Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Psychiatry ; 26(8): 4394-4408, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33257815

RESUMO

An emerging preclinical literature suggests that targeting central glucagon-like peptide-1 receptors (GLP-1Rs) may represent a novel approach to treating cocaine use disorder. However, the exact neural circuits and cell types that mediate the suppressive effects of GLP-1R agonists on cocaine-seeking behavior are largely unknown. The laterodorsal tegmental nucleus (LDTg) expresses GLP-1Rs and functions as a neuroanatomical hub connecting the nucleus tractus solitarius (NTS), the primary source of central GLP-1, with midbrain and forebrain nuclei known to regulate cocaine-seeking behavior. The goal of this study was to characterize the role of LDTg GLP-1R-expressing neurons and their projections to the ventral tegmental area (VTA) in the reinstatement of cocaine-seeking behavior, an animal model of relapse. Here, we showed that administration of the GLP-1R agonist exendin-4 (Ex-4) directly into the LDTg significantly attenuated cocaine seeking at a dose that did not affect sucrose seeking, ad libitum food intake, or body weight. In addition, our studies revealed that selectively activating NTS-to-LDTg circuits attenuated cocaine seeking via a GLP-1R-dependent mechanism. We also demonstrated, for the first time, that GLP-1Rs are expressed primarily on GABAergic neurons in the LDTg and that the efficacy of Ex-4 to reduce cocaine seeking depends, in part, on activation of LDTg-to-VTA GABAergic projections. Taken together, these studies identify a central mechanism by which Ex-4 attenuates cocaine seeking and highlight GABAergic GLP-1R-expressing circuits in the midbrain as important anti-craving pathways in regulating cocaine craving-induced relapse.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Cocaína , Exenatida/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1 , Área Tegmentar Ventral , Animais , Neurônios GABAérgicos/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Ratos , Ratos Sprague-Dawley , Área Tegmentar Ventral/metabolismo
2.
bioRxiv ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38979354

RESUMO

Recent studies show that systemic administration of a glucagon-like peptide-1 receptor (GLP-1R) agonist is sufficient to attenuate the reinstatement of cocaine-seeking behavior, an animal model of relapse. However, the neural mechanisms mediating these effects and the role of endogenous central GLP-1 signaling in cocaine seeking remain unknown. Here, we show that voluntary cocaine taking decreased plasma GLP-1 levels in rats and that chemogenetic activation of GLP-1-producing neurons in the nucleus tractus solitarius (NTS) that project to the ventral tegmental area (VTA) decreased cocaine reinstatement. Single nuclei transcriptomics and FISH studies revealed GLP-1Rs are expressed primarily on GABA neurons in the VTA. Using in vivo fiber photometry, we found that the efficacy of a systemic GLP-1R agonist to attenuate cocaine seeking was associated with increased activity of VTA GABA neurons and decreased activity of VTA dopamine neurons. Together, these findings suggest that targeting central GLP-1 circuits may be an effective strategy toward reducing cocaine relapse and highlight a novel functional role of GABAergic GLP-1R-expressing midbrain neurons in drug seeking.

3.
bioRxiv ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38826289

RESUMO

Neural processing of rewarding stimuli involves several distinct regions, including the nucleus accumbens (NAc). The majority of NAc neurons are GABAergic projection neurons known as medium spiny neurons (MSNs). MSNs are broadly defined by dopamine receptor expression, but evidence suggests that a wider array of subtypes exist. To study MSN heterogeneity, we analyzed single-nucleus RNA sequencing data from the largest available rat NAc dataset. Analysis of 48,040 NAc MSN nuclei identified major populations belonging to the striosome and matrix compartments. Integration with mouse and human data indicated consistency across species and disease-relevance scoring using genome-wide association study results revealed potentially differential roles for MSN populations in substance use disorders. Additional high-resolution clustering identified 34 transcriptomically distinct subtypes of MSNs definable by a limited number of marker genes. Together, these data demonstrate the diversity of MSNs in the NAc and provide a basis for more targeted genetic manipulation of specific populations.

4.
Neuropsychopharmacology ; 48(13): 1878-1888, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37355732

RESUMO

The high rates of relapse associated with current medications used to treat opioid use disorder (OUD) necessitate research that expands our understanding of the neural mechanisms regulating opioid taking to identify molecular substrates that could be targeted by novel pharmacotherapies to treat OUD. Recent studies show that activation of calcitonin receptors (CTRs) is sufficient to reduce the rewarding effects of addictive drugs in rodents. However, the role of central CTR signaling in opioid-mediated behaviors has not been studied. Here, we used single nuclei RNA sequencing (snRNA-seq), fluorescent in situ hybridization (FISH), and immunohistochemistry (IHC) to characterize cell type-specific patterns of CTR expression in the nucleus accumbens (NAc), a brain region that plays a critical role in voluntary drug taking. Using these approaches, we identified CTRs expressed on D1R- and D2R-expressing medium spiny neurons (MSNs) in the medial shell subregion of the NAc. Interestingly, Calcr transcripts were expressed at higher levels in D2R- versus D1R-expressing MSNs. Cre-dependent viral-mediated miRNA knockdown of CTRs in transgenic male rats was then used to determine the functional significance of endogenous CTR signaling in opioid taking. We discovered that reduced CTR expression specifically in D1R-expressing MSNs potentiated/augmented opioid self-administration. In contrast, reduced CTR expression specifically in D2R-expressing MSNs attenuated opioid self-administration. These findings highlight a novel cell type-specific mechanism by which CTR signaling in the ventral striatum bidirectionally modulates voluntary opioid taking and support future studies aimed at targeting central CTR-expressing circuits to treat OUD.


Assuntos
Analgésicos Opioides , Núcleo Accumbens , Ratos , Animais , Masculino , Analgésicos Opioides/farmacologia , Analgésicos Opioides/metabolismo , Receptores da Calcitonina/genética , Receptores da Calcitonina/metabolismo , Neurônios Espinhosos Médios , Hibridização in Situ Fluorescente , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D1/metabolismo
5.
Neurosci Biobehav Rev ; 131: 1169-1179, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34715149

RESUMO

The widespread misuse of opioids and opioid use disorder (OUD) together constitute a major public health crisis in the United States. The greatest challenge for successfully treating OUD is preventing relapse. Unfortunately, there are few FDA-approved medications to treat OUD and, while effective, these pharmacotherapies are limited by high relapse rates. Thus, there is a critical need for conceptually new approaches to developing novel medications to treat OUD. Here, we review an emerging preclinical literature that suggests that glucagon-like peptide-1 receptor (GLP-1R) agonists could be re-purposed for treating OUD. Potential limitations of this approach are also discussed along with an alternative strategy that involves simultaneously targeting and activating GLP-1Rs and neuropeptide Y2 receptors (Y2Rs) in the brain using a novel monomeric dual agonist peptide. Recent studies indicate that this combinatorial pharmacotherapy approach attenuates voluntary fentanyl taking and seeking in rats without producing adverse effects associated with GLP-1R agonist monotherapy alone. While future studies are required to comprehensively determine the behavioral effects of GLP-1R agonists and dual agonists of GLP-1Rs and Y2Rs in rodent models of OUD, these provocative preclinical findings highlight a potential new GLP-1R-based approach to preventing relapse in humans with OUD.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Transtornos Relacionados ao Uso de Opioides , Receptores de Neuropeptídeo Y/agonistas , Animais , Fentanila , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa