Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nat Immunol ; 13(1): 67-76, 2011 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-22138716

RESUMO

Chemokines presented by the endothelium are critical for integrin-dependent adhesion and transendothelial migration of naive and memory lymphocytes. Here we found that effector lymphocytes of the type 1 helper T cell (T(H)1 cell) and type 1 cytotoxic T cell (T(C)1 cell) subtypes expressed adhesive integrins that bypassed chemokine signals and established firm arrests on variably inflamed endothelial barriers. Nevertheless, the transendothelial migration of these lymphocytes strictly depended on signals from guanine nucleotide-binding proteins of the G(i) type and was promoted by multiple endothelium-derived inflammatory chemokines, even without outer endothelial surface exposure. Instead, transendothelial migration-promoting endothelial chemokines were stored in vesicles docked on actin fibers beneath the plasma membranes and were locally released within tight lymphocyte-endothelial synapses. Thus, effector T lymphocytes can cross inflamed barriers through contact-guided consumption of intraendothelial chemokines without surface-deposited chemokines or extraendothelial chemokine gradients.


Assuntos
Quimiocinas/metabolismo , Células Endoteliais/metabolismo , Linfócitos/imunologia , Migração Transendotelial e Transepitelial/imunologia , Vesículas Transportadoras/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Integrinas/metabolismo , Linfócitos/metabolismo , Linfócitos/ultraestrutura , Camundongos , Receptores CCR2/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/ultraestrutura , Fator de Necrose Tumoral alfa/farmacologia , Vasculite/imunologia , Vasculite/metabolismo
2.
Mol Cell Proteomics ; 19(3): 478-489, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31892524

RESUMO

The prediction of metastatic properties from molecular analyses still poses a major challenge. Here we aimed at the classification of metastasis-related cell properties by proteome profiling making use of cutaneous and brain-metastasizing variants from single melanomas sharing the same genetic ancestry. Previous experiments demonstrated that cultured cells derived from these xenografted variants maintain a stable phenotype associated with a differential metastatic behavior: The brain metastasizing variants produce more spontaneous micro-metastases than the corresponding cutaneous variants. Four corresponding pairs of cutaneous and metastatic cells were obtained from four individual patients, resulting in eight cell-lines presently investigated. Label free proteome profiling revealed significant differences between corresponding pairs of cutaneous and cerebellar metastases from the same patient. Indeed, each brain metastasizing variant expressed several apparently metastasis-associated proteomic alterations as compared with the corresponding cutaneous variant. Among the differentially expressed proteins we identified cell adhesion molecules, immune regulators, epithelial to mesenchymal transition markers, stem cell markers, redox regulators and cytokines. Similar results were observed regarding eicosanoids, considered relevant for metastasis, such as PGE2 and 12-HETE. Multiparametric morphological analysis of cells also revealed no characteristic alterations associated with the cutaneous and brain metastasis variants. However, no correct classification regarding metastatic potential was yet possible with the present data. We thus concluded that molecular profiling is able to classify cells according to known functional categories but is not yet able to predict relevant cell properties emerging from networks consisting of many interconnected molecules. The presently observed broad diversity of molecular patterns, irrespective of restricting to one tumor type and two main classes of metastasis, highlights the important need to develop meta-analysis strategies to predict cell properties from molecular profiling data. Such base knowledge will greatly support future individualized precision medicine approaches.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Animais , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral , Citoplasma/metabolismo , Xenoenxertos , Humanos , Masculino , Melanoma/patologia , Camundongos Nus , Proteoma , Proteômica , Neoplasias Cutâneas/patologia
3.
Int J Cancer ; 144(4): 802-817, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29992556

RESUMO

Melanoma has the highest propensity to metastasize to the brain compared to other cancers, as brain metastases are found frequently high in patients who have prolonged survival with visceral metastasis. Once disseminated in the brain, melanoma cells communicate with brain resident cells that include astrocytes and microglia. Microglia cells are the resident macrophages of the brain and are the main immunological cells in the CNS involved in neuroinflammation. Data on the interactions between brain metastatic melanoma cells and microglia and on the role of microglia-mediated neuroinflammation in facilitating melanoma brain metastasis are lacking. To elucidate the role of microglia in melanoma brain metastasis progression, we examined the bidirectional interactions between microglia and melanoma cells in the tumor microenvironment. We identified the molecular and functional modifications occurring in brain-metastasizing melanoma cells and microglia cells after the treatment of each cell type with supernatants of the counter cell type. Both cells induced alteration in gene expression programs, cell signaling, and cytokine secretion in the counter cell type. Moreover, melanoma cells exerted significant morphological changes on microglia cells, enhanced proliferation, induced matrix metalloproteinase-2 (MMP-2) activation, and cell migration. Microglia cells induced phenotypic changes in melanoma cells increasing their malignant phenotype: increased melanoma proliferation, MMP-2 activity, cell migration, brain endothelial penetration, and tumor cells ability to grow as spheroids in 3D cultures. Our work provides a novel insight into the bidirectional interactions between melanoma and micoglia cells, suggesting the contribution of microglia to melanoma brain metastasis formation.


Assuntos
Neoplasias Encefálicas/genética , Melanoma/genética , Microglia/metabolismo , Neoplasias Cutâneas/genética , Microambiente Tumoral/genética , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Comunicação Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/metabolismo , Melanoma/patologia , Camundongos Nus , Microglia/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Transplante Heterólogo
4.
Br J Cancer ; 114(7): 759-66, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26986252

RESUMO

BACKGROUND: Intersecting a genome-wide expression profile of metastatic and nonmetastatic human neuroblastoma xenograft variants with expression profiles of tumours from stage 1 and 4 neuroblastoma patients, we previously characterised hexokinase 2 (HK2) as a gene whose expression was upregulated in both metastatic neuroblastoma variants and tumours from stage 4 neuroblastoma patients. METHODS: Local and metastatic neuroblastoma cell variants as well as metastatic neuroblastoma cells genetically manipulated to downregulate the expression of HK2 were utilised for in vitro and in vivo examinations of the involvement of HK2 in neuroblastoma. RESULTS: Hexokinase 2 expression and its activity levels were increased in neuroblastoma metastatic variants as compared with the local variants. The upregulation of HK2 confers upon the metastatic cells high resistance to the antiproliferative effect of the HK2 inhibitor 3-BrPa and to the chemotherapy agent Deferoxamine. The inhibition of HK2 transcript lowered the proliferation and motility of sh-HK2 cells as compared with sh-control cells. Mice that were inoculated with sh-HK2 cells had a lower incidence of local tumours, smaller tumour volumes and a diminished load of lung metastasis compared with mice inoculated with sh-control cells. CONCLUSIONS: Hexokinase 2 plays a significant role in shaping the malignant phenotype of neuroblastoma and influences the progression of this disease.


Assuntos
Neoplasias das Glândulas Suprarrenais/secundário , Movimento Celular , Proliferação de Células , Hexoquinase/metabolismo , Neoplasias Pulmonares/secundário , Neuroblastoma/patologia , Neoplasias das Glândulas Suprarrenais/enzimologia , Neoplasias das Glândulas Suprarrenais/genética , Animais , Apoptose , Western Blotting , Ciclo Celular , Inibidores Enzimáticos/farmacologia , Hexoquinase/antagonistas & inibidores , Hexoquinase/genética , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neuroblastoma/enzimologia , Neuroblastoma/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Cicatrização , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Pathol ; 236(1): 116-27, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25639230

RESUMO

Melanoma is the leading cause of skin cancer mortality. The major cause of melanoma mortality is metastasis to distant organs, frequently to the brain. The microenvironment plays a critical role in tumourigenesis and metastasis. In order to treat or prevent metastasis, the interactions of disseminated tumour cells with the microenvironment at the metastatic organ have to be elucidated. However, the role of brain stromal cells in facilitating metastatic growth is poorly understood. Astrocytes are glial cells that function in repair and scarring of the brain following injury, in part via mediating neuroinflammation, but the role of astrocytes in melanoma brain metastasis is largely unresolved. Here we show that astrocytes can be reprogrammed by human brain-metastasizing melanoma cells to express pro-inflammatory factors, including the cytokine IL-23, which was highly expressed by metastases-associated astrocytes in vivo. Moreover, we show that the interactions between astrocytes and melanoma cells are reciprocal: paracrine signalling from astrocytes up-regulates the secretion of the matrix metalloproteinase MMP2 and enhances the invasiveness of brain-metastasizing melanoma cells. IL-23 was sufficient to increase melanoma cell invasion, and neutralizing antibodies to IL-23 could block this enhanced migration, implying a functional role for astrocyte-derived IL-23 in facilitating the progression of melanoma brain metastasis. Knocking down the expression of MMP2 in melanoma cells resulted in inhibition of IL-23-induced invasiveness. Thus, our study demonstrates that bidirectional signalling between melanoma cells and astrocytes results in the formation of a pro-inflammatory milieu in the brain, and in functional enhancement of the metastatic potential of disseminated melanoma cells.


Assuntos
Astrócitos/metabolismo , Neoplasias Encefálicas/metabolismo , Interleucina-23/metabolismo , Melanoma/metabolismo , Animais , Neoplasias Encefálicas/secundário , Humanos , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Melanoma/secundário , Camundongos Nus , Transdução de Sinais/fisiologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Regulação para Cima
6.
Int J Cancer ; 136(6): 1296-307, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25046141

RESUMO

Brain metastases occur frequently in melanoma patients with advanced disease whereby the prognosis is dismal. The underlying mechanisms of melanoma brain metastasis development are not well understood. Identification of molecular determinants regulating melanoma brain metastasis would advance the development of prevention and therapy strategies for this disease. Gene expression profiles of cutaneous and brain-metastasizing melanoma variants from three xenograft tumor models established in our laboratory revealed that expression of tight junction component CLDN1 was lower in the brain-metastasizing variants than in cutaneous variants from the same melanoma. The objective of our study was to determine the significance of CLDN1 downregulation/loss in metastatic melanoma and its role in melanoma brain metastasis. An immunohistochemical analysis of human cells of the melanocyte lineage indicated a significant CLDN1 downregulation in metastatic melanomas. Transduction of melanoma brain metastatic cells expressing low levels of CLDN1 with a CLDN1 retrovirus suppressed their metastatic phenotype. CLDN1-overexpressing melanoma cells expressed a lower ability to migrate and adhere to extracellular matrix, reduced tumor aggressiveness in nude mice and, most importantly, eliminated the formation of micrometastases in the brain. In sharp contrast, the ability of the CLDN1-overexpressing cells to form lung micrometastases was not impaired. CLDN1-mediated interactions between these cells and brain endothelial cells constitute the mechanism underlying these results. Taken together, we demonstrated that downregulation or loss of CLDN1 supports the formation of melanoma brain metastasis, and that CLDN1 expression could be a useful prognostic predictor for melanoma patients with a high risk of brain metastasis.


Assuntos
Neoplasias Encefálicas/secundário , Claudina-1/fisiologia , Melanoma/secundário , Neoplasias Cutâneas/patologia , Microambiente Tumoral , Animais , Adesão Celular , Linhagem Celular Tumoral , Linhagem da Célula , Movimento Celular , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Micrometástase de Neoplasia , Fenótipo
7.
BMC Cancer ; 14: 158, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24598028

RESUMO

BACKGROUND: In the present study we determined the relative contribution of two processes to breast cancer progression: (1) Intrinsic events, such as activation of the Ras pathway and down-regulation of p53; (2) The inflammatory cytokines TNFα and IL-1ß, shown in our published studies to be highly expressed in tumors of >80% of breast cancer patients with recurrent disease. METHODS: Using MCF-7 human breast tumor cells originally expressing WT-Ras and WT-p53, we determined the impact of the above-mentioned elements and cooperativity between them on the expression of CXCL8 (ELISA, qRT-PCR), a member of a "cancer-related chemokine cluster" that we have previously identified. Then, we determined the mechanisms involved (Ras-binding-domain assays, Western blot, luciferase), and tested the impact of Ras + TNFα on angiogenicity (chorioallantoic membrane assays) and on tumor growth at the mammary fat pad of mice and on metastasis, in vivo. RESULTS: Using RasG12V that recapitulates multiple stimulations induced by receptor tyrosine kinases, we found that RasG12V alone induced CXCL8 expression at the mRNA and protein levels, whereas down-regulation of p53 did not. TNFα and IL-1ß potently induced CXCL8 expression and synergized with RasG12V, together leading to amplified CXCL8 expression. Testing the impact of WT-Ras, which is the common form in breast cancer patients, we found that WT-Ras was not active in promoting CXCL8; however, TNFα has induced the activation of WT-Ras: joining these two elements has led to cooperative induction of CXCL8 expression, via the activation of MEK, NF-κB and AP-1. Importantly, TNFα has led to increased expression of WT-Ras in an active GTP-bound form, with properties similar to those of RasG12V. Jointly, TNFα + Ras activities have given rise to increased angiogenesis and to elevated tumor cell dissemination to lymph nodes. CONCLUSIONS: TNFα cooperates with Ras in promoting the metastatic phenotype of MCF-7 breast tumor cells, and turns WT-Ras into a tumor-supporting entity. Thus, in breast cancer patients the cytokine may rescue the pro-cancerous potential of WT-Ras, and together these two elements may lead to a more aggressive disease. These findings have clinical relevance, suggesting that we need to consider new therapeutic regimens that inhibit Ras and TNFα, in breast cancer patients.


Assuntos
Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Linhagem Celular Tumoral , Embrião de Galinha , Feminino , Regulação Neoplásica da Expressão Gênica , Guanosina Trifosfato/metabolismo , Humanos , Interleucina-1beta , Interleucina-8/metabolismo , Sistema de Sinalização das MAP Quinases , Células MCF-7 , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Metástase Neoplásica , Neoplasias/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas p21(ras)/química , Transdução de Sinais , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Int J Cancer ; 133(10): 2296-306, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23649556

RESUMO

Recent data suggest that the mechanisms determining whether a tumor cell reaching a secondary organ will enter a dormant state, progress toward metastasis, or go through apoptosis are regulated by the microenvironment of the distant organ. In neuroblastoma, 60-70% of children with high-risk disease will ultimately experience relapse due to the presence of micrometastases. The main goal of this study is to evaluate the role of the lung microenvironment in determining the fate of neuroblastoma lung metastases and micrometastases. Utilizing an orthotopic mouse model for human neuroblastoma metastasis, we were able to generate two neuroblastoma cell populations-lung micrometastatic (MicroNB) cells and lung macrometastatic (MacroNB) cells. These two types of cells share the same genetic background, invade the same distant organ, but differ in their ability to create metastasis in the lungs. We hypothesize that factors present in the lung microenvironment inhibit the propagation of MicroNB cells preventing them from forming overt lung metastasis. This study indeed shows that lung-derived factors significantly reduce the viability of MicroNB cells by up regulating the expression of pro-apoptotic genes, inducing cell cycle arrest and decreasing ERK and FAK phosphorylation. Lung-derived factors affected various additional progression-linked cellular characteristics of neuroblastoma cells, such as the expression of stem-cell markers, morphology, and migratory capacity. An insight into the microenvironmental effects governing neuroblastoma recurrence and progression would be of pivotal importance as they could have a therapeutic potential for the treatment of neuroblastoma residual disease.


Assuntos
Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Animais , Apoptose/genética , Biomarcadores Tumorais/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Sobrevivência Celular/genética , Progressão da Doença , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Neuroblastoma/genética , Neuroblastoma/secundário , Fosforilação/genética , Células-Tronco/metabolismo , Células-Tronco/patologia , Microambiente Tumoral
9.
Mediators Inflamm ; 2013: 720536, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24369447

RESUMO

Breast cancer progression is strongly linked to inflammatory processes, aggravating disease course. The impacts of the inflammatory cytokine TNF α on breast malignancy are not fully substantiated, and they may be affected by cooperativity between TNF α and other protumoral mediators. Here, we show that together with representatives of other important arms of the tumor microenvironment, estrogen (hormonal) and EGF (growth-supporting), TNF α potently induced metastasis-related properties and functions in luminal breast tumor cells, representing the most common type of breast cancer. Jointly, TNFα + Estrogen + EGF had a stronger effect on breast cancer cells than each element alone, leading to the following: (1) extensive cell spreading and formation of FAK/paxillin-enriched cellular protrusions; (2) elevated proportion of tumor cells coexpressing high levels of CD44 and ß 1 and VLA6; (3) EMT and cell migration; (4) resistance to chemotherapy; (5) release of protumoral factors (CXCL8, CCL2, MMPs). Importantly, the tumor cells used in this study are known to be nonmetastatic under all conditions; nevertheless, they have acquired high metastasizing abilities in vivo in mice, following a brief stimulation by TNFα + Estrogen + EGF. These dramatic findings indicate that TNF α can turn into a strong prometastatic factor, suggesting a paradigm shift in which clinically approved inhibitors of TNFα would be applied in breast cancer therapy.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Fator de Necrose Tumoral alfa/metabolismo , Animais , Antineoplásicos/farmacologia , Sobrevivência Celular , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Fator de Crescimento Epidérmico/metabolismo , Estrogênios/metabolismo , Feminino , Citometria de Fluxo , Humanos , Inflamação/metabolismo , Integrina beta1/metabolismo , Células MCF-7 , Camundongos , Camundongos Nus , Microscopia Confocal , Metástase Neoplásica , Transplante de Neoplasias , Esferoides Celulares/metabolismo
10.
Cancers (Basel) ; 15(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37190183

RESUMO

Hormone receptor-positive and HER2-negative (HR+/HER2-; luminal A) tumors are prevalent in breast cancer. Our past studies demonstrated that "TME Stimulation" (estrogen + TNFα + EGF, representing three arms of the tumor microenvironment, TME) has enriched metastasis-forming cancer stem cells (CSCs) in HR+/HER2- human breast cancer cells. Here, following information obtained by RNAseq analyses of TME-stimulated CSCs and Non-CSCs, we found that TME Stimulation has induced the activation of S727-STAT3, Y705-STAT3, STAT1 and p65. Upon TME Stimulation, stattic (STAT3 inhibitor) usage demonstrated that Y705-STAT3 activation negatively controlled CSC enrichment and epithelial-to-mesenchymal transition (EMT) traits, while inducing CXCL8 (IL-8) and PD-L1 expression. However, STAT3 knock-down (siSTAT3) had no effect on these functions; in terms of CSC enrichment, p65 had down-regulatory roles that compensated for the loss of an entire STAT3 protein. Y705-STAT3 and p65 acted additively in reducing CSC enrichment, and Y705A-STAT3 variant + sip65 has enriched chemo-resistant CSCs. Clinical data analyses revealed an inverse correlation between Y705-STAT3 + p65 phosphorylation and CSC signature in luminal A patients, and connection to improved disease course. Overall, we find regulatory roles for Y705-STAT3 and p65 in TME-stimulated HR+/HER2- tumors, with the ability to limit CSC enrichment. These findings raise concerns about using inhibitors of STAT3 and p65 as therapeutic strategies in the clinic.

11.
Cells ; 12(19)2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37830552

RESUMO

PD-L1 has been characterized as an inhibitory immune checkpoint, leading to the suppression of potential anti-tumor immune activities in many cancer types. In view of the relatively limited efficacy of immune checkpoint blockades against PD-L1 in breast cancer, our recent study addressed the possibility that in addition to its immune-inhibitory functions, PD-L1 promotes the pro-metastatic potential of the cancer cells themselves. Indeed, our published findings demonstrated that PD-L1 promoted pro-metastatic functions of breast cancer cells in a cell-autonomous manner, both in vitro and in vivo. These functions fully depended on the integrity of the S283 intracellular residue of PD-L1. Here, using siRNAs and the S283A-PD-L1 variant, we demonstrate that the cell-autonomous pro-metastatic functions of PD-L1-tumor cell proliferation and invasion, and release of the pro-metastatic chemokine CXCL8-required the activation of STAT3 and STAT1 in luminal A and triple-negative breast cancer cells. The cell-autonomous pro-metastatic functions of PD-L1 were potently impaired upon inhibition of N-linked glycosylation (kifunensine). Site-specific mutants at each of the N-linked glycosylation sites of PD-L1 (N35, N192, N200, and N219) revealed that they were all required for PD-L1-induced pro-metastatic functions to occur; the N219 site was the main regulator of STAT3 and STAT1 activation, with accompanying roles for N192 and N200 (depending on the cell type). Using a T cell-independent mouse system, we found that cells expressing N35A-PD-L1 and N219A-PD-L1 had a significantly lower tumorigenic and metastatic potential than cells expressing WT-PD-L1. TCGA analyses revealed significant associations between reduced survival and high levels of α-mannosidase II (inferring on N-linked glycosylation) in breast cancer patients. These findings suggest that N-linked glycosylation of PD-L1 may be used to screen for patients who are at greater risk of disease progression, and that modalities targeting N-linked glycosylated PD-L1 may lead to the inhibition of its cell-autonomous pro-metastatic functions and to lower tumor progression in breast cancer.


Assuntos
Antígeno B7-H1 , Neoplasias de Mama Triplo Negativas , Camundongos , Animais , Humanos , Glicosilação , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/patologia , Linfócitos T , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo
12.
Cancers (Basel) ; 15(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894348

RESUMO

Reciprocal signaling between melanoma brain metastatic (MBM) cells and microglia reprograms the phenotype of both interaction partners, including upregulation of the transcription factor JunB in microglia. Here, we aimed to elucidate the impact of microglial JunB upregulation on MBM progression. For molecular profiling, we employed RNA-seq and reverse-phase protein array (RPPA). To test microglial JunB functions, we generated microglia variants stably overexpressing JunB (JunBhi) or with downregulated levels of JunB (JunBlo). Melanoma-derived factors, namely leukemia inhibitory factor (LIF), controlled JunB upregulation through Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling. The expression levels of JunB in melanoma-associated microglia were heterogeneous. Flow cytometry analysis revealed the existence of basal-level JunB-expressing microglia alongside microglia highly expressing JunB. Proteomic profiling revealed a differential protein expression in JunBhi and JunBlo cells, namely the expression of microglia activation markers Iba-1 and CD150, and the immunosuppressive molecules SOCS3 and PD-L1. Functionally, JunBhi microglia displayed decreased migratory capacity and phagocytic activity. JunBlo microglia reduced melanoma proliferation and migration, while JunBhi microglia preserved the ability of melanoma cells to proliferate in three-dimensional co-cultures, that was abrogated by targeting leukemia inhibitory factor receptor (LIFR) in control microglia-melanoma spheroids. Altogether, these data highlight a melanoma-mediated heterogenous effect on microglial JunB expression, dictating the nature of their functional involvement in MBM progression. Targeting microglia highly expressing JunB may potentially be utilized for MBM theranostics.

13.
Cells ; 12(11)2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37296634

RESUMO

Previous studies from our lab demonstrated that the crosstalk between brain-metastasizing melanoma cells and microglia, the macrophage-like cells of the central nervous system, fuels progression to metastasis. In the present study, an in-depth investigation of melanoma-microglia interactions elucidated a pro-metastatic molecular mechanism that drives a vicious melanoma-brain-metastasis cycle. We employed RNA-Sequencing, HTG miRNA whole transcriptome assay, and reverse phase protein arrays (RPPA) to analyze the impact of melanoma-microglia interactions on sustainability and progression of four different human brain-metastasizing melanoma cell lines. Microglia cells exposed to melanoma-derived IL-6 exhibited upregulated levels of STAT3 phosphorylation and SOCS3 expression, which, in turn, promoted melanoma cell viability and metastatic potential. IL-6/STAT3 pathway inhibitors diminished the pro-metastatic functions of microglia and reduced melanoma progression. SOCS3 overexpression in microglia cells evoked microglial support in melanoma brain metastasis by increasing melanoma cell migration and proliferation. Different melanomas exhibited heterogeneity in their microglia-activating capacity as well as in their response to microglia-derived signals. In spite of this reality and based on the results of the present study, we concluded that the activation of the IL-6/STAT3/SOCS3 pathway in microglia is a major mechanism by which reciprocal melanoma-microglia signaling engineers the interacting microglia to reinforce the progression of melanoma brain metastasis. This mechanism may operate differently in different melanomas.


Assuntos
Neoplasias Encefálicas , Melanoma , Humanos , Microglia/metabolismo , Interleucina-6/metabolismo , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Melanoma/patologia , Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Fator de Transcrição STAT3/metabolismo
14.
Int J Cancer ; 131(5): 1071-82, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22025079

RESUMO

Brain metastasis occurs frequently in melanoma patients with advanced disease whereby the prognosis is dismal. The underlying mechanisms of melanoma brain metastasis development are not well understood. We generated a reproducible melanoma brain metastasis model, consisting of brain-metastasizing variants and local, subdermal variants that originate from the same melanomas thus sharing a common genetic background. The brain-metastasizing variants were obtained by intracardiac inoculation. Brain metastasis variants when inoculated subdermally yielded spontaneous brain dormant micrometastasis. Cultured cells from the spontaneous brain micrometastasis grew very well in vitro and generated subdermal tumors after an orthotopic inoculation. Expression analysis assays indicated that the brain metastasis and micrometastasis cells expressed higher levels of angiopoietin-like 4, prostaglandin-synthesizing enzyme cyclooxygenase-2, matrix metalloproteinase-1 and preferentially expressed antigen in melanoma and lower levels of claudin-1 and cysteine-rich protein 61 than the corresponding cutaneous variants. The reproducible models of human melanoma metastasizing experimentally and spontaneously to the brain will facilitate the identification of novel biomarkers and targets for therapy and contribute to the deciphering of mechanisms underlying melanoma metastasis.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/secundário , Neoplasias Pulmonares/secundário , Melanoma/patologia , Micrometástase de Neoplasia , Neoplasias Cutâneas/secundário , Animais , Apoptose , Biomarcadores Tumorais/metabolismo , Western Blotting , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Adesão Celular , Proliferação de Células , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Imageamento por Ressonância Magnética , Masculino , Melanoma/genética , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Células Tumorais Cultivadas
15.
Int J Cancer ; 131(11): 2509-18, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22447293

RESUMO

The working hypothesis of this study is that the interactions between the brain microenvironment and melanoma cells determine metastasis formation at this organ site. The aim of the study was to evaluate the contribution of such interactions to the formation of brain metastasis in nude mice xenografted with human melanoma cells. An insight into these interactions is an essential prerequisite for the development of effective targeted therapy for melanoma brain metastasis. We assessed the effects of soluble factors present in supernatants of short-term cultures of normal mouse brain (referred here after as brain-derived soluble factors) on several characteristics linked to melanoma brain metastasis. It was found that brain-derived soluble factors affect differentially cutaneous and brain-metastasizing melanoma cells variants in vitro. Such factors enhanced the viability of cutaneous melanoma cells but caused an S phase arrest followed by apoptosis of brain-metastasizing cells. Brain-derived soluble factors enhanced migration of melanoma cells metastasizing to the brain, but did not affect the migration of the cutaneous variants. Such factors upregulated the expression of the chemokine receptor CCR4 in both cutaneous and brain-metastasizing melanoma cells. It is not unlikely that CCR4 ligands expressed in the brain interact with the CCR4-expressing melanoma cells thereby directing them to the brain. Brain-derived soluble factors enhanced the transmigration, across human brain endothelial cells of cutaneous but not of brain-metastasizing melanoma variants. This activity could promote the capacity of the cutaneous cells to metastasize to the brain.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/secundário , Melanoma/patologia , Neoplasias Cutâneas/patologia , Microambiente Tumoral , Animais , Apoptose/genética , Biomarcadores Tumorais/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Pontos de Checagem do Ciclo Celular/genética , Movimento Celular/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Masculino , Melanoma/genética , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Fenótipo , Receptores CCR3/genética , Receptores CCR3/metabolismo , Receptores CCR4/genética , Receptores CCR4/metabolismo , Fase S/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/secundário , Células Tumorais Cultivadas , Regulação para Cima/genética
16.
Cancers (Basel) ; 14(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35884574

RESUMO

Pro-inflammatory cytokines play key roles in elevating cancer progression in triple-negative breast cancer (TNBC). We demonstrate that specific combinations between TNFα, IL-1ß and IFNγ up-regulated the proportion of human TNBC cells co-expressing the inhibitory immune checkpoints PD-L1 and PD-L2: TNFα + IL-1ß in MDA-MB-231 cells and IFNγ + IL-1ß in BT-549 cells; in the latter cells, the process depended entirely on STAT1 activation, with no involvement of p65 (CRISPR-Cas9 experiments). Highly significant associations between the pro-inflammatory cytokines and PD-L1/PD-L2 expression were revealed in the TCGA dataset of basal-like breast cancer patients. In parallel, we found that the pro-inflammatory cytokines regulated the expression of the soluble receptors of tumor necrosis factor α (TNFα), namely sTNFR1 and sTNFR2; moreover, we revealed that sTNFR1 and sTNFR2 serve as anti-metastatic and protective factors in TNBC, reducing the TNFα-induced production of inflammatory pro-metastatic chemokines (CXCL8, CXCL1, CCL5) by TNBC cells. Importantly, we found that in the context of inflammatory stimulation and also without exposure to pro-inflammatory cytokines, elevated levels of PD-L1 have down-regulated the production of anti-tumor sTNFR1 and sTNFR2. These findings suggest that in addition to its immune-suppressive activities, PD-L1 may promote disease course in TNBC by inhibiting the protective effects of sTNFR1 and sTNFR2.

18.
Cancers (Basel) ; 14(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35205789

RESUMO

Therapies targeting the PD-L1/PD-1 axis have recently been introduced to triple-negative breast cancer (TNBC) with limited efficacy, suggesting that this axis promotes tumor progression through mechanisms other than immune suppression. Here, we over-expressed WT-PD-L1 in human TNBC cells (express endogenous PD-L1) and in luminal-A breast cancer cells (no endogenous PD-L1 expression) and demonstrated that cell-autonomous PD-L1 activities lead to increased tumor cell growth, invasion and release of pro-metastatic factors (CXCL8, sICAM-1, GM-CSF). These activities were promoted by PD-1 and were inhibited by mutating S283 in PD-L1. Invasion of WT-PD-L1-cells required signaling by chemokine receptors CXCR1/2, CCR2 and CCR5 through autocrine circuits involving CXCL8, CCL2 and CCL5. Studies with T cell-deficient mice demonstrated that cell-autonomous WT-PD-L1 activities in TNBC cells increased tumor growth and metastasis compared to knock-out (KO)-PD-L1-cells, whereas S283A-PD-L1-expressing cells had minimal ability to form tumors and did not metastasize. Overall, our findings reveal autonomous and PD-1-induced tumor-promoting activities of PD-L1 that depend on S283 and on chemokine circuits. These results suggest that TNBC patients whose tumors express PD-L1 could benefit from therapies that prevent immune suppression by targeting PD-1/CTLA-4, alongside with antibodies to PD-L1, which would allow maximal impact by mainly targeting the cancer cells.

19.
Immunohorizons ; 6(4): 253-272, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440514

RESUMO

Syntenic genomic loci on human chromosome 8 and mouse chromosome 15 (mChr15) code for LY6/Ly6 (lymphocyte Ag 6) family proteins. The 23 murine Ly6 family genes include eight genes that are flanked by the murine Ly6e and Ly6l genes and form an Ly6 subgroup referred to in this article as the Ly6a subfamily gene cluster. Ly6a, also known as Stem Cell Ag-1 and T cell-activating protein, is a member of the Ly6a subfamily gene cluster. No LY6 genes have been annotated within the syntenic LY6E to LY6L human locus. We report in this article on LY6S, a solitary human LY6 gene that is syntenic with the murine Ly6a subfamily gene cluster, and with which it shares a common ancestry. LY6S codes for the IFN-inducible GPI-linked LY6S-iso1 protein that contains only 9 of the 10 consensus LY6 cysteine residues and is most highly expressed in a nonclassical spleen cell population. Its expression leads to distinct shifts in patterns of gene expression, particularly of genes coding for inflammatory and immune response proteins, and LY6S-iso1-expressing cells show increased resistance to viral infection. Our findings reveal the presence of a previously unannotated human IFN-stimulated gene, LY6S, which has a 1:8 ortholog relationship with the genes of the Ly6a subfamily gene cluster, is most highly expressed in spleen cells of a nonclassical cell lineage, and whose expression induces viral resistance and is associated with an inflammatory phenotype and with the activation of genes that regulate immune responses.


Assuntos
Baço , Viroses , Animais , Antígenos Ly/genética , Humanos , Inflamação/genética , Linfócitos , Proteínas de Membrana/genética , Camundongos , Família Multigênica , Viroses/genética
20.
BMC Cancer ; 11: 130, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21486440

RESUMO

BACKGROUND: The inflammatory chemokines CCL2 (MCP-1) & CCL5 (RANTES) and the inflammatory cytokines TNFα & IL-1ß were shown to contribute to breast cancer development and metastasis. In this study, we wished to determine whether there are associations between these factors along stages of breast cancer progression, and to identify the possible implications of these factors to disease course. METHODS: The expression of CCL2, CCL5, TNFα and IL-1ß was determined by immunohistochemistry in patients diagnosed with: (1) Benign breast disorders (=healthy individuals); (2) Ductal Carcinoma In Situ (DCIS); (3) Invasive Ducal Carcinoma without relapse (IDC-no-relapse); (4) IDC-with-relapse. Based on the results obtained, breast tumor cells were stimulated by the inflammatory cytokines, and epithelial-to-mesenchymal transition (EMT) was determined by flow cytometry, confocal analyses and adhesion, migration and invasion experiments. RESULTS: CCL2, CCL5, TNFα and IL-1ß were expressed at very low incidence in normal breast epithelial cells, but their incidence was significantly elevated in tumor cells of the three groups of cancer patients. Significant associations were found between CCL2 & CCL5 and TNFα & IL-1ß in the tumor cells in DCIS and IDC-no-relapse patients. In the IDC-with-relapse group, the expression of CCL2 & CCL5 was accompanied by further elevated incidence of TNFα & IL-1ß expression. These results suggest progression-related roles for TNFα and IL-1ß in breast cancer, as indeed indicated by the following: (1) Tumors of the IDC-with-relapse group had significantly higher persistence of TNFα and IL-1ß compared to tumors of DCIS or IDC-no-relapse; (2) Continuous stimulation of the tumor cells by TNFα (and to some extent IL-1ß) has led to EMT in the tumor cells; (3) Combined analyses with relevant clinical parameters suggested that IL-1ß acts jointly with other pro-malignancy factors to promote disease relapse. CONCLUSIONS: Our findings suggest that the coordinated expression of CCL2 & CCL5 and TNFα & IL-1ß may be important for disease course, and that TNFα & IL-1ß may promote disease relapse. Further in vitro and in vivo studies are needed for determination of the joint powers of the four factors in breast cancer, as well as analyses of their combined targeting in breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Carcinoma Intraductal não Infiltrante/metabolismo , Mediadores da Inflamação/metabolismo , Adulto , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Quimiocina CCL5/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Mediadores da Inflamação/farmacologia , Interleucina-1beta/farmacologia , Microscopia Confocal , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa