Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell ; 163(6): 1515-26, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26627737

RESUMO

The ability to perturb genes in human cells is crucial for elucidating gene function and holds great potential for finding therapeutic targets for diseases such as cancer. To extend the catalog of human core and context-dependent fitness genes, we have developed a high-complexity second-generation genome-scale CRISPR-Cas9 gRNA library and applied it to fitness screens in five human cell lines. Using an improved Bayesian analytical approach, we consistently discover 5-fold more fitness genes than were previously observed. We present a list of 1,580 human core fitness genes and describe their general properties. Moreover, we demonstrate that context-dependent fitness genes accurately recapitulate pathway-specific genetic vulnerabilities induced by known oncogenes and reveal cell-type-specific dependencies for specific receptor tyrosine kinases, even in oncogenic KRAS backgrounds. Thus, rigorous identification of human cell line fitness genes using a high-complexity CRISPR-Cas9 library affords a high-resolution view of the genetic vulnerabilities of a cell.


Assuntos
Genes Essenciais , Teorema de Bayes , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Biblioteca Gênica , Humanos , Mutação
2.
Nature ; 586(7827): 120-126, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32968282

RESUMO

The genetic circuits that allow cancer cells to evade destruction by the host immune system remain poorly understood1-3. Here, to identify a phenotypically robust core set of genes and pathways that enable cancer cells to evade killing mediated by cytotoxic T lymphocytes (CTLs), we performed genome-wide CRISPR screens across a panel of genetically diverse mouse cancer cell lines that were cultured in the presence of CTLs. We identify a core set of 182 genes across these mouse cancer models, the individual perturbation of which increases either the sensitivity or the resistance of cancer cells to CTL-mediated toxicity. Systematic exploration of our dataset using genetic co-similarity reveals the hierarchical and coordinated manner in which genes and pathways act in cancer cells to orchestrate their evasion of CTLs, and shows that discrete functional modules that control the interferon response and tumour necrosis factor (TNF)-induced cytotoxicity are dominant sub-phenotypes. Our data establish a central role for genes that were previously identified as negative regulators of the type-II interferon response (for example, Ptpn2, Socs1 and Adar1) in mediating CTL evasion, and show that the lipid-droplet-related gene Fitm2 is required for maintaining cell fitness after exposure to interferon-γ (IFNγ). In addition, we identify the autophagy pathway as a conserved mediator of the evasion of CTLs by cancer cells, and show that this pathway is required to resist cytotoxicity induced by the cytokines IFNγ and TNF. Through the mapping of cytokine- and CTL-based genetic interactions, together with in vivo CRISPR screens, we show how the pleiotropic effects of autophagy control cancer-cell-intrinsic evasion of killing by CTLs and we highlight the importance of these effects within the tumour microenvironment. Collectively, these data expand our knowledge of the genetic circuits that are involved in the evasion of the immune system by cancer cells, and highlight genetic interactions that contribute to phenotypes associated with escape from killing by CTLs.


Assuntos
Genoma/genética , Genômica , Neoplasias/genética , Neoplasias/imunologia , Linfócitos T Citotóxicos/imunologia , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Animais , Autofagia , Linhagem Celular Tumoral , Feminino , Genes Neoplásicos/genética , Humanos , Interferon gama/imunologia , Masculino , Camundongos , NF-kappa B/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais
3.
Nat Chem Biol ; 18(12): 1370-1379, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35970996

RESUMO

Pyrvinium is a quinoline-derived cyanine dye and an approved anti-helminthic drug reported to inhibit WNT signaling and have anti-proliferative effects in various cancer cell lines. To further understand the mechanism by which pyrvinium is cytotoxic, we conducted a pooled genome-wide CRISPR loss-of-function screen in the human HAP1 cell model. The top drug-gene sensitizer interactions implicated the malate-aspartate and glycerol-3-phosphate shuttles as mediators of cytotoxicity to mitochondrial complex I inhibition including pyrvinium. By contrast, perturbation of the poorly characterized gene C1orf115/RDD1 resulted in strong resistance to the cytotoxic effects of pyrvinium through dysregulation of the major drug efflux pump ABCB1/MDR1. Interestingly, C1orf115/RDD1 was found to physically associate with ABCB1/MDR1 through proximity-labeling experiments and perturbation of C1orf115 led to mis-localization of ABCB1/MDR1. Our results are consistent with a model whereby C1orf115 modulates drug efflux through regulation of the major drug exporter ABCB1/MDR1.


Assuntos
Antineoplásicos , Compostos de Pirvínio , Humanos , Compostos de Pirvínio/farmacologia , Via de Sinalização Wnt , Antineoplásicos/farmacologia , Genômica
4.
Am J Physiol Renal Physiol ; 317(6): F1593-F1604, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31566424

RESUMO

Podocyte function is tightly linked to the complex organization of its cytoskeleton and adhesion to the underlying glomerular basement membrane. Adhesion of cultured podocytes to a variety of substrates is reported to correlate with podocyte health. To identify novel genes that are important for podocyte function, we designed an in vitro genetic screen based on podocyte adhesion to plates coated with either fibronectin or soluble Fms-like tyrosine kinase-1 (sFLT1)/Fc. A genome-scale pooled RNA interference screen on immortalized human podocytes identified 77 genes that increased adhesion to fibronectin, 101 genes that increased adhesion to sFLT1/Fc, and 44 genes that increased adhesion to both substrates when knocked down. Multiple shRNAs against diphthamide biosynthesis protein 1-4 (DPH1-DPH4) were top hits for increased adhesion. Immortalized human podocyte cells stably expressing these hairpins displayed increased adhesion to both substrates. We then used CRISPR-Cas9 to generate podocyte knockout cells for DPH1, DPH2, or DPH3, which also displayed increased adhesion to both fibronectin and sFLT1/Fc, as well as a spreading defect. Finally, we showed that Drosophila nephrocyte-specific knockdown of Dph1, Dph2, and Dph4 resulted in altered nephrocyte function. In summary, we report here a novel high-throughput method to identify genes important for podocyte function. Given the central role of podocyte adhesion as a marker of podocyte health, these data are a rich source of candidate regulators of glomerular disease.


Assuntos
Adesão Celular/genética , Adesão Celular/fisiologia , Histidina/análogos & derivados , Rim/metabolismo , Podócitos/metabolismo , Animais , Linhagem Celular , Drosophila , Fibronectinas/metabolismo , Proteínas de Choque Térmico HSP40/genética , Ensaios de Triagem em Larga Escala , Histidina/biossíntese , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Antígenos de Histocompatibilidade Menor/genética , Proteínas/genética , RNA Interferente Pequeno , Proteínas Supressoras de Tumor/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
6.
Mol Syst Biol ; 9: 696, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24104479

RESUMO

Improved efforts are necessary to define the functional product of cancer mutations currently being revealed through large-scale sequencing efforts. Using genome-scale pooled shRNA screening technology, we mapped negative genetic interactions across a set of isogenic cancer cell lines and confirmed hundreds of these interactions in orthogonal co-culture competition assays to generate a high-confidence genetic interaction network of differentially essential or differential essentiality (DiE) genes. The network uncovered examples of conserved genetic interactions, densely connected functional modules derived from comparative genomics with model systems data, functions for uncharacterized genes in the human genome and targetable vulnerabilities. Finally, we demonstrate a general applicability of DiE gene signatures in determining genetic dependencies of other non-isogenic cancer cell lines. For example, the PTEN(-/-) DiE genes reveal a signature that can preferentially classify PTEN-dependent genotypes across a series of non-isogenic cell lines derived from the breast, pancreas and ovarian cancers. Our reference network suggests that many cancer vulnerabilities remain to be discovered through systematic derivation of a network of differentially essential genes in an isogenic cancer cell model.


Assuntos
Neoplasias da Mama/genética , Epistasia Genética , Genes Essenciais , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/genética , PTEN Fosfo-Hidrolase/genética , Neoplasias Pancreáticas/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Feminino , Redes Reguladoras de Genes , Genoma Humano , Humanos , Mutação , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , PTEN Fosfo-Hidrolase/deficiência , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
7.
Heliyon ; 9(1): e12744, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36597481

RESUMO

SARS-CoV-2 depends on host cell components for infection and replication. Identification of virus-host dependencies offers an effective way to elucidate mechanisms involved in viral infection and replication. If druggable, host factor dependencies may present an attractive strategy for anti-viral therapy. In this study, we performed genome wide CRISPR knockout screens in Vero E6 cells and four human cell lines including Calu-3, UM-UC-4, HEK-293 and HuH-7 to identify genetic regulators of SARS-CoV-2 infection. Our findings identified only ACE2, the cognate SARS-CoV-2 entry receptor, as a common host dependency factor across all cell lines, while other host genes identified were largely cell line specific, including known factors TMPRSS2 and CTSL. Several of the discovered host-dependency factors converged on pathways involved in cell signalling, immune-related pathways, and chromatin modification. Notably, the chromatin modifier gene KMT2C in Calu-3 cells had the strongest impact in preventing SARS-CoV-2 infection when perturbed.

8.
J Immunol ; 184(6): 2966-73, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20154205

RESUMO

Human myeloid cells express both activating and inhibitory receptors of the FcgammaRII family. FcgammaRIIA mediates processes associated with cell activation, including phagocytosis of IgG-opsonized particles, whereas coengagement of the inhibitory FcgammaRIIB downregulates such signaling. We analyzed the relative recruitment of these two receptors during phagocytosis of IgG-coated particles by ts20 Chinese hamster fibroblast cells cotransfected with both receptors carrying distinguishable fluorescent protein tags. We found that FcgammaRIIA is substantially enriched at sites of particle binding relative to its inhibitory counterpart, with a greater than 2-fold increase in the local ratio of activating to inhibitory receptor compared with that for the plasma membrane as a whole. Experiments with chimeric receptors revealed that the preferential enrichment of FcgammaRIIA results from differences between the extracellular domains of the receptors, and indicated that the lesser recruitment of FcgammaRIIB limits its ability to effectively inhibit FcgammaRIIA-mediated phagocytosis. Mutagenesis studies indicated that FcgammaRIIA residues leucine 132 and phenylalanine 160, which lie in IgG-binding regions of FcgammaRIIA and which differ in FcgammaRIIB, both contribute to the local relative enrichment of FcgammaRIIA by increasing its affinity for IgG1 relative to that of FcgammaRIIB. In human monocytes, engagement of approximately equal amounts of FcgammaRIIB was required to substantially inhibit FcgammaRIIA-mediated phagocytosis. These results demonstrate that differences in affinity for IgG between activating and inhibitory FcgammaR can result in substantial local changes in their relative concentrations during phagocytosis, with important functional consequences.


Assuntos
Fagocitose/imunologia , Receptores de IgG/metabolismo , Sequência de Aminoácidos , Animais , Complexo Antígeno-Anticorpo/genética , Complexo Antígeno-Anticorpo/metabolismo , Linhagem Celular , Cricetinae , Cricetulus , Espaço Extracelular/genética , Espaço Extracelular/imunologia , Espaço Extracelular/metabolismo , Humanos , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Fagocitose/genética , Ligação Proteica/genética , Ligação Proteica/imunologia , Estrutura Terciária de Proteína/genética , Transporte Proteico/genética , Transporte Proteico/imunologia , Receptores de IgG/antagonistas & inibidores , Receptores de IgG/genética , Receptores de IgG/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
9.
Cancer Cell ; 40(12): 1488-1502.e7, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36368321

RESUMO

MYC-driven medulloblastoma (MB) is an aggressive pediatric brain tumor characterized by therapy resistance and disease recurrence. Here, we integrated data from unbiased genetic screening and metabolomic profiling to identify multiple cancer-selective metabolic vulnerabilities in MYC-driven MB tumor cells, which are amenable to therapeutic targeting. Among these targets, dihydroorotate dehydrogenase (DHODH), an enzyme that catalyzes de novo pyrimidine biosynthesis, emerged as a favorable candidate for therapeutic targeting. Mechanistically, DHODH inhibition acts on target, leading to uridine metabolite scarcity and hyperlipidemia, accompanied by reduced protein O-GlcNAcylation and c-Myc degradation. Pyrimidine starvation evokes a metabolic stress response that leads to cell-cycle arrest and apoptosis. We further show that an orally available small-molecule DHODH inhibitor demonstrates potent mono-therapeutic efficacy against patient-derived MB xenografts in vivo. The reprogramming of pyrimidine metabolism in MYC-driven medulloblastoma represents an unappreciated therapeutic strategy and a potential new class of treatments with stronger cancer selectivity and fewer neurotoxic sequelae.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Criança , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Di-Hidro-Orotato Desidrogenase , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Pirimidinas/uso terapêutico , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo
10.
Nat Metab ; 2(6): 499-513, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32694731

RESUMO

The de novo synthesis of fatty acids has emerged as a therapeutic target for various diseases, including cancer. Because cancer cells are intrinsically buffered to combat metabolic stress, it is important to understand how cells may adapt to the loss of de novo fatty acid biosynthesis. Here, we use pooled genome-wide CRISPR screens to systematically map genetic interactions (GIs) in human HAP1 cells carrying a loss-of-function mutation in fatty acid synthase (FASN), whose product catalyses the formation of long-chain fatty acids. FASN-mutant cells show a strong dependence on lipid uptake that is reflected in negative GIs with genes involved in the LDL receptor pathway, vesicle trafficking and protein glycosylation. Further support for these functional relationships is derived from additional GI screens in query cell lines deficient in other genes involved in lipid metabolism, including LDLR, SREBF1, SREBF2 and ACACA. Our GI profiles also identify a potential role for the previously uncharacterized gene C12orf49 (which we call LUR1) in regulation of exogenous lipid uptake through modulation of SREBF2 signalling in response to lipid starvation. Overall, our data highlight the genetic determinants underlying the cellular adaptation associated with loss of de novo fatty acid synthesis and demonstrate the power of systematic GI mapping for uncovering metabolic buffering mechanisms in human cells.


Assuntos
Ácidos Graxos/biossíntese , Metabolismo dos Lipídeos/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Mapeamento Cromossômico , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Humanos , Lipogênese/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Inanição/genética , Inanição/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
11.
J Vis Exp ; (151)2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31545321

RESUMO

Genome editing using the CRISPR-Cas system has vastly advanced the ability to precisely edit the genomes of various organisms. In the context of mammalian cells, this technology represents a novel means to perform genome-wide genetic screens for functional genomics studies. Libraries of guide RNAs (sgRNA) targeting all open reading frames permit the facile generation of thousands of genetic perturbations in a single pool of cells that can be screened for specific phenotypes to implicate gene function and cellular processes in an unbiased and systematic way. CRISPR-Cas screens provide researchers with a simple, efficient, and inexpensive method to uncover the genetic blueprints for cellular phenotypes. Furthermore, differential analysis of screens performed in various cell lines and from different cancer types can identify genes that are contextually essential in tumor cells, revealing potential targets for specific anticancer therapies. Performing genome-wide screens in human cells can be daunting, as this involves the handling of tens of millions of cells and requires analysis of large sets of data. The details of these screens, such as cell line characterization, CRISPR library considerations, and understanding the limitations and capabilities of CRISPR technology during analysis, are often overlooked. Provided here is a detailed protocol for the successful performance of pooled genome-wide CRISPR-Cas9 based screens.


Assuntos
Sistemas CRISPR-Cas/genética , Testes Genéticos/métodos , Animais , Humanos
12.
G3 (Bethesda) ; 7(8): 2719-2727, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28655737

RESUMO

The adaptation of CRISPR/SpCas9 technology to mammalian cell lines is transforming the study of human functional genomics. Pooled libraries of CRISPR guide RNAs (gRNAs) targeting human protein-coding genes and encoded in viral vectors have been used to systematically create gene knockouts in a variety of human cancer and immortalized cell lines, in an effort to identify whether these knockouts cause cellular fitness defects. Previous work has shown that CRISPR screens are more sensitive and specific than pooled-library shRNA screens in similar assays, but currently there exists significant variability across CRISPR library designs and experimental protocols. In this study, we reanalyze 17 genome-scale knockout screens in human cell lines from three research groups, using three different genome-scale gRNA libraries. Using the Bayesian Analysis of Gene Essentiality algorithm to identify essential genes, we refine and expand our previously defined set of human core essential genes from 360 to 684 genes. We use this expanded set of reference core essential genes, CEG2, plus empirical data from six CRISPR knockout screens to guide the design of a sequence-optimized gRNA library, the Toronto KnockOut version 3.0 (TKOv3) library. We then demonstrate the high effectiveness of the library relative to reference sets of essential and nonessential genes, as well as other screens using similar approaches. The optimized TKOv3 library, combined with the CEG2 reference set, provide an efficient, highly optimized platform for performing and assessing gene knockout screens in human cell lines.


Assuntos
Sistemas CRISPR-Cas/genética , Técnicas de Inativação de Genes , Testes Genéticos , Genoma , Biblioteca Gênica , Genes Essenciais , Células HEK293 , Humanos , RNA Guia de Cinetoplastídeos/genética , Padrões de Referência
13.
Genetics ; 201(3): 885-95, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26354767

RESUMO

FBW7 (F-box and WD repeat domain containing 7), also known as FBXW7 or hCDC4, is a tumor suppressor gene mutated in a broad spectrum of cancer cell types. As a component of the SCF E3 ubiquitin ligase, FBW7 is responsible for specifically recognizing phosphorylated substrates, many important for tumor progression, and targeting them for ubiquitin-mediated degradation. Although the role of FBW7 as a tumor suppressor is well established, less well studied is how FBW7-mutated cancer cells might be targeted for selective killing. To explore this further, we undertook a genome-wide RNAi screen using WT and FBW7 knockout colorectal cell lines and identified the spindle assembly checkpoint (SAC) protein BUBR1, as a candidate synthetic lethal target. We show here that asynchronous FBW7 knockout cells have increased levels of mitotic APC/C substrates and are sensitive to knockdown of not just BUBR1 but BUB1 and MPS1, other known SAC components, suggesting a dependence of these cells on the mitotic checkpoint. Consistent with this dependence, knockdown of BUBR1 in cells lacking FBW7 results in significant cell aneuploidy and increases in p53 levels. The FBW7 substrate cyclin E was necessary for the genetic interaction with BUBR1. In contrast, the establishment of this dependence on the SAC requires the deregulation of multiple substrates of FBW7. Our work suggests that FBW7 knockout cells are vulnerable in their dependence on the mitotic checkpoint and that this may be a good potential target to exploit in FBW7-mutated cancer cells.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas F-Box/fisiologia , Fuso Acromático/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Aneuploidia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Ciclina E/metabolismo , Proteínas F-Box/genética , Proteína 7 com Repetições F-Box-WD , Técnicas de Inativação de Genes , Genes Supressores de Tumor , Humanos , Pontos de Checagem da Fase M do Ciclo Celular , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Interferência de RNA , Ubiquitina-Proteína Ligases/genética
14.
Cancer Discov ; 2(2): 172-189, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22585861

RESUMO

UNLABELLED: Genomic analyses are yielding a host of new information on the multiple genetic abnormalities associated with specific types of cancer. A comprehensive description of cancer-associated genetic abnormalities can improve our ability to classify tumors into clinically relevant subgroups and, on occasion, identify mutant genes that drive the cancer phenotype ("drivers"). More often, though, the functional significance of cancer-associated mutations is difficult to discern. Genome-wide pooled short hairpin RNA (shRNA) screens enable global identification of the genes essential for cancer cell survival and proliferation, providing a "functional genomic" map of human cancer to complement genomic studies. Using a lentiviral shRNA library targeting ~16,000 genes and a newly developed, dynamic scoring approach, we identified essential gene profiles in 72 breast, pancreatic, and ovarian cancer cell lines. Integrating our results with current and future genomic data should facilitate the systematic identification of drivers, unanticipated synthetic lethal relationships, and functional vulnerabilities of these tumor types. SIGNIFICANCE: This study presents a resource of genome-scale, pooled shRNA screens for 72 breast, pancreatic, and ovarian cancer cell lines that will serve as a functional complement to genomics data, facilitate construction of essential gene profiles, help uncover synthetic lethal relationships, and identify uncharacterized genetic vulnerabilities in these tumor types. SIGNIFICANCE: This study presents a resource of genome-scale, pooled shRNA screens for 72 breast, pancreatic, and ovarian cancer cell lines that will serve as a functional complement to genomics data, facilitate construction of essential gene profiles, help uncover synthetic lethal relationships, and identify uncharacterized genetic vulnerabilities in these tumor types.


Assuntos
Neoplasias da Mama/genética , Neoplasias Ovarianas/genética , Neoplasias Pancreáticas/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Biblioteca Gênica , Humanos , Masculino , Neoplasias Ovarianas/metabolismo , Neoplasias Pancreáticas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transcriptoma
15.
Methods Mol Biol ; 748: 133-42, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21701971

RESUMO

Numerous immune receptors have the ability to mediate phagocytosis of large particles by triggering dynamic local rearrangement of the cytoskeleton and cell membrane. Different receptors can be differentially recruited to sites of particle binding, which in turn can have important functional consequences with respect to engulfment and downstream signaling. Using Fcγ receptor-mediated phagocytosis of IgG-coated particles as a model, we describe a method for analyzing nascent phagocytic cups and quantifying relative receptor levels at sites of phagocytosis. This technique is based on a ratiometric analysis of subcellular localization of exogenously expressed receptors carrying different fluorescent protein tags. This approach could be applied more generally to the analysis of surface membrane protein localization in the context of any dynamic cellular process.


Assuntos
Fagocitose/fisiologia , Receptores Fc/metabolismo , Animais , Transporte Biológico , Células CHO , Cricetinae , Cricetulus , Humanos , Microscopia Confocal , Microscopia de Fluorescência
16.
PLoS One ; 6(1): e14498, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21264210

RESUMO

Macrophages can remove antigen from the surface of antibody-coated cells by a process termed trogocytosis. Using live cell microscopy and flow cytometry, we investigated the dynamics of trogocytosis by RAW264.7 macrophages of Ramos B cells opsonized with the anti-CD20 monoclonal antibody rituximab. Spontaneous and reversible formation of uropods was observed on Ramos cells, and these showed a strong enrichment in rituximab binding. RAW-Ramos conjugate interfaces were highly enriched in rituximab, and transfer of rituximab to the RAW cells in submicron-sized puncta occurred shortly after cell contact. Membrane from the target cells was concomitantly transferred along with rituximab to a variable extent. We established a flow cytometry-based approach to follow the kinetics of transfer and internalization of rituximab. Disruption of actin polymerization nearly eliminated transfer, while blocking phosphatidylinositol 3-kinase activity only resulted in a delay in its acquisition. Inhibition of Src family kinase activity both slowed acquisition and reduced the extent of trogocytosis. The effects of inhibiting these kinases are likely due to their role in efficient formation of cell-cell conjugates. Selective pre-treatment of Ramos cells with phenylarsine oxide blocked uropod formation, reduced enrichment of rituximab at cell-cell interfaces, and reduced the efficiency of trogocytic transfer of rituximab. Our findings highlight that dynamic changes in target cell shape and surface distribution of antigen may significantly influence the progression and extent of trogocytosis. Understanding the mechanistic determinants of macrophage trogocytosis will be important for optimal design of antibody therapies.


Assuntos
Anticorpos Monoclonais Murinos/imunologia , Linfócitos B/imunologia , Macrófagos/fisiologia , Proteínas Opsonizantes/imunologia , Animais , Antígenos CD20/metabolismo , Linfócitos B/efeitos dos fármacos , Linhagem Celular , Forma Celular , Citometria de Fluxo/métodos , Cinética , Camundongos , Rituximab
17.
Medisan ; 19(9)set.-set. 2015.
Artigo em Espanhol | LILACS, CUMED | ID: lil-760148

RESUMO

La familia presenta importantes tareas en la sociedad, relacionadas directamente con la preservación de la vida humana, su desarrollo y bienestar. Así, existen características en la dinámica familiar que impulsan a los alumnos a mantener su nivel de rendimiento académico o no, por ejemplo, la disfuncionalidad. En este trabajo se aborda brevemente cómo las familias disfuncionales pueden ser unas de las causas del bajo rendimiento académico en estudiantes de años básicos.


The family has important tasks in society, directly related to the preservation of the human life, its development and well-being. Thus, there are characteristics in the family dynamics which impel the students to maintain or not the level of academic results, for instance, the dysfunction. This work shortly deals on how dysfunctional families can be one of the causes of low academic results in basic years students.


Assuntos
Desempenho Acadêmico , Estudantes , Família
18.
J Biol Chem ; 281(44): 33242-9, 2006 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-16959774

RESUMO

Endocytosis of the Fc receptor Fc gammaRIIA depends on a functional ubiquitin conjugation system, and the receptor becomes ubiquitylated upon ligand binding. Phosphorylation of tyrosines in Fc gammaRIIA by Src family kinases is thought to be the initiating event in its signaling. However, although the Src family kinase inhibitor PP1 inhibited both ligand-induced phosphorylation of Fc gammaRIIA and phagocytosis in ts20 cells expressing Fc gammaRIIA, it did not inhibit receptor ubiquitylation or endocytosis of soluble ligands. Conversely, genistein and the proteasomal inhibitor MG132 did not inhibit receptor phosphorylation but strongly inhibited both receptor ubiquitylation and endocytosis. A region of the receptor lying within the immunoreceptor tyrosine-based activation motif was found to be necessary for both ubiquitylation and endocytosis. Ubiquitylation occurs at the plasma membrane before internalization. Endocytosis of Fc gammaRIIA is dependent on clathrin but independent of the adaptor protein AP-2. These findings point to a novel mechanism for ubiquitylation and endocytosis of this immunoreceptor.


Assuntos
Antígenos CD/metabolismo , Endocitose , Receptores de IgG/metabolismo , Ubiquitina/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Linhagem Celular , Clatrina/metabolismo , Leupeptinas/farmacologia , Mutação/genética , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Ligação Proteica , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa