Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063642

RESUMO

Triple negative breast cancer (TNBC) is an aggressive subtype of the disease with poor clinical outcomes and limited therapeutic options. Immune checkpoint blockade (CP) has surged to the forefront of cancer therapies with widespread clinical success in a variety of cancer types. However, the percentage of TNBC patients that benefit from CP as a monotherapy is low, and clinical trials have shown the need for combined therapeutic modalities. Specifically, there has been interest in combining CP therapy with radiation therapy where clinical studies primarily with external beam have suggested their therapeutic synergy, contributing to the development of anti-tumor immunity. Here, we have developed a therapeutic platform combining radionuclide therapy (RT) and immunotherapy utilizing a radiolabeled biomolecule and CP in an E0771 murine TNBC tumor model. Survival studies show that while neither monotherapy is able to improve therapeutic outcomes, the combination of RT + CP extended overall survival. Histologic analysis showed that RT + CP increased necrotic tissue within the tumor and decreased levels of F4/80+ macrophages. Flow cytometry analysis of the peripheral blood also showed that RT + CP suppressed macrophages and myeloid-derived suppressive cells, both of which actively contribute to immune escape and tumor relapse.


Assuntos
Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/radioterapia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/radioterapia , Animais , Linhagem Celular Tumoral , Terapia Combinada , Feminino , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Fatores Imunológicos/genética , Imunoterapia/métodos , Camundongos , Recidiva Local de Neoplasia/patologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Dalton Trans ; 49(42): 14826-14836, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33034336

RESUMO

A small library of [2 + 1] 99mTc(i) complexes based on phenyl-imidazole-fused phenanthroline (PIP) ligands were synthesized and evaluated as multimodal molecular imaging probes. Using either a two-step or a one-pot synthesis method, 99mTc-PIP complexes containing N-methylimidazole as the monodentate ligand were prepared and isolated in good (54 to 89%) radiochemical yield, with the exception of one derivative bearing a strongly electron-withdrawing substituent. The stability of the [2 + 1] complexes was assessed in saline and in cysteine and histidine challenge studies, showing 6 hours stability, making them suitable for in vivo studies. In parallel, the Re(i) analogues were prepared as reference standards to verify the structure of the 99mTc complexes. The optical properties were consistent with other previously reported [2 + 1] type Re(i) complexes that have been used as cellular dyes and sensors. To facilitate the development of targeted derivatives, a tetrazine-PIP ligand was also synthesized. The 99mTc complex of the tetrazine PIP ligand effectively coupled to compounds containing a trans-cyclooctene (TCO) group including a TCO-albumin derivative, which was prepared as a model targeting molecule. An added benefit of the Re-PIP-Tz construct is that the emission from the metal complex was quenched by the presence of the tetrazine. Following the addition of TCO, there was a 70-fold increase in fluorescence emission, which can in future be leveraged during in vitro studies to reduce background signal.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa