Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(23): 11223-11228, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31110006

RESUMO

Grain starch and protein are synthesized during endosperm development, prompting the question of what regulatory mechanism underlies the synchronization of the accumulation of secondary and primary gene products. We found that two endosperm-specific NAC transcription factors, ZmNAC128 and ZmNAC130, have such a regulatory function. Knockdown of expression of ZmNAC128 and ZmNAC130 with RNA interference (RNAi) caused a shrunken kernel phenotype with significant reduction of starch and protein. We could show that ZmNAC128 and ZmNAC130 regulate the transcription of Bt2 and then reduce its protein level, a rate-limiting step in starch synthesis of maize endosperm. Lack of ZmNAC128 and ZmNAC130 also reduced accumulation of zeins and nonzeins by 18% and 24% compared with nontransgenic siblings, respectively. Although ZmNAC128 and ZmNAC130 affected expression of zein genes in general, they specifically activated transcription of the 16-kDa γ-zein gene. The two transcription factors did not dimerize with each other but exemplified redundancy, whereas individual discovery of their function was not amenable to conventional genetics but illustrated the power of RNAi. Given that both the Bt2 and the 16-kDa γ-zein genes were activated by ZmNAC128 or ZmNAC130, we could identify a core binding site ACGCAA contained within their target promoter regions by combining Dual-Luciferase Reporter and Electrophoretic Mobility Shift assays. Consistent with these properties, transcriptomic profiling uncovered that lack of ZmNAC128 and ZmNAC130 had a pleiotropic effect on the utilization of carbohydrates and amino acids.


Assuntos
Proteínas de Plantas/genética , Sementes/genética , Amido/genética , Fatores de Transcrição/genética , Zea mays/genética , Sítios de Ligação/fisiologia , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Endosperma/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Fenótipo , Regiões Promotoras Genéticas/genética , Interferência de RNA/fisiologia , Ativação Transcricional/genética , Zeína/genética
2.
Proc Natl Acad Sci U S A ; 116(38): 18893-18899, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31484765

RESUMO

Aquatic plants have to adapt to the environments distinct from where land plants grow. A critical aspect of adaptation is the dynamics of sequence repeats, not resolved in older sequencing platforms due to incomplete and fragmented genome assemblies from short reads. Therefore, we used PacBio long-read sequencing of the Spirodela polyrhiza genome, reaching a 44-fold increase of contiguity with an N50 (a median of contig lengths) of 831 kb and filling 95.4% of gaps left from the previous version. Reconstruction of repeat regions indicates that sequentially nested long terminal repeat (LTR) retrotranspositions occur early in monocot evolution, featured with both prokaryote-like gene-rich regions and eukaryotic repeat islands. Protein-coding genes are reduced to 18,708 gene models supported by 492,435 high-quality full-length PacBio complementary DNA (cDNA) sequences. Different from land plants, the primitive architecture of Spirodela's adventitious roots and lack of lateral roots and root hairs are consistent with dispensable functions of nutrient absorption. Disease-resistant genes encoding antimicrobial peptides and dirigent proteins are expanded by tandem duplications. Remarkably, disease-resistant genes are not only amplified, but also highly expressed, consistent with low levels of 24-nucleotide (nt) small interfering RNA (siRNA) that silence the immune system of land plants, thereby protecting Spirodela against a wide spectrum of pathogens and pests. The long-read sequence information not only sheds light on plant evolution and adaptation to the environment, but also facilitates applications in bioenergy and phytoremediation.


Assuntos
Adaptação Fisiológica/genética , Araceae/genética , Genoma de Planta/genética , Organismos Aquáticos/genética , Organismos Aquáticos/fisiologia , Araceae/anatomia & histologia , Araceae/fisiologia , DNA de Plantas/genética , Resistência à Doença/genética , Evolução Molecular , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Análise de Sequência de DNA , Sequências de Repetição em Tandem
3.
Int J Mol Sci ; 22(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800476

RESUMO

Plants in the family Lemnaceae are aquatic monocots and the smallest, simplest, and fastest growing angiosperms. Their small size, the smallest family member is 0.5 mm and the largest is 2.0 cm, as well as their diverse morphologies make these plants ideal for laboratory studies. Their rapid growth rate is partially due to the family's neotenous lifestyle, where instead of maturing and producing flowers, the plants remain in a juvenile state and continuously bud asexually. Maturation and flowering in the wild are rare in most family members. To promote further research on these unique plants, we have optimized laboratory flowering protocols for 3 of the 5 genera: Spirodela; Lemna; and Wolffia in the Lemnaceae. Duckweeds were widely used in the past for research on flowering, hormone and amino acid biosynthesis, the photosynthetic apparatus, and phytoremediation due to their aqueous lifestyle and ease of aseptic culture. There is a recent renaissance in interest in growing these plants as non-lignified biomass sources for fuel production, and as a resource-efficient complete protein source. The genome sequences of several Lemnaceae family members have become available, providing a foundation for genetic improvement of these plants as crops. The protocols for maximizing flowering described herein are based on screens testing daylength, a variety of media, supplementation with salicylic acid or ethylenediamine-N,N'-bis(2-hydroxyphenylacetic acid) (EDDHA), as well as various culture vessels for effects on flowering of verified Lemnaceae strains available from the Rutgers Duckweed Stock Cooperative.


Assuntos
Araceae , Etilenodiaminas/farmacologia , Flores , Filogenia , Sementes , Araceae/genética , Araceae/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento
4.
Plant J ; 97(4): 673-682, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30417446

RESUMO

Bulked segregant analysis (BSA) is used to identify existing or induced variants that are linked to phenotypes. Although it is widely used in Arabidopsis and rice, it remains challenging for crops with large genomes, such as maize. Moreover, analysis of huge data sets can present a bottleneck linking phenotypes to their molecular basis, especially for geneticists without programming experience. Here, we identified two genes of maize defective kernel mutants with newly developed analysis pipelines that require no programing skills and should be applicable to any large genome. In the 1970s, Neuffer and Sheridan generated a chemically induced defective kernel (dek) mutant collection with the potential to uncover critical genes for seed development. To locate such mutations, the dek phenotypes were introgressed into two inbred lines to take advantage of maize haplotype variations and their sequenced genomes. We generated two pipelines that take fastq files derived from next-generation (nextGen) paired-end DNA and cDNA sequencing as input, call on several well established and freely available genomic analysis tools to call SNPs and INDELs, and generate lists of the most likely causal mutations together with variant index plots to locate the mutation to a specific sequence position on a chromosome. The pipelines were validated with a known strawberry mutation before cloning the dek mutants, thereby enabling phenotypic analysis of large genomes by next-generation sequencing.


Assuntos
Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fenótipo , Análise de Sequência de DNA/métodos , Zea mays/genética
5.
Plant J ; 98(6): 1120-1133, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30801806

RESUMO

The Lemnaceae family comprises aquatic plants of angiosperms gaining attention due to their utility in wastewater treatment, and rapid production of biomass that can be used as feed, fuel, or food. Moreover, it can serve as a model species for neotenous growth and environmental adaptation. The latter properties are subject to post-transcriptional regulation of gene expression, meriting investigation of how miRNAs in Spirodela polyrhiza, the most basal and most thoroughly sequenced member of the family, are expressed under different growth conditions. To further scientific understanding of its capacity to adapt to environmental cues, we measured miRNA expression and processing of their target sequences under different temperatures, and in the presence of abscisic acid, copper, kinetin, nitrate, and sucrose. Using two small RNA sequencing experiments and one degradome sequencing experiment, we provide evidence for 108 miRNAs. Sequencing cleaved mRNAs validated 42 conserved miRNAs with 83 targets and 24 novel miRNAs regulating 66 targets and created a list of 575 predicted and verified targets. These analyses revealed condition-induced changes in miRNA expression and cleavage activity, and resulted in the addition of stringently reviewed miRNAs to miRBase. This combination of small RNA and degradome sequencing provided not only high confidence predictions of conserved and novel miRNAs and targets, but also a view of the post-transcriptional regulation of adaptations. A unique aspect is the role of miR156 and miR172 expression and activity in its clonal propagation and neoteny. Additionally, low levels of 24 nt sRNAs were observed, despite the lack of recent retrotransposition.


Assuntos
Adaptação Fisiológica/genética , Araceae/fisiologia , MicroRNAs/genética , Reguladores de Crescimento de Plantas/metabolismo , Organismos Aquáticos , Araceae/genética , Regulação da Expressão Gênica de Plantas , RNA de Plantas/genética , Estresse Fisiológico
6.
Plant Biotechnol J ; 18(4): 1056-1065, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31585498

RESUMO

Gluten-free foods cannot substitute for products made from wheat flour. When wheat products are digested, the remaining peptides can trigger an autoimmune disease in 1% of the North American and European population, called coeliac disease. Because wheat proteins are encoded by a large gene family, it has been impossible to use conventional breeding to select wheat varieties that are coeliac-safe. However, one can test the properties of protein variants by expressing single genes in coeliac-safe cereals like maize. One source of protein that can be considered as coeliac-safe and has bread-making properties is teff (Eragrostis tef), a grain consumed in Ethiopia. Here, we show that teff α-globulin3 (Etglo3) forms storage vacuoles in maize that are morphologically similar to those of wheat. Using transmission electron microscopy, immunogold labelling shows that Etglo3 is almost exclusively deposited in the storage vacuole as electron-dense aggregates. Of maize seed storage proteins, 27-kDa γ-zein is co-deposited with Etglo3. Etglo3 polymerizes via intermolecular disulphide bonds in maize, similar to wheat HMW glutenins under non-reducing conditions. Crossing maize Etglo3 transgenic lines with α-, ß- and γ-zein RNA interference (RNAi) lines reveals that Etglo3 accumulation is only dramatically reduced in γ-zein RNAi background. This suggests that Etglo3 and 27-kDa γ-zein together cause storage vacuole formation and behave similar to the interactions of glutenins and gliadins in wheat. Therefore, expression of teff α-globulins in maize presents a major step in the development of a coeliac-safe grain with bread-making properties.


Assuntos
Pão , Eragrostis/química , Farinha , Glutens/química , Zea mays/química , alfa-Globulinas/genética , Plantas Geneticamente Modificadas/química , Proteínas de Armazenamento de Sementes/genética , Triticum , Zea mays/genética
7.
Br J Nutr ; 123(12): 1382-1389, 2020 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-32100654

RESUMO

The only generally accepted treatment of coeliac disease (CD) is a lifelong gluten-free diet. Wheat gluten proteins include gliadins, low and high molecular weight glutenins. However, we have found significant structural variations within these protein families among different cultivars. To determine which structural motifs might be less toxic than others, we assessed five variants of α-gliadin immunodominant CD-toxic peptides synthesised as 16mers in CD T cell stimulation assays with gluten-sensitive T cell lines generated from duodenal biopsies from CD-affected individuals. The peptides harboured the overlapping T cell epitopes DQ 2.5-glia-α-2 and naturally occurring variants that differed in certain amino acids (AA). The results revealed that introduction of two selected AA substitutions in α-gliadin peptides reduced immunogenicity. A peptide with three AA substitutions involving two glutamic acids (E) and one glutamine residue (G) revealed the peptide was negative in 5:5 samples. We used CD small-intestinal organ culture to assess CD toxicity that revealed two peptides with selected substitution of both glutamic acid (E) and proline (P) residues abrogated evidence of CD toxicity.


Assuntos
Doença Celíaca/imunologia , Gliadina/imunologia , Glutens/imunologia , Peptídeos/imunologia , Triticum/química , Aminoácidos , Duodeno/imunologia , Ácido Glutâmico/imunologia , Glutamina/imunologia , Humanos , Fenômenos Imunogenéticos , Prolina/imunologia , Linfócitos T/imunologia
8.
Proc Natl Acad Sci U S A ; 114(43): 11386-11391, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073061

RESUMO

Sulfur assimilation may limit the pool of methionine and cysteine available for incorporation into zeins, the major seed storage proteins in maize. This hypothesis was tested by producing transgenic maize with deregulated sulfate reduction capacity achieved through leaf-specific expression of the Escherichia coli enzyme 3'-phosphoadenosine-5'-phosphosulfate reductase (EcPAPR) that resulted in higher methionine accumulation in seeds. The transgenic kernels have higher expression of the methionine-rich 10-kDa δ-zein and total protein sulfur without reduction of other zeins. This overall increase in the expression of the S-rich zeins describes a facet of regulation of these proteins under enhanced sulfur assimilation. Transgenic line PE5 accumulates 57.6% more kernel methionine than the high-methionine inbred line B101. In feeding trials with chicks, PE5 maize promotes significant weight gain compared with nontransgenic kernels. Therefore, increased source strength can improve the nutritional value of maize without apparent yield loss and may significantly reduce the cost of feed supplementation.


Assuntos
Sementes/genética , Enxofre/metabolismo , Zea mays/genética , Zeína/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Galinhas/fisiologia , Cisteína/química , Cisteína/metabolismo , Dieta/veterinária , Regulação da Expressão Gênica de Plantas , Metionina/química , Metionina/metabolismo , Plantas Geneticamente Modificadas , Sementes/fisiologia , Enxofre/química , Zea mays/fisiologia , Zeína/química
9.
Proc Natl Acad Sci U S A ; 114(20): 5165-5170, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28461460

RESUMO

We have used the newly engineered transposable element Dsg to tag a gene that gives rise to a defective kernel (dek) phenotype. Dsg requires the autonomous element Ac for transposition. Upon excision, it leaves a short DNA footprint that can create in-frame and frameshift insertions in coding sequences. Therefore, we could create alleles of the tagged gene that confirmed causation of the dek phenotype by the Dsg insertion. The mutation, designated dek38-Dsg, is embryonic lethal, has a defective basal endosperm transfer (BETL) layer, and results in a smaller seed with highly underdeveloped endosperm. The maize dek38 gene encodes a TTI2 (Tel2-interacting protein 2) molecular cochaperone. In yeast and mammals, TTI2 associates with two other cochaperones, TEL2 (Telomere maintenance 2) and TTI1 (Tel2-interacting protein 1), to form the triple T complex that regulates DNA damage response. Therefore, we cloned the maize Tel2 and Tti1 homologs and showed that TEL2 can interact with both TTI1 and TTI2 in yeast two-hybrid assays. The three proteins regulate the cellular levels of phosphatidylinositol 3-kinase-related kinases (PIKKs) and localize to the cytoplasm and the nucleus, consistent with known subcellular locations of PIKKs. dek38-Dsg displays reduced pollen transmission, indicating TTI2's importance in male reproductive cell development.


Assuntos
Elementos de DNA Transponíveis , Chaperonas Moleculares , Mutação , Fenótipo , Proteínas de Plantas , Zea mays , Endosperma/genética , Endosperma/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/metabolismo , Zea mays/genética , Zea mays/metabolismo
10.
Plant J ; 94(6): 943-955, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29570878

RESUMO

The domestication of maize has spanned a period of over 9000 years, during which time its wild relative teosinte underwent natural and artificial selection. We hypothesize that environmental conditions could have played a major role in this process. One factor of environmental variation is soil composition, which includes sulfur availability. Sulfur is reduced during photosynthesis and is used to synthesize cysteine and methionine, which drive the accumulation of δ10 (Zm00001d045937), δ18 (Zm00001d037436), ß15 (Zm00001d035760), γ16 (Zm00001d005793), γ27 (Zm00001d020592), and γ50 (Zm00001d020591) zeins, representing the zein2 fraction (z2) of storage proteins in maize seeds. In this study, polymorphisms and haplotypes were detected based on six z2 genes in 60 maize and teosintes lines. Haplotypes were unevenly distributed, and abundant genetic diversity was found in teosintes. Polymorphism was highest in z2δ18, whereas for z2ß15 single nucleotide polymorphism (SNP) density and insertion/deletion (indel) abundance were the lowest, indicating differential roles in seed evolution. Indels showed a clustered distribution, and most of these derived from teosintes. The indels not only led to tandem repeat polymorphisms, but also to frameshift mutations, which could also be used as null variants. In addition, neutral evolutionary tests, phylogenetic analyses, and population structures indicated that z2δ10 and z2γ50 had undergone natural selection. Indeed, a natural selection imprint could also be found with z2γ27 and z2γ16, whereas z2δ18 and z2ß15 tended to be under neutral evolution. These results suggested that genetic diversity and evolution of a subset of sulfur-rich zeins could be under environmental adaptation during maize domestication.


Assuntos
Domesticação , Enxofre/metabolismo , Zea mays/genética , Evolução Biológica , Sequência Conservada/genética , Genes de Plantas/genética , Variação Genética , Haplótipos/genética , Zea mays/metabolismo
11.
Plant Biotechnol J ; 17(2): 472-487, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30051585

RESUMO

Sweet sorghum accumulates large amounts of soluble sugar in its stem. However, a system-based understanding of this carbohydrate allocation process is lacking. Here, we compared the dynamic transcriptome and metabolome between the conversion line R9188 and its two parents, sweet sorghum RIO and grain sorghum BTx406 that have contrasting sugar-accumulating phenotypes. We identified two features of sucrose metabolism, stable concentrations of sugar phosphates in RIO and opposite trend of trehalose-6-phosphate (T6P) between RIO vs R9188/BTx406. Integration of transcriptome and metabolome revealed R9188 is partially active in starch metabolism together with medium sucrose level, whereas sweet sorghum had the highest sucrose concentration and remained highly active in sucrose, starch, and cell wall metabolism post-anthesis. Similar expression pattern of genes involved in sucrose degradation decreased the pool of sugar phosphates for precursors of starch and cell wall synthesis in R9188 and BTx406. Differential T6P signal between RIO vs R9188/BTx406 is associated with introgression of T6P regulators from BTx406 into R9188, including C-group bZIP and trehalose 6-phosphate phosphatase (TPP). The inverted T6P signalling in R9188 appears to down-regulate sucrose and starch metabolism partly through transcriptome reprogramming, whereas introgressed metabolic genes could be related to reduced cell wall metabolism. Our results show that coordinated primary metabolic pathways lead to high sucrose demand and accumulation in sweet sorghum, providing us with targets for genetic improvements of carbohydrate allocation in bioenergy crops.


Assuntos
Carbono/metabolismo , Metaboloma , Sorghum/genética , Açúcares/metabolismo , Transcriptoma , Parede Celular/metabolismo , Genótipo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sorghum/metabolismo , Especificidade da Espécie , Amido/metabolismo , Sacarose/metabolismo , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Trealose/metabolismo
12.
Proc Natl Acad Sci U S A ; 113(39): 10842-7, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27621432

RESUMO

The maize endosperm-specific transcription factors opaque2 (O2) and prolamine-box binding factor (PBF) regulate storage protein zein genes. We show that they also control starch synthesis. The starch content in the PbfRNAi and o2 mutants was reduced by ∼5% and 11%, respectively, compared with normal genotypes. In the double-mutant PbfRNAi;o2, starch was decreased by 25%. Transcriptome analysis reveals that >1,000 genes were affected in each of the two mutants and in the double mutant; these genes were mainly enriched in sugar and protein metabolism. Pyruvate orthophosphate dikinase 1 and 2 (PPDKs) and starch synthase III (SSIII) are critical components in the starch biosynthetic enzyme complex. The expression of PPDK1, PPDK2, and SSIII and their protein levels are further reduced in the double mutants as compared with the single mutants. When the promoters of these genes were analyzed, we found a prolamine box and an O2 box that can be additively transactivated by PBF and O2. Starch synthase IIa (SSIIa, encoding another starch synthase for amylopectin) and starch branching enzyme 1 (SBEI, encoding one of the two main starch branching enzymes) are not directly regulated by PBF and O2, but their protein levels are significantly decreased in the o2 mutant and are further decreased in the double mutant, indicating that o2 and PbfRNAi may affect the levels of some other transcription factor(s) or mRNA regulatory factor(s) that in turn would affect the transcript and protein levels of SSIIa and SBEI These findings show that three important traits-nutritional quality, calories, and yield-are linked through the same transcription factors.


Assuntos
Endosperma/metabolismo , Proteínas de Plantas/biossíntese , Biossíntese de Proteínas , Amido/biossíntese , Fatores de Transcrição/metabolismo , Zea mays/metabolismo , Sequência de Bases , Carboidratos/análise , Regulação para Baixo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Luciferases/metabolismo , Modelos Biológicos , Mutação/genética , Tamanho do Órgão , Via de Pentose Fosfato , Fenótipo , Regiões Promotoras Genéticas , Interferência de RNA , Sementes/anatomia & histologia , Ativação Transcricional/genética , Zea mays/genética
13.
Proc Natl Acad Sci U S A ; 113(29): 7949-56, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27354512

RESUMO

Haplotype variation not only involves SNPs but also insertions and deletions, in particular gene copy number variations. However, comparisons of individual genomes have been difficult because traditional sequencing methods give too short reads to unambiguously reconstruct chromosomal regions containing repetitive DNA sequences. An example of such a case is the protein gene family in maize that acts as a sink for reduced nitrogen in the seed. Previously, 41-48 gene copies of the alpha zein gene family that spread over six loci spanning between 30- and 500-kb chromosomal regions have been described in two Iowa Stiff Stalk (SS) inbreds. Analyses of those regions were possible because of overlapping BAC clones, generated by an expensive and labor-intensive approach. Here we used single-molecule real-time (Pacific Biosciences) shotgun sequencing to assemble the six chromosomal regions from the Non-Stiff Stalk maize inbred W22 from a single DNA sequence dataset. To validate the reconstructed regions, we developed an optical map (BioNano genome map; BioNano Genomics) of W22 and found agreement between the two datasets. Using the sequences of full-length cDNAs from W22, we found that the error rate of PacBio sequencing seemed to be less than 0.1% after autocorrection and assembly. Expressed genes, some with premature stop codons, are interspersed with nonexpressed genes, giving rise to genotype-specific expression differences. Alignment of these regions with those from the previous analyzed regions of SS lines exhibits in part dramatic differences between these two heterotic groups.


Assuntos
Dosagem de Genes , Genes de Plantas , Zea mays/genética , DNA de Plantas/genética , Genoma de Planta , Haplótipos , Análise de Sequência de DNA/métodos
14.
Planta ; 248(4): 785-793, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29948129

RESUMO

MAIN CONCLUSIONS: A high-throughput method combining liquid handling system and 96-well microplate pipetting format was developed for total sugar determination. With this new method, we characterized diverse sugar accumulation in sorghum varieties. Sweet sorghum accumulates large amounts of sucrose in its stalk and, therefore, has emerged as one important bioenergy crop. The commonly used sugar measurement, Brix, limits the characterization of internode variation of the sugar concentrations due to its low throughput. Here we developed a low-cost, high-throughput method to determine profiles of total sugars in sorghum internodes with a liquid handling system-based sample preparation and a phenol-sulfuric acid assay in 96-well microplate format. The present method generates results highly correlated with commonly used Brix measurements (r = 0.922). The inter-assay coefficient of variation ranged from 4.8 to 7.6%. The present method can reliably estimate mixed sugars composed of 80% sucrose. We characterized the profiles of 35 sorghum accessions and identified 21 accessions with significantly different sugar concentrations between internodes either due to dried-up internodes or concentration differences. As a high-throughput alternative to Brix measurements, the new method makes it possible to phenotype total sugars from large numbers of internode samples and, therefore, will be useful for genetic and breeding purposes.


Assuntos
Sucos de Frutas e Vegetais/análise , Ensaios de Triagem em Larga Escala/métodos , Sorghum/química , Sacarose/análise , Açúcares/análise , Biocombustíveis , Ensaios de Triagem em Larga Escala/instrumentação , Fenol , Fenótipo , Melhoramento Vegetal , Caules de Planta/química , Caules de Planta/genética , Caules de Planta/metabolismo , Sorghum/genética , Sorghum/metabolismo , Ácidos Sulfúricos
15.
Plant Biotechnol J ; 16(5): 1057-1067, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29044890

RESUMO

Maize kernels do not contain enough of the essential sulphur-amino acid methionine (Met) to serve as a complete diet for animals, even though maize has the genetic capacity to store Met in kernels. Prior studies indicated that the availability of the sulphur (S)-amino acids may limit their incorporation into seed storage proteins. Serine acetyltransferase (SAT) is a key control point for S-assimilation leading to Cys and Met biosynthesis, and SAT overexpression is known to enhance S-assimilation without negative impact on plant growth. Therefore, we overexpressed Arabidopsis thaliana AtSAT1 in maize under control of the leaf bundle sheath cell-specific rbcS1 promoter to determine the impact on seed storage protein expression. The transgenic events exhibited up to 12-fold higher SAT activity without negative impact on growth. S-assimilation was increased in the leaves of SAT overexpressing plants, followed by higher levels of storage protein mRNA and storage proteins, particularly the 10-kDa δ-zein, during endosperm development. This zein is known to impact the level of Met stored in kernels. The elite event with the highest expression of AtSAT1 showed 1.40-fold increase in kernel Met. When fed to chickens, transgenic AtSAT1 kernels significantly increased growth rate compared with the parent maize line. The result demonstrates the efficacy of increasing maize nutritional value by SAT overexpression without apparent yield loss. Maternal overexpression of SAT in vegetative tissues was necessary for high-Met zein accumulation. Moreover, SAT overcomes the shortage of S-amino acids that limits the expression and accumulation of high-Met zeins during kernel development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Galinhas/crescimento & desenvolvimento , Metionina/metabolismo , Serina O-Acetiltransferase/genética , Esterol O-Aciltransferase/metabolismo , Zea mays/genética , Zeína/metabolismo , Animais , Proteínas de Arabidopsis/genética , Expressão Gênica , Valor Nutritivo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Serina O-Acetiltransferase/metabolismo , Esterol O-Aciltransferase/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Zeína/química
16.
Planta ; 244(4): 893-9, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27306450

RESUMO

MAIN CONCLUSION: A large proportion of genes in plant genomes are organized as gene families. Whereas most gene families in the aquative plant Spirodela are reduced in their copy number, the PPR gene family is expanded, which match the RNA editing sites in organelles, providing us with new insights in the evolution of flowering plants. Pentatricopeptide-repeat proteins (PPRs) are nuclear-encoded proteins that are targeted to mitochondria and plastids to stabilize and edit mRNA transcribed from organellar genomes. They have been described for many terrestrial plant species from a diverse spectrum of sequenced genomes. To further increase our understanding of the evolution of this gene family across angiosperms, we analyzed the PPR genes in the aquatic species Spirodela polyrhiza in the order of the Alismatales (monocotyledonous plants). Because we had generated next generation sequencing data from transcripts and had sequenced the genome of Spirodela polyrhiza, we were able to identify its PPR genes and determine the level of their expression. In total, we could identify 556 PPR proteins, of which 238 members belong to the P (P motif) subfamily that is mainly involved in RNA stabilization and 318 ones to the PLS (P, Longer P, shorter P motif) subfamily responsible for RNA editing. Compared to other angiosperms, this is a large increase in the copy number of the PLS-PPRs subfamily and the expansion correlates with the increase of the number of RNA editing sites of organellar transcripts. Expression of PPR was generally stable even during growing and dormant stages, indicating that their function was critical throughout development. However, PPRs, especially those of the PLS subfamily, were expressed at relatively low levels, suggesting a delicate fine-tuning of its trans-acting function in the post-transcriptional regulation of gene expression. Thus, understanding PPR evolution and expression will help decipher the PPR code for their binding sites, which could genetically engineer RNA-binding proteins toward desired sequence.


Assuntos
Organismos Aquáticos/genética , Araceae/genética , Genoma de Planta/genética , Proteínas de Plantas/genética , Sequências Repetitivas de Aminoácidos/genética , Organismos Aquáticos/metabolismo , Araceae/metabolismo , Núcleo Celular/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Magnoliopsida/classificação , Magnoliopsida/genética , Magnoliopsida/metabolismo , Família Multigênica , Proteínas de Plantas/metabolismo
17.
New Phytol ; 209(1): 354-63, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26305472

RESUMO

Duckweeds are aquatic monocotyledonous plants of potential economic interest with fast vegetative propagation, comprising 37 species with variable genome sizes (0.158-1.88 Gbp). The genomic sequence of Spirodela polyrhiza, the smallest and the most ancient duckweed genome, needs to be aligned to its chromosomes as a reference and prerequisite to study the genome and karyotype evolution of other duckweed species. We selected physically mapped bacterial artificial chromosomes (BACs) containing Spirodela DNA inserts with little or no repetitive elements as probes for multicolor fluorescence in situ hybridization (mcFISH), using an optimized BAC pooling strategy, to validate its physical map and correlate it with its chromosome complement. By consecutive mcFISH analyses, we assigned the originally assembled 32 pseudomolecules (supercontigs) of the genomic sequences to the 20 chromosomes of S. polyrhiza. A Spirodela cytogenetic map containing 96 BAC markers with an average distance of 0.89 Mbp was constructed. Using a cocktail of 41 BACs in three colors, all chromosome pairs could be individualized simultaneously. Seven ancestral blocks emerged from duplicated chromosome segments of 19 Spirodela chromosomes. The chromosomally integrated genome of S. polyrhiza and the established prerequisites for comparative chromosome painting enable future studies on the chromosome homoeology and karyotype evolution of duckweed species.


Assuntos
Araceae/genética , Cromossomos de Plantas/genética , Genoma de Planta/genética , Cromossomos Artificiais Bacterianos , Evolução Molecular , Genômica , Hibridização in Situ Fluorescente , Cariótipo , Cariotipagem , Mapeamento Físico do Cromossomo
18.
Genomics ; 106(4): 214-20, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26021446

RESUMO

Gene expression is regulated at many different levels during the life cycle of all plant species. Recent investigations have taken advantage of next-generation sequencing to study the relevance of DNA methylation and sRNAs in controlling tissue-specific gene expression in maize at the genome-wide level. Here, we profiled H3K27ac in maize, which has one of the largest sequenced plant genomes due to the amplification of retrotransposons. Because transcribed genes represent only a small proportion of its genome, gene-specific epigenetic modifications are concentrated in a relatively small percentage of the genome. Indeed, H3K27ac marks are mostly in gene-rich, in contrast to gene-poor regions. A large proportion of those marks are located in transcribed regions of genes, including 111 out of 458 known genetic loci. Moreover, increased transcription correlates with the presence of H3K27ac modification in gene bodies. Using maize as an example, we suggest that H3K27ac marks actively transcribed genes in plants.


Assuntos
Genes de Plantas , Histonas/metabolismo , Transcrição Gênica , Zea mays/genética , Acetilação , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/genética , Zea mays/metabolismo
19.
Genomics ; 106(4): 221-31, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26206079

RESUMO

Chloroplasts are essential organelles, in which genes have widely been used in the phylogenetic analysis of green plants. Here, we took advantage of the breadth of plastid genomes (cpDNAs) sequenced species to investigate their dynamic changes. Our study showed that gene rearrangements occurred more frequently in the cpDNAs of green algae than in land plants. Phylogenetic trees were generated using 55 conserved protein-coding genes including 33 genes for photosynthesis, 16 ribosomal protein genes and 6 other genes, which supported the monophyletic evolution of vascular plants, land plants, seed plants, and angiosperms. Moreover, we could show that seed plants were more closely related to bryophytes rather than pteridophytes. Furthermore, the substitution rate for cpDNA genes was calculated to be 3.3×10(-10), which was almost 10 times lower than genes of nuclear genomes, probably because of the plastid homologous recombination machinery.


Assuntos
Chlorella/genética , Cloroplastos/genética , Genoma de Cloroplastos , Chlorella/classificação , DNA de Algas/análise , Evolução Molecular , Rearranjo Gênico , Fotossíntese , Filogenia
20.
Plant J ; 79(3): 361-74, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24888695

RESUMO

Brachypodium distachyon is small annual grass that has been adopted as a model for the grasses. Its small genome, high-quality reference genome, large germplasm collection, and selfing nature make it an excellent subject for studies of natural variation. We sequenced six divergent lines to identify a comprehensive set of polymorphisms and analyze their distribution and concordance with gene expression. Multiple methods and controls were utilized to identify polymorphisms and validate their quality. mRNA-Seq experiments under control and simulated drought-stress conditions, identified 300 genes with a genotype-dependent treatment response. We showed that large-scale sequence variants had extremely high concordance with altered expression of hundreds of genes, including many with genotype-dependent treatment responses. We generated a deep mRNA-Seq dataset for the most divergent line and created a de novo transcriptome assembly. This led to the discovery of >2400 previously unannotated transcripts and hundreds of genes not present in the reference genome. We built a public database for visualization and investigation of sequence variants among these widely used inbred lines.


Assuntos
Brachypodium/genética , Variação Genética , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala , Secas , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa