Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Clin Exp Pharmacol Physiol ; 50(9): 728-737, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37331719

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of dopaminergic neurons in the substantia nigra, for which no disease-modifying treatments are available yet. Thus, developing new neuroprotective drugs with the potential to delay or stop the natural course of the disease is necessary. The aim of the present study was to evaluate the neuroprotective effects of a newly synthesized 3-aminohydantoin derivative named 3-amino-5-benzylimidazolidine-2,4-dione (PHAH). The possible neuroprotective and neurorescue effects of the synthesized compound were tested: (i) in N27 dopaminergic and BV-2 microglial cell lines treated with 6-hydroxydopamine (6-OHDA) and (ii) in the 6-OHDA rat model of PD. PHAH administration reduced proinflammatory markers, including nitric oxide synthase and interleukin-1ß, in BV-2 cells activated by lipopolysaccharide. Although PHAH did not restore cell death induced by 6-OHDA, it was not cytotoxic for dopaminergic cells since cell viability, under the effect of the two concentrations, remained comparable to that of the control cells. Most interestingly, PHAH restored 6-OHDA-induced dopaminergic neurodegeneration in the substantia nigra and striatum and ameliorated 6-OHDA-induced oxidative stress in the rat brain. In summary, we have proven that in PD models, PHAH has neuroprotective effects in vivo and anti-inflammatory effects in vitro; however, these effects remain to be confirmed by carrying out certain specific behavioural tests as well as by exploring other neuroinflammatory markers. The present work also suggests that PHAH is a promising scaffold that can serve as the basis for the design and synthesis of other derivatives that can be potent antiparkinsonian agents.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Ratos , Animais , Doença de Parkinson/tratamento farmacológico , Oxidopamina/toxicidade , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Dopamina/metabolismo , Neurônios Dopaminérgicos , Modelos Animais de Doenças
2.
Ecotoxicol Environ Saf ; 259: 115067, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244200

RESUMO

Cadmium (Cd), by producing oxidative stress and acting as an endocrine disruptor, is known to cause severe testicular injury, documented by histological and biomolecular alterations, such as decreased serum testosterone (T) level and impairment of spermatogenesis. This is the first report on the potential counteractive/preventive action of D-Aspartate (D-Asp), a well-known stimulator of T biosynthesis and spermatogenesis progression by affecting hypothalamic-pituitary-gonadal axis, in alleviating Cd effects in the rat testis. Our results confirmed that Cd affects testicular activity, as documented by the reduction of serum T concentration and of the protein levels of steroidogenesis (StAR, 3ß-HSD, and 17ß-HSD) and spermatogenesis (PCNA, p-H3, and SYCP3) markers. Moreover, higher protein levels of cytochrome C and caspase 3, together with the number of cells positive to TUNEL assay, indicated the intensification of the apoptotic process. D-Asp administered either simultaneously to Cd, or for 15 days before the Cd-treatment, reduced the oxidative stress induced by the metal, alleviating the consequent harmful effects. Interestingly, the preventive action of D-Asp was more effective than its counteractive effect. A possible explanation is that giving D-Asp for 15 days induces its significant uptake in the testes, reaching the concentrations necessary for optimum function. In summary, this report highlights, for the first time, the beneficial role played by D-Asp in both counteracting/preventing the adverse Cd effects in the rat testis, strongly encouraging further investigations to consider the potential value of D-Asp also in improving human testicular health and male fertility.


Assuntos
Cádmio , Testículo , Ratos , Humanos , Animais , Masculino , Cádmio/metabolismo , Ácido D-Aspártico/farmacologia , Ácido D-Aspártico/metabolismo , Espermatogênese , Estresse Oxidativo , Testosterona
3.
Reprod Med Biol ; 22(1): e12542, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795044

RESUMO

Purpose: Here, we report, for the first time, the temporal expression and localization of axonemal radial spoke head homolog A (RSPH6A) protein during the first wave of rat spermatogenesis and in oxidative stress conditions. Methods: For the developmental study, testes were collected from rats at different developmental stages (7, 14, 21, 28, 35, 42, and 60 postnatal days); for in vivo treatment, 24 rats were treated with cadmium and/or melatonin. From each sample, western blot (WB) and immunofluorescence (IF) analyses for RSPH6A were performed. Results: RSPH6A expression starts at 21 PND alongside the appearance of I spermatocytes (SPC) with a significant increase up to 60 PND. Data were confirmed by IF analysis, showing that RPSH6A expression is restricted to I and II SPC, spermatids, and mature sperm. In vivo experiments showed that the expression and localization of RSPH6A in the testis and epididymal spermatozoa of adult rats treated with cadmium were impaired. Interestingly, melatonin (an antioxidant), given together with Cd, can counteract its damaging effects. Conclusions: All combined data confirm that RSPH6A contributes to the onset of fertility by acting on sperm motility, raising the possibility of using RSPH6A as a marker for normal fertility in the general population.

4.
Environ Res ; 214(Pt 4): 114088, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35973457

RESUMO

Humans are exposed to environmental microplastic (MPs) that can be frequent in surrounding environment. The mesenchymal stromal cells are a heterogeneous population, which contain fibroblasts and stromal cells, progenitor cells and stem cells. They are part of the stromal component of most tissue and organs in our organisms. Any injury to their functions may impair tissue renewal and homeostasis. We evaluated the effects of different size MPs that could be present in water bottles on human bone marrow mesenchymal stromal cells (BMMSCs) and adipose mesenchymal stromal cells (AMSCs). MPs of polyethylene terephthalate (MPs-PET) (<1 µm and <2.6 µm) were tested in this study. PET treatments induced a reduction in proliferating cells (around 30%) associated either with the onset of senescence or increase in apoptosis. The AMSCs and BMMSCs exposed to PET showed an alteration of differentiation potential. AMSCs remained in an early stage of adipocyte differentiation as shown by high levels of mRNA for Peroxisome Proliferator Activated Receptor Gamma (PPARG) (7.51 vs 1.00) and reduction in Lipoprotein Lipase (LPL) mRNA levels (0.5 vs 1.0). A loss of differentiation capacity was also observed for the osteocyte phenotype in BMMSCs. In particular, we observed a reduction in Bone Gamma-Carboxy glutamate Protein (BGLAP) (0.4 for PET1 and 0.6 for PET2.6 vs 0.1 CTRL) and reduction in Osteopontin (SPP1) (0.3 for PET 1 and 0.64 for PET 2.6 vs 0.1 CTRL). This pioneering mesenchymal cell response study demonstrated that environmental microplastic could be bioavailable for cell uptake and may further lead to irreversible diseases.


Assuntos
Células-Tronco Mesenquimais , Plásticos , Diferenciação Celular , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo , Microplásticos/toxicidade , Plásticos/metabolismo , Plásticos/toxicidade , RNA Mensageiro/metabolismo
5.
Xenobiotica ; 51(9): 1038-1046, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34338604

RESUMO

We evaluated, in vitro, the interactions between cadmium (Cd) and zinc (Zn) during the proliferation and differentiation process using bone MC3T3-E1 cell line.Cells were treated with CdCl2 and/or ZnCl2 for 24 and 48 h and 5 µM CdCl2 was found as low cytotoxic dose and 25 µM ZnCl2 as the best Zn treatment for cell proliferation. Gene expression of some bone markers (Runx2, collagen α1 (Colα1), osteocalcin (Oc), alkaline phosphatase (ALP) and bone sialoprotein (BSP)) was studied at 24, 48 and 72 h.Treatment by CdCl2 depressed Runx2, Colα1, and BSP mRNA levels after 24 h. Oc and ALP gene expression was found to be decreased after 72 h.CdCl2 -exposure decreased ALP activity and Ca deposit in matrix. In concomitant treatment by CdCl2 and ZnCl2, gene expression of osteoblastic markers was found to be up-regulated (p < 0, 05) compared to CdCl2 treated cells, ALP staining and mineralization were increased.Our results show that Zn could prevent Cd-induced toxicity on MC3T3-E1 cells, probably through the restoration of Runx2, col α1, BSP, ALP and Oc and gene expression inhibited by Cd.


Assuntos
Cádmio , Osteoblastos , Fosfatase Alcalina/genética , Antígenos de Diferenciação , Cádmio/toxicidade , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Expressão Gênica , Zinco
6.
Ecotoxicol Environ Saf ; 226: 112878, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34634736

RESUMO

Herein, we further document the protective action of melatonin (MLT) in mitigating cadmium (Cd) effects on adult rat testis. Cd treatment provoked testicular injury, that was documented by histological and biomolecular alterations, i.e., decrease of serum and testicular testosterone concentration and modified sperm parameters. Mainly, both the cytoarchitecture of the blood-testis barrier (BTB) and germ cell morphology were perturbed, as highlighted by impairment in structural (OCN, VANGL, Cx43) and regulative (Src and FAK) protein levels and/or activation. The study focused on the involvement of the autophagy pathway, that was enhanced especially in the Sertoli cells, probably in response to the disorganization of the BTB. Results obtained with the MLT co-treatment demonstrated that its administration decreased the level of oxidative damage caused by Cd, with reversal of all the observed changes. Moreover, the beneficial effects of MLT alone were evidenced by an increase of sperm quality, in term of motility and DNA integrity. The combined results, obtained in rat, strongly encourage to consider a role for MLT in improving also human testicular health, not only in men exposed to Cd, but also in those having fertility disorders, to ameliorate sperm quality and, consequently, reproductive success.


Assuntos
Barreira Hematotesticular , Melatonina , Animais , Cádmio/toxicidade , Masculino , Melatonina/farmacologia , Ratos , Espermatozoides , Testículo
7.
Mol Reprod Dev ; 87(5): 565-573, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32329151

RESUMO

During the differentiation of the male gamete, there is a massive remodeling in the shape and architecture of all the cells of the seminiferous epithelium. The cytoskeleton, as well as many associated proteins with it, plays a pivotal role in this process. The testis is particularly susceptible to environmental pollutant, which can lead to injury and impairment of normal spermatozoa production. Cadmium (Cd) is one of the major chemical environmental toxicants in economically developed countries. Food and cigarettes are the main sources of exposure to this element. Here, the protective role of zinc (Zn) to prevent the testicular toxicity in male adult rats after prenatal and during lactation exposure to Cd has been assessed. Altered testicular histology at the interstitial and germinal levels was found, whereas Zn supply completely corrected Cd toxicity. Moreover, the effects of these metals on the testicular expression and localization of the protease prolyl endopeptidase (PREP) were evaluated. Interestingly, the results showed an increase of PREP messenger RNA and protein. Data were corroborated by immunofluorescence. This study raises the possibility of using PREP as a new fertility marker.


Assuntos
Cádmio/toxicidade , Prolil Oligopeptidases/genética , Testículo/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Animais Lactentes , Citoproteção/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Lactação/efeitos dos fármacos , Lactação/genética , Lactação/metabolismo , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Prolil Oligopeptidases/metabolismo , Ratos , Espermatogênese/efeitos dos fármacos , Espermatogênese/genética , Testículo/embriologia , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Zinco/farmacologia
8.
Int J Mol Sci ; 21(4)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059372

RESUMO

This current study was conducted to investigate whether bone tissue impairment induced by early life exposure to cadmium (Cd) during postnatal development could result from disruption to zinc (Zn) metabolism. For this reason, the offspring from mothers receiving either tap water, Cd, Zn or Cd + Zn during gestation and lactation periods were euthanized at PND21 and PND70. At the end of the lactation period (PND21), our results showed that exposure to Cd increased Cd accumulation and Zn depletion in the femur. Furthermore, calcium (Ca) level was reduced. At the molecular level, Cd induced an increase of MT-1 expression and caused an upregulation of ZIP2 accompanied with a down-regulation of ZnT5. Runx2, ALP, colα-1 and Oc mRNA levels were also decreased. In plasma, IGF-1 and osteocalcin concentrations were decreased. Further, Cd altered femoral growth by generating changes in the growth plate. Consequently, the toxic effect of Cd persisted at adult age (PND70) by decreasing bone volume (%BV/TV), bone mineral density (BMD) and Ca content and by increasing trabecular separation (Tb.Sp) in the distal femur. Interestingly, Zn supply provided total or partial corrections of several toxic effects of Cd. These data suggest that the increases of Zn bioavailability as well as the reduction of Cd accumulation in the femur following the changes in ZIP2 and ZnT5 expression are part of the mechanism involved in Zn protection against Cd toxicity on bone tissue.


Assuntos
Desenvolvimento Ósseo/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Cádmio/toxicidade , Zinco/metabolismo , Animais , Densidade Óssea/efeitos dos fármacos , Osso e Ossos/patologia , Feminino , Fêmur/efeitos dos fármacos , Fator de Crescimento Insulin-Like I , Lactação/efeitos dos fármacos , Masculino , Osteocalcina/sangue , Gravidez/efeitos dos fármacos , Ratos , Ratos Wistar
9.
Fish Physiol Biochem ; 46(2): 747-757, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31853706

RESUMO

This study was carried out to investigate the effects of exposure to estrogen antagonist nafoxidine hydrochloride (NH) and/or melatonin (Mlt) on certain bone metabolism parameters in killifish Aphanius fasciatus, a species suggested to be a suitable model for studying spinal deformities such as scoliosis. Immature females of A. fasciatus receiving 10 µg/L NH and/or 100 µg/L of Mlt were used and were sacrificed 30 days after the treatment. The spinal column, brain, and liver were collected and analyzed by various histological, biochemical, chemical, and molecular investigations. NH exposure increased frequency of histological alterations and caused signs of spinal column demineralization such as significant decrease in the percentage of nonorganic components content and calcium concentration. These changes were accompanied by decreased alkaline phosphatase activity (AP), hepatic insulin growth factor-1 (IGF-1) content, and, interestingly, cerebral Mlt concentration. Concomitant treatment with Mlt and NH enhanced expression of the gene encoding the Mlt receptor "mtnr1aa"and significantly restored the normal skeletal histology and the normal metabolism bone parameters. Our data suggest that disturbance of estrogen pathway in A. fasciatus induces cerebral Mlt depletion and, then, causes skeletal tissue alterations and bone demineralization and that exogenous Mlt supplementation has a protective effect. Thus, estrogen receptor antagonists and Mlt become important compounds to consider for the accurate prediction and assessment of bone physiology and spinal deformities in fish.


Assuntos
Osso e Ossos/fisiologia , Ciprinodontiformes/fisiologia , Suplementos Nutricionais , Melatonina , Animais , Fígado
10.
Fish Physiol Biochem ; 46(6): 2265-2280, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32978696

RESUMO

The present study aimed to investigate the effect of dietary of melatonin (MLT) and folic acid (FA) administrations on growth performance, antioxidant status, and liver histological structure of juvenile gilthead sea bream, Sparus aurata L. under standard rearing conditions. Four diets were considered: a basal diet considered a control and three diets supplemented with 40 mg/kg of melatonin (MLT), 2 mg/kg of folic acid (FA), and with the mixture of melatonin and folic acid (MLT + FA). Each diet was randomly allocated to triplicate groups of fish (mean initial weight was 2.99 ± 0.55 g) for 41 days. The obtained results clearly indicated that the melatonin-supplemented diet decreased significantly the growth performance parameters (final body weight, weight gain rate, and specific growth rate) and IGF-1 level of the gilthead sea bream, while the folic acid-supplemented diet has no significant effect on these parameters. The mixture supplementation of melatonin and folic acid has no significant effect on the growth parameters due to the possible interaction between melatonin and folic acid effects. Furthermore, fish fed with all experimental diets showed significantly higher superoxide dismutase activity (SOD) and protein sulfhydryl level (PSH) and lower lipid peroxidation level (TBARS) and catalase activity (CAT) which confirm their powerful antioxidant role. The acetylcholinesterase activity (ACHE) decreased in fish fed with all experimental diets. The underlying mechanisms of driving melatonin and folic acid to reduce acetylcholinesterase activity require further studies. The histological structure of liver of control S. aurata fish shows severe hepatic lipid accumulation in large vacuoles that diminished after dietary individual or mixture folic acid and melatonin supplementations over 41 days. This work proved that 2 mg/kg of dietary folic acid has a positive effect on the growth performance, oxidative stress defense, and hepatic lipid accumulation reduction in the gilthead sea bream fish. Under our experimental conditions, melatonin failed to improve the growth indexes WGR, SGR, and IGF-I. This study recommends the diet supplementation with a dose lower than 2 mg/kg of food due to the observed effects on tissue ACHE activity.


Assuntos
Suplementos Nutricionais , Ácido Fólico/farmacologia , Melatonina/farmacologia , Dourada/crescimento & desenvolvimento , Dourada/metabolismo , Acetilcolinesterase/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Catalase/metabolismo , Proteínas de Peixes/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
11.
Toxicol Mech Methods ; 30(4): 237-245, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31809235

RESUMO

Among heavy metals, cadmium (Cd) is one of the most toxic for health due to it accumulation in several tissues including bone. Since melatonin (MLT) favors new bone formation through several pathways including Wnt/ß-catenin, here we assessed whether MLT has a protective role against Cd induced toxicity in the rat bone tissue. Adult male Wistar rats receiving 50 mg CdCl2/L and/or 3 mg/L MLT were used and were sacrificed 30 days after the treatment. Femurs and plasma were collected and analyzed by various biochemicals, molecular and histological investigation. The results showed that Cd exposure induced bone disorder characterized by histopathological alterations, a decreased alkaline phosphatase activity and plasmatic concentration of osteocalcin. Moreover, also the expression levels of some osteogenic-related genes (Runx2, Ocn and Alp) were down-regulated after Cd treatment. Since mechanistically Cd toxicity reduced the Kinase activity of GSK3ß and protein levels of Wnt3a and ß-catenin, we observed that MLT administration significantly ameliorated the toxic effects induced by the metal. Our findings provide clues about a potential protective effect of MLT against Cd-induced bone metabolism destruction and that the protection was partially mediated via the Wnt/ß-catenin signaling pathway.


Assuntos
Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Fêmur/efeitos dos fármacos , Melatonina/farmacologia , Substâncias Protetoras/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fêmur/metabolismo , Fêmur/patologia , Masculino , Osteocalcina/genética , Osteocalcina/metabolismo , Ratos , Ratos Wistar , Transcriptoma/efeitos dos fármacos
12.
J Cell Physiol ; 234(9): 15872-15884, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30714133

RESUMO

The present study examined the involvement of zinc (Zn)-transporters (ZnT3) in cadmium (Cd)-induced alterations of Zn homeostasis in rat hippocampal neurons. We treated primary rat hippocampal neurons for 24 or 48 hr with various concentrations of CdCl2 (0, 0.5, 5, 10, 25, or 50 µM) and/or ZnCl 2 (0, 10, 30, 50, 70, or 90 µM), using normal neuronal medium as control. By The CellTiter 96 ® Aqueous One Solution Cell Proliferation Assay (MTS; Promega, Madison, WI) assay and immunohistochemistry for cell death markers, 10 and 25 µM of Cd were found to be noncytotoxic doses, and both 30 and 90 µM of Zn as the best concentrations for cell proliferation. We tested these selected doses. Cd, at concentrations of 10 or 25 µM (and depending on the absence or presence of Zn), decreased the percentage of surviving cells. Cd-induced neuronal death was either apoptotic or necrotic depending on dose, as indicated by 7-AAD and/or annexin V labeling. At the molecular level, Cd exposure induced a decrease in hippocampal brain-derived neurotrophic factor-tropomyosin receptor kinase B (BDNF-TrkB) and Erk1/2 signaling, a significant downregulation of the expression of learning- and memory-related receptors and synaptic proteins such as the NMDAR NR2A subunit and PSD-95, as well as the expression of the synapse-specific vesicular Zn transporter ZnT3 in cultured hippocampal neurons. Zn supplementation, especially at the 30 µM concentration, led to partial or total protection against Cd neurotoxicity both with respect to the number of apoptotic cells and the expression of several genes. Interestingly, after knockdown of ZnT3 by small interfering RNA transfection, we did not find the restoration of the expression of this gene following Zn supplementation at 30 µM concentration. These data indicate the involvement of ZnT3 in the mechanism of Cd-induced hippocampal neurotoxicity.

13.
J Pineal Res ; 67(3): e12597, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31340072

RESUMO

Melatonin (MLT) plays a role in preserving bone health, a function that may depend on homeostatic effects on both mature osteoblasts and mesenchymal stem cells (MSCs) of the bone tissue. In this study, these functions of MLT have been investigated in rat bone (femur) and in human adipose MSC (hMSC) during chronic exposure to low-grade cadmium (Cd) toxicity, a serious public health concern. The in vivo findings demonstrate that MLT protects against Cd-induced bone metabolism disruption and accumulation of bone marrow adipocytes, a cue of impaired osteogenic potential of skeletal MSC niches. This latter symptom was recapitulated in hMSCs in which Cd toxicity stimulated adipogenic differentiation. MLT was found to rescue, at least in part, the osteogenic differentiation properties of these cells. This study reports on a new bone cytoprotection function of MLT pertinent to Cd toxicity and its interfering effect on skeletal MSC differentiation properties that is worth investigating for its possible impact on human bone pathophysiology.


Assuntos
Cádmio/toxicidade , Melatonina/uso terapêutico , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Animais , Densidade Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Ratos , Ratos Wistar , Aumento de Peso/efeitos dos fármacos
14.
J Cell Physiol ; 233(1): 630-640, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28332181

RESUMO

In order to verify the effects of exposure to Cd and Zn on testicular DAAM1 gene and protein expression and also to ascertain their involvement in the protective role of Zn in prevent the testicular toxicity Cd-induced in male offspring rats at adult age after gestational and lactational exposure, male offspring rats, from mothers receiving either tap water, Cd, Zn, or Cd + Zn during gestation and lactation periods, were scarified on postnatal days (PND) 70. The reproductive organ (testis, epididymis, and vesicle seminal) were collected, weighed, and analyzed. The results showed that exposure to Cd in utero and through lactation decreased the relative reproductive organ weight, altered the testicular histology at the interstitial and tubular levels, and causing a significant reduction in the daily sperm production (DSP) per testis and per gram of testis, and other then altering the epididymal sperm quality. Furthermore, both mRNA and protein expression of rat testicular DAAM1 were also inhibited in Cd-treated group. Zn supply has completely corrected the most of these toxic effects. Our results imply that Zn could prevent Cd-induced testicular toxicity and sperm quality alteration in adult male rat after gestational and lactational exposure, probably via the restoration of the testicular DAAM1 expression inhibited by Cd.


Assuntos
Cloreto de Cádmio/toxicidade , Cloretos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Substâncias Protetoras/farmacologia , Testículo/efeitos dos fármacos , Compostos de Zinco/farmacologia , Fatores Etários , Animais , Sobrevivência Celular/efeitos dos fármacos , Citoproteção , Proteínas do Citoesqueleto , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lactação , Masculino , Exposição Materna , Tamanho do Órgão/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Contagem de Espermatozoides , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Espermatozoides/patologia , Testículo/metabolismo , Testículo/patologia , Fatores de Tempo
15.
J Cell Physiol ; 233(11): 8677-8690, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29761825

RESUMO

Oxidative stress is a major factor involved in the pathogenesis of renal ischemia/reperfusion (I/R). Exogenous zinc (Zn) was suggested as a potent antioxidant; however, the mechanism by which it strengthens the organ resistance against the effects of reactive oxygen species (ROS) is not yet investigated. The present study aims to determine whether acute zinc chloride (ZnCl2 ) administration could attenuate endoplasmic reticulum (ER) stress, autophagy, and inflammation after renal I/R. Rats were subjected to either sham operation (Sham group, n = 6), or 1 hr of bilateral ischemia followed by 2 hr of reperfusion (I/R groups, n = 6), or they received ZnCl2 orally 24 hr and 30 min before ischemia (ZnCl2 group, n = 6). Rats were subjected to 1 hr of bilateral renal ischemia followed by 2 hr of reperfusion (I/R group, n = 6). Our results showed that ZnCl2 enhances renal function and reduces cytolysis (p < 0,05). In addition, it increased significantly the activities of antioxidant enzymes (SOD, CAT, and GPX) and the level of GSH in comparison to I/R (p < 0,05). Interestingly, ZnCl2 treatment resulted in significant decreased ER stress, as reflected by GRP78, ATF-6,p-eIF-2α, XPB-1, and CHOP downregulaion. Rats undergoing ZnCl2 treatment demonstrated a low expression of autophagy parameters (Beclin-1 and LAMP-2), which was correlated with low induction of apoptosis (caspase-9, caspase-3, and p-JNK), and reduction of inflammation (IL-1ß, IL-6, and MCP-1) (p < 0,05). In conclusion, we demonstrated the potential effect of Zn supplementation to modulate ER pathway and autophagic process after I/R.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Cloretos/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Compostos de Zinco/administração & dosagem , Injúria Renal Aguda/genética , Injúria Renal Aguda/fisiopatologia , Animais , Antioxidantes/administração & dosagem , Apoptose/efeitos dos fármacos , Autofagia/genética , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/genética , Humanos , Rim/metabolismo , Rim/patologia , Masculino , Ratos , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
16.
Drug Chem Toxicol ; 41(4): 424-433, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29722553

RESUMO

The present study was conducted to assess the possible effect of cadmium (Cd) throughout gestation and lactation on the volume of the subregion of the hippocampus as well as the potential protective role of zinc (Zn) against Cd neurotoxicity. For this purpose, female rats received either tap water, Cd, Zn or Cd + Zn in their drinking water during gestation and lactation. At postnatal day 35 (PND35), the male pups were sacrificed, and their brains were taken for histologic, chemical, and biochemical analysis. Hippocampal volume was measured in histologic brain slices using Cavalieri's principle. Zn depletion was observed in the brains of pups issued from mothers exposed to Cd. Biochemical analysis further revealed that Cd exposure significantly increases the superoxide dismutase (SOD) activity, as well as the metallothionein (MT) level. During histologic investigation, our results showed that gestational and lactational exposure to Cd significantly altered and decreased the volume of CA1, CA3 pyramidal cell layer and the dentate gyrus. However, there were no marked differences shown in CA2 subfield. Compared to Cd group, co-treatment with Cd and Zn provided correction of the changes induced by the Cd exposure. These results highlight the protective role of Zn against Cd-induced alteration in the hippocampus which is a crucial structure implicated in learning and memory processes.


Assuntos
Cádmio/toxicidade , Feto/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/prevenção & controle , Zinco/farmacologia , Animais , Cádmio/análise , Feminino , Hipocampo/patologia , Lactação , Masculino , Exposição Materna , Gravidez , Ratos , Ratos Wistar , Zinco/análise
17.
J Appl Toxicol ; 36(6): 863-71, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26857037

RESUMO

The present study was conducted to assess the effects of Cd exposure on estrogen signaling in the zebrafish brain, as well as the potential protective role of Zn against Cd-induced toxicity. For this purpose, the effects on transcriptional activation of the estrogen receptors (ERs), aromatase B (Aro-B) protein expression and molecular expression of related genes were examined in vivo using wild-type and transgenic zebrafish embryos. For in vitro studies, an ER-negative glial cell line (U251MG) transfected with different zebrafish ER subtypes (ERα, ERß1 and ERß2) was also used. Embryos were exposed either to estradiol (E2 ), Cd, E2 +Cd or E2 +Cd+Zn for 72 h and cells were exposed to the same treatments for 30 h. Our results show that E2 treatment promoted the transcriptional activation of ERs and increased Aro-B expression, at both the protein and mRNA levels. Although exposure to Cd, does not affect the studied parameters when administered alone, it significantly abolished the E2 -stimulated transcriptional response of the reporter gene for the three ER subtypes in U251-MG cells, and clearly inhibited the E2 induction of Aro-B in radial glial cells of zebrafish embryos. These inhibitory effects were accompanied by a significant downregulation of the expression of esr1, esr2a, esr2b and cyp19a1b genes compared to the E2 -treated group used as a positive control. Zn administration during simultaneous exposure to E2 and Cd strongly stimulated zebrafish ERs transactivation and increased Aro-B protein expression, whereas mRNA levels of the three ERs as well as the cyp19a1b remained unchanged in comparison with Cd-treated embryos. In conclusion, our results clearly demonstrate that Cd acts as a potent anti-estrogen in vivo and in vitro, and that Cd-induced E2 antagonism can be reversed, at the protein level, by Zn supplement. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Encéfalo/efeitos dos fármacos , Intoxicação por Cádmio/prevenção & controle , Cádmio/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Zinco/uso terapêutico , Animais , Animais Geneticamente Modificados , Aromatase/genética , Aromatase/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Cádmio/química , Intoxicação por Cádmio/embriologia , Intoxicação por Cádmio/metabolismo , Intoxicação por Cádmio/veterinária , Linhagem Celular , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Antagonistas de Estrogênios/química , Antagonistas de Estrogênios/toxicidade , Estrogênios/agonistas , Estrogênios/química , Estrogênios/metabolismo , Doenças dos Peixes/embriologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/patologia , Doenças dos Peixes/prevenção & controle , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genes Reporter/efeitos dos fármacos , Humanos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/química , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Poluentes Químicos da Água/antagonistas & inibidores , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/agonistas , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Zigoto/efeitos dos fármacos , Zigoto/metabolismo , Zigoto/patologia
18.
Environ Monit Assess ; 187(6): 318, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25937497

RESUMO

Physiological investigations are often used to assess the toxic effects of aquatic pollutants in fish and to establish criteria for water quality. In the present study, we tend to investigate the growth performance, skeletal abnormalities, and histological alterations noticed in three natural populations of the mosquitofish Gambusia affinis captured from three estuary sites. The analysis of growth performance demonstrated that the studied populations showed different growth patterns. Additionally, various types of skeletal deformities were observed, and the most commonly affected were the hemal and pre-hemal regions of fishes. For the histological study, gills, liver, and kidney tissues were selected for field monitoring. The major alterations observed in gill tissues were partial fusion of adjacent secondary lamellae, hypertrophy of epithelial cells, and disorganization of pillar cells in many areas of the secondary lamellae. In the liver, significant desquamation of tissues, congestion of the central hepatic vein, and hypertrophy of hepatocytes were noticed. For the kidney tissue, the frequencies of histological alterations showed a significant difference between the studied sites. Moreover, the histological aberrations consisted mainly in glomerule alteration and vacuolation of tubular epithelial cells. Taken together, these data support the hypothesis that the physiological alterations noticed in the present investigation are indicators of sensitivity towards environmental disturbance.


Assuntos
Ciprinodontiformes/fisiologia , Monitoramento Ambiental/métodos , Animais , Meio Ambiente , Brânquias/patologia , Fígado/patologia , Poluentes Químicos da Água/toxicidade
19.
Cells ; 13(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38534366

RESUMO

Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs) mediate the communication between the Endoplasmic Reticulum (ER) and the mitochondria, playing a fundamental role in steroidogenesis. This study aimed to understand how D-aspartate (D-Asp), a well-known stimulator of testosterone biosynthesis and spermatogenesis, affects the mechanism of steroidogenesis in rat testes. Our results suggested that D-Asp exerts this function through MAMs, affecting lipid trafficking, calcium signaling, ER stress, and mitochondrial dynamics. After 15 days of oral administration of D-Asp to rats, there was an increase in both antioxidant enzymes (SOD and Catalase) and in the protein expression levels of ATAD3A, FACL4, and SOAT1, which are markers of lipid transfer, as well as VDAC and GRP75, which are markers of calcium signaling. Additionally, there was a decrease in protein expression levels of GRP78, a marker of aging that counteracts ER stress. The effects of D-Asp on mitochondrial dynamics strongly suggested its active role as well. It induced the expression levels of proteins involved in fusion (MFN1, MFN2, and OPA1) and in biogenesis (NRF1 and TFAM), as well as in mitochondrial mass (TOMM20), and decreased the expression level of DRP1, a crucial mitochondrial fission marker. These findings suggested D-Asp involvement in the functional improvement of mitochondria during steroidogenesis. Immunofluorescent signals of ATAD3A, MFN1/2, TFAM, and TOMM20 confirmed their localization in Leydig cells showing an intensity upgrade in D-Asp-treated rat testes. Taken together, our results demonstrate the involvement of D-Asp in the steroidogenesis of rat testes, acting at multiple stages of both MAMs and mitochondrial dynamics, opening new opportunities for future investigation in other steroidogenic tissues.


Assuntos
Dinâmica Mitocondrial , Membranas Mitocondriais , Masculino , Ratos , Animais , Membranas Mitocondriais/metabolismo , Ácido D-Aspártico/farmacologia , Testículo/metabolismo , Regulação para Cima , Ácido Aspártico , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Lipídeos/farmacologia
20.
J Exp Zool A Ecol Integr Physiol ; 341(4): 470-482, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38433718

RESUMO

The protective action of melatonin (MLT) against the harmful effects of cadmium (Cd) on testicular activity in rats has been documented previously; however, the involved molecular mechanisms have yet to be elucidated. Herein, we investigate the involvement of the mammalian target of rapamycin (mTOR) on the ability of MLT to counteract the damage induced by Cd on the rat testicular activity. Our study confirmed that Cd has harmful effects on the testes of rats and the protective action exerted by MLT. We reported, for the first time, that the addition of rapamycin (Rapa), a specific mTOR inhibitor, to animals co-treated with Cd and MLT completely abolished the beneficial effects exerted by MLT, indicating that the mTOR pathway partially modulates its helpful effects on Cd testicular toxicity. Interestingly, Rapa-alone treatment, provoking mTOR inhibition, produced altered morphological parameters, increased autophagy of germ and somatic cells, and reduced serum testosterone concentration. In addition, mTOR inhibition also reduced protein levels of markers of steroidogenesis (3ß-Hydroxysteroid dehydrogenase) and blood-testis barrier integrity (occludin and connexin 43). Finally, Rapa altered sperm parameters as well as the ability of mature spermatozoa to perform a proper acrosome reaction. Although further investigation is needed to better clarify the molecular pathway involved in MLT action, we confirm that MLT alleviating Cd effects can be used as a supplement to enhance testicular function and improve male gamete quality.


Assuntos
Melatonina , Ratos , Masculino , Animais , Melatonina/farmacologia , Cádmio/toxicidade , Sirolimo/farmacologia , Sêmen/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa