuntos
Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animais , Cardiomegalia/genética , Gatos , Insuficiência Cardíaca/genética , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Contração Miocárdica/genética , Fosforilação/genética , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo
20.
J Tissue Eng Regen Med ; 15(2): 189-202, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33868541

RESUMO

Prevascularized 3D microtissues have been shown to be an effective cell delivery vehicle for cardiac repair. To this end, our lab has explored the development of self-organizing, prevascularized human cardiac organoids by co-seeding human cardiomyocytes with cardiac fibroblasts, endothelial cells, and stromal cells into agarose microwells. We hypothesized that this prevascularization process is facilitated by the endogenous upregulation of hypoxia-inducible factor (HIF) pathway in the avascular 3D microtissues. In this study, we used Molidustat, a selective PHD (prolyl hydroxylase domain enzymes) inhibitor that stabilizes HIF-α, to treat human cardiac organoids, which resulted in 150 ± 61% improvement in endothelial expression (CD31) and 220 ± 20% improvement in the number of lumens per organoids. We hypothesized that the improved endothelial expression seen in Molidustat treated human cardiac organoids was dependent upon upregulation of VEGF, a well-known downstream target of HIF pathway. Through the use of immunofluorescent staining and ELISA assays, we determined that Molidustat treatment improved VEGF expression of non-endothelial cells and resulted in improved co-localization of supporting cell types and endothelial structures. We further demonstrated that Molidustat treated human cardiac organoids maintain cardiac functionality. Lastly, we showed that Molidustat treatment improves survival of cardiac organoids when exposed to both hypoxic and ischemic conditions in vitro. For the first time, we demonstrate that targeted HIF-α stabilization provides a robust strategy to improve endothelial expression and lumen formation in cardiac microtissues, which will provide a powerful framework for prevascularization of various microtissues in developing successful cell transplantation therapies.


Assuntos
Fibroblastos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Organoides , Pirazóis/farmacologia , Triazóis/farmacologia , Técnicas de Cocultura , Humanos , Organoides/irrigação sanguínea , Organoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa