Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 103(3): 2829-2846, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31954574

RESUMO

The mammalian target of rapamycin (mTOR) is a major regulator of protein synthesis via its main downstream effectors, ribosomal protein S6 kinase (S6K1) and eukaryotic initiation factor 4E binding protein (4EBP1). The ubiquitin-proteasome system (UPS) is the main proteolytic pathway in muscle, and the muscle-specific ligases tripartite motif containing 63 (TRIM63; also called muscle-specific ring-finger protein 1, MuRF-1) and F-box only protein 32 (FBXO32; also called atrogin-1) are important components of the UPS. We investigated 20S proteasome activity and mRNA expression of key components of mTOR signaling and UPS in skeletal muscle of dairy cows during late gestation and early lactation and tested the effects of dietary supplementation (from d 1 in milk) with conjugated linoleic acids (sCLA; 100 g/d; n = 11) compared with control fat-supplemented cows (CTR; n = 10). Blood and muscle tissue (semitendinosus) samples were collected on d -21, 1, 21, and 70 relative to parturition. Dry matter intake increased with time of lactation in both groups. It was lower in sCLA than in CTR on d 21, which resulted in a reduced calculated metabolizable protein balance. Most serum and muscle concentrations of AA followed time-related changes but were unaffected by CLA supplementation. In both groups, serum and muscle 3-methylhistidine (3-MH) concentrations and the ratio of 3-MH:creatinine increased from d -21 to d 1, followed by a decline on d 21. The mRNA abundance of MTOR on d 21 and 70 was greater in sCLA than in CTR. The abundance of 4EBP1 mRNA did not differ between groups but was upregulated in both on d 1. The mRNA abundance of S6K1 on d 70 was greater in CTR than in sCLA, but remained unchanged over time in both groups. The mRNA abundance of FBXO32 (encoding atrogin-1) on d 21 was greater in sCLA than in CTR. The mRNA abundance of TRIM63 (also known as MuRF1) showed a similar pattern as FBXO32 in both groups: an increase from d -21 to d 1, followed by a decline. The mRNA for the α (BCKDHA) and ß (BCKDHB) polypeptide of branched-chain α-keto acid dehydrogenase was elevated in sCLA and CTR cows on d 21, respectively, suggesting a role of CLA in determining the metabolic fate of branched-chain AA. For the mTOR protein, no group differences were observed. The abundance of S6K1 protein was greater across all time points in sCLA versus CTR. The antepartum 20S proteasome activity in muscle was elevated in both groups compared with postpartum, probably reflecting the start of protein mobilization before parturition. Plasma insulin concentrations decreased in both groups postpartum but to a greater extent in CTR than in sCLA, resulting in greater insulin concentrations in sCLA than in CTR. Thus, the greater abundance of MTOR mRNA and S6K1 protein in sCLA compared with CTR might be mediated by the greater plasma insulin postpartum. The upregulation of MTOR mRNA in sCLA cows on d 21, despite greater FBXO32 mRNA abundance, may reflect a simultaneous activation of both anabolic and catabolic signaling pathways, likely resulting in greater protein turnover.


Assuntos
Bovinos/fisiologia , Suplementos Nutricionais/análise , Ácidos Linoleicos Conjugados/administração & dosagem , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Animais , Bovinos/genética , Feminino , Insulina/sangue , Lactação/efeitos dos fármacos , Metilistidinas/análise , Leite/metabolismo , Músculo Esquelético/metabolismo , Parto , Período Pós-Parto , Gravidez , RNA Mensageiro/genética , Ubiquitina/metabolismo
2.
J Dairy Sci ; 99(11): 9313-9318, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27592431

RESUMO

Archaeol (1,2-di-O-phytanyl-sn-glycerol) is a cell membrane lipid component of methanogens that has the potential to be used as a biomarker for methane production in ruminants. However, its analysis via gas chromatography-mass spectrometry (GC-MS) is challenging because of its molecular size and structure. In this study, 2 different sample preparation methods were tested, Soxhlet and sonication-aided extraction, and the methods were compared for extraction efficiency using the internal standard (IS; 1,2-di-o-hexadecyl-rac-glycerol). The extraction efficiency of the Soxhlet method for fecal archaeol was twice that of sonication. With the use of a high-temperature GC column, the retention times of IS and archaeol were 17.6 and 19.4 min, respectively, with a total run time of only 25 min. The molecule ions m/z 611.4 (IS) and m/z 725.8 (archaeol), or alternatively the fragment ion of the glycerol moiety m/z 130.0, were used for identification and quantification via GC-MS in positive chemical ionization mode. The intra-assay coefficients of variation for fecal archaeol measurements were 1.3% (m/z 725.8) and 2.1% (m/z 130.0) (n=3), respectively. Fecal archaeol quantifications did not differ between the use of the molecule or glycerol moiety ions (paired t-test, n=156). Archaeol concentrations tended to be 3.3% greater in samples stored at -20°C before drying compared with samples that were immediately dried after collection (paired t-test, n=5). The detection limit of archaeol was 0.5 µg/g of fecal dry matter (DM); no archaeol could be detected in feed samples. In different fractions of rumen fluid, archaeol levels ranged from 1.9 to 24.0 µg/g of DM. In 10 cows fed the same grass and corn silage/hay-based ration, diurnal variations of fecal archaeol levels (5 time points over 2 d) were cow dependent and ranged from 26.2 to 77.2 µg/g of DM (mean 48.4 µg/g of DM). Thus, within-animal variation in cows on the same diet was between 4 and 27%. We suggest that this finding is related to the amount and time of the latest feed intake event before the fecal sampling. Feeding pattern can determine the passage rate of digesta through the alimentary tract and thus the duration of contact time of archaea with their substrate.


Assuntos
Metano/biossíntese , Rúmen/metabolismo , Ração Animal , Animais , Bovinos , Dieta/veterinária , Digestão , Fezes/química , Feminino , Lactação , Silagem
3.
J Dairy Sci ; 99(8): 6665-6679, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27179866

RESUMO

Dairy cows undergo significant metabolic and endocrine changes during the transition from pregnancy to lactation, and impaired insulin action influences nutrient partitioning toward the fetus and the mammary gland. Because impaired insulin action during transition is thought to be related to elevated body condition and body fat mobilization, we hypothesized that over-conditioned cows with excessive body fat mobilization around calving may have impaired insulin metabolism compared with cows with low fat mobilization. Nineteen dairy cows were grouped according to their average concentration of total liver fat (LFC) after calving in low [LLFC; LFC <24% total fat/dry matter (DM); n=9] and high (HLFC; LFC >24.4% total fat/DM; n=10) fat-mobilizing cows. Blood samples were taken from wk 7 antepartum (ap) to wk 5 postpartum (pp) to determine plasma concentrations of glucose, insulin, glucagon, and adiponectin. We applied euglycemic-hyperinsulinemic (EGHIC) and hyperglycemic clamps (HGC) in wk 5 ap and wk 3 pp to measure insulin responsiveness in peripheral tissue and pancreatic insulin secretion during the transition period. Before and during the pp EGHIC, [(13)C6] glucose was infused to determine the rate of glucose appearance (GlucRa) and glucose oxidation (GOx). Body condition, back fat thickness, and energy-corrected milk were greater, but energy balance was lower in HLFC than in LLFC. Plasma concentrations of glucose, insulin, glucagon, and adiponectin decreased at calving, and this was followed by an immediate increase of glucagon and adiponectin after calving. Insulin concentrations ap were higher in HLFC than in LLFC cows, but the EGHIC indicated no differences in peripheral insulin responsiveness among cows ap and pp. However, GlucRa and GOx:GlucRa during the pp EGHIC were greater in HLFC than in LLFC cows. During HGC, pancreatic insulin secretion was lower, but the glucose infusion rate was higher pp than ap in both groups. Plasma concentrations of nonesterified fatty acids decreased during HGC and EGHIC, but in both clamps, pp nonesterified fatty acid concentrations did not reach the ap levels. The study demonstrated a minor influence of different degrees of body fat mobilization on insulin metabolism in cows during the transition period. The distinct decrease in the glucose-dependent release of insulin pp is the most striking finding that explains the impaired insulin action after calving, but does not explain differences in body fat mobilization between HLFC and LLFC cows.


Assuntos
Glucose/metabolismo , Insulina/sangue , Parto , Animais , Glicemia/metabolismo , Bovinos , Dieta/veterinária , Metabolismo Energético , Ácidos Graxos não Esterificados/sangue , Feminino , Lactação/metabolismo , Leite/metabolismo , Gravidez
4.
Poult Sci ; 95(3): 595-611, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26740139

RESUMO

L-arginine (Arg) is an essential amino acid in birds that plays a decisive role in avian protein synthesis and immune response. Effects of graded dietary Arg supply on metabolic and clinical response to Escherichia coli lipopolysaccharide (LPS) were studied over 48 hours after a single intramuscular LPS injection in 18-week-old genetically diverse purebred pullets. LPS induced a genotype-specific fever response within 4 hours post injectionem. Whereas brown genotypes showed an initial hypothermia followed by longer-lasting moderate hyperthermia, white genotypes exhibited a biphasic hyperthermia without initial hypothermia. Furthermore, within 2 hours after LPS injection, sickness behavior characterized by lethargy, anorexia, intensified respiration, and ruffled feathers appeared, persisted for 3 to 5 hours and recovered 12 hours post injectionem. The varying grades of Arg did not alter the examined traits named above, whereas insufficient Arg reduced body growth and increased relative weights of liver and pancreas significantly. At 48 hours post injectionem, increased relative weights of liver and spleen were also found in LPS treated pullets, whereas LPS decreased those of pancreas, bursa, thymus, and cecal tonsils. Moreover, LPS lowered the sum of plasma amino acids and decreased plasma concentrations of Arg, citrulline, glutamate, methionine, ornithine, phenylalanine, proline, tryptophan, and tyrosine, and increased those of aspartate, glutamine, lysine, 1- and 3-methyl-histidine. Elevating concentrations of dietary Arg led to increasing plasma concentrations of Arg, citrulline, ornithine, and 3-methyl-histidine subsequently. As quantitative expression of LPS-induced anorexia, proteolysis, and the following changes in plasma amino acids, pullets showed a significant decrease of feed and nitrogen intake and catabolic metabolism characterized by negative nitrogen balance and body weight loss in the first 24 hours post injectionem. Pullets recovered from the challenge within the second 24 hours post injectionem and changed to anabolism with re-increased feed and nitrogen intake, positive nitrogen retention, and weight gain. To conclude, present results confirmed that LPS induced numerous metabolic and physiological changes in pullet's genotypes, whereas dietary Arg affected the examined traits only slightly.


Assuntos
Arginina/metabolismo , Galinhas/genética , Galinhas/metabolismo , Suplementos Nutricionais , Lipopolissacarídeos/metabolismo , Ração Animal/análise , Animais , Galinhas/imunologia , Dieta/veterinária , Suplementos Nutricionais/análise , Escherichia coli/química , Feminino , Especificidade de Órgãos
5.
Am J Physiol Endocrinol Metab ; 308(5): E393-401, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25550282

RESUMO

A close link between intrauterine growth restriction and development of chronic adult diseases such as obesity, diabetes, and hypertension has been established both in humans and animals. Modification of growth velocity during the early postnatal period (i.e., lactation) may also sensitize to the development of metabolic syndrome in adulthood. This suggests that milk composition may have long-lasting programming/deprogramming metabolic effects in the offspring. We therefore assess the effects of maternal perinatal denutrition on breast milk composition in a food-restricted 50% (FR50) rat model. Monosaccharides and fatty acids were characterized by gas chromatography, and proteins were profiled by surface-enhanced laser desorption/ionization-time-of-flight analysis in milk samples from FR50 and control rat dams. Milk analysis of FR50 rats demonstrated that maternal undernutrition decreases lactose concentration and modulates lipid profile at postnatal day 10 by increasing the unsaturated fatty acids/saturated fatty acids and diminishes serotransferrin levels at postnatal day 21. Our data indicate that maternal perinatal undernutrition modifies milk composition both quantitatively and qualitatively. These modifications by maternal nutrition open new perspectives to identify molecules that could be used in artificial milk to protect from the subsequent development of metabolic diseases.


Assuntos
Lactose/metabolismo , Desnutrição/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Doenças Metabólicas/etiologia , Leite/metabolismo , Complicações na Gravidez/metabolismo , Transferrina/metabolismo , Animais , Animais Lactentes , Feminino , Lactação/metabolismo , Masculino , Parto/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Ratos Wistar , Fatores de Risco
6.
J Dairy Sci ; 98(6): 4074-83, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25841964

RESUMO

The evaluation of greenhouse gas mitigation strategies requires the quantitative assessment of individual methane production. Because methane measurement in respiration chambers is highly accurate, but also comprises various disadvantages such as limited capacity and high costs, the establishment of an indicator for estimating methane production of individual ruminants would provide an alternative to direct methane measurement. Methyl-coenzyme M reductase is involved in methanogenesis and the subunit α of methyl-coenzyme M reductase is encoded by the mcrA gene of rumen archaea. We therefore examined the relationship between methane emissions of Holstein dairy cows measured in respiration chambers with 2 different diets (high- and medium-concentrate diet) and the mcrA DNA and mcrA cDNA abundance determined from corresponding rumen fluid samples. Whole-body methane production per kilogram of dry matter intake and mcrA DNA normalized to the abundance of the rrs gene coding for 16S rRNA correlated significantly when using qmcrA primers. Use of qmcrA primers also revealed linear correlation between mcrA DNA copy number and methane yield. Regression analyses based on normalized mcrA cDNA abundances revealed no significant linear correlation with methane production per kilogram of dry matter intake. Furthermore, the correlations between normalized mcrA DNA abundance and the rumen fluid concentration of acetic and isobutyric acid were positive, whereas the correlations with propionic and lactic acid were negative. These data suggest that the mcrA DNA approach based on qmcrA primers could potentially be a molecular proxy for methane yield after further refinement.


Assuntos
Bovinos/fisiologia , Dosagem de Genes , Metano/metabolismo , Oxirredutases/metabolismo , Animais , Dieta/veterinária , Feminino , Oxirredutases/genética , RNA Ribossômico 16S/genética , Rúmen/metabolismo
7.
J Dairy Sci ; 98(8): 5688-98, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26094220

RESUMO

The aim of the present study was to investigate the ruminal degradation of the flavonol quercetin and to determine its potential antimicrobial effects on ruminal fermentation in cows. Ruminal degradation of quercetin (0 or 100µmol/L, respectively) as well as its influence on ruminal gas production (0, 50, or 100µmol of quercetin equivalents/L, respectively, either applied as aglycone or as its glucorhamnoside rutin) using concentrate, grass hay, and straw as substrates were investigated in vitro using the Hohenheim gas test. Additionally, the influence of quercetin on ruminal concentrations of volatile fatty acids and their molar ratio in rumen-fistulated, nonlactating cows (n=5) after intraruminal application of quercetin as aglycone or as rutin (0, 10, or 50mg of quercetin equivalents/kg of BW, respectively) was evaluated. Quercetin was rapidly and extensively degraded, whereby the disappearance of quercetin was accompanied by the simultaneous appearance of 2metabolites 3,4-dihydroxyphenylacetic acid and 4-methylcatechol. In vitro total gas and methane production were not reduced by the addition of quercetin aglycone or rutin, respectively, using concentrate, grass hay, and straw as substrates. As expected, however, effects of the substrates used were detected on total gas and methane production. Highest gas production was found with concentrate, whereas values obtained with grass hay and straw were lower. Relative methane production was highest with grass hay compared with concentrate and straw (27.1 vs. 25.0 and 25.5%). After intraruminal application of the quercetin aglycone or rutin, respectively, neither total concentration nor the molar ratio of volatile fatty acids in the rumen fluid were influenced. Results of the present study show that quercetin underlies rapid ruminal degradation, whereby 3,4-dihydroxyphenylacetic acid and 4-methylcatechol are the main metabolites, whereas the latter one most likely is formed by dehydroxylation from 3,4-dihydroxyphenylacetic acid. Regarding antimicrobial effects of quercetin, results obtained indicate that fermentation processes in the forestomachs are not substantially influenced by quercetin or rutin, respectively. With regard to potential health-promoting effects of quercetin, its application in cows, especially in the form of the better available rutin, might not be accompanied by negative effects on ruminal fermentation.


Assuntos
Bovinos/metabolismo , Fermentação/efeitos dos fármacos , Quercetina/metabolismo , Quercetina/farmacologia , Rúmen/metabolismo , Animais , Dieta/veterinária , Ácidos Graxos Voláteis/análise , Feminino , Metano/biossíntese , Poaceae/metabolismo , Rúmen/química , Rúmen/efeitos dos fármacos , Rutina/farmacologia
8.
J Dairy Sci ; 97(5): 2789-99, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24630659

RESUMO

Until recently, measurements of energy expenditure (EE; herein defined as heat production) in respiration chambers did not account for the extra energy requirements of grazing dairy cows on pasture. As energy is first limiting in most pasture-based milk production systems, its efficient use is important. Therefore, the aim of the present study was to compare EE, which can be affected by differences in body weight (BW), body composition, grazing behavior, physical activity, and milk production level, in 2 Holstein cow strains. Twelve Swiss Holstein-Friesian (HCH; 616 kg of BW) and 12 New Zealand Holstein-Friesian (HNZ; 570 kg of BW) cows in the third stage of lactation were paired according to their stage of lactation and kept in a rotational, full-time grazing system without concentrate supplementation. After adaption, the daily milk yield, grass intake using the alkane double-indicator technique, nutrient digestibility, physical activity, and grazing behavior recorded by an automatic jaw movement recorder were investigated over 7d. Using the (13)C bicarbonate dilution technique in combination with an automatic blood sampling system, EE based on measured carbon dioxide production was determined in 1 cow pair per day between 0800 to 1400 h. The HCH were heavier and had a lower body condition score compared with HNZ, but the difference in BW was smaller compared with former studies. Milk production, grass intake, and nutrient digestibility did not differ between the 2 cow strains, but HCH grazed for a longer time during the 6-h measurement period and performed more grazing mastication compared with the HNZ. No difference was found between the 2 cow strains with regard to EE (291 ± 15.6 kJ) per kilogram of metabolic BW, mainly due to a high between-animal variation in EE. As efficiency and energy use are important in sustainable, pasture-based, organic milk production systems, the determining factors for EE, such as methodology, genetics, physical activity, grazing behavior, and pasture quality, should be investigated and quantified in more detail in future studies.


Assuntos
Bovinos/fisiologia , Metabolismo Energético , Leite/metabolismo , Animais , Composição Corporal , Peso Corporal , Dióxido de Carbono/análise , Indústria de Laticínios , Feminino , Lactação , Nova Zelândia , Agricultura Orgânica , Poaceae , Termogênese
9.
J Dairy Sci ; 97(5): 2876-85, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24612811

RESUMO

Hormones and metabolites act as satiety signals in the brain and play an important role in the control of feed intake (FI). These signals can reach the hypothalamus and brainstem, 2 major centers of FI regulation, via the blood stream or the cerebrospinal fluid (CSF). During the early lactation period of high-yielding dairy cows, the increase of FI is often insufficient. Recently, it has been demonstrated that insulin-like growth factors (IGF) may control FI. Thus, we asked in the present study if IGF-binding proteins (IGFBP) are regulated during the periparturient period and in response to feed restriction and therefore might affect FI as well. In addition, we specifically addressed conditional distribution of IGFBP in plasma and CSF. In one experiment, 10 multiparous German Holstein dairy cows were fed ad libitum and samples of CSF and plasma were obtained before morning feeding on d -20, -10, +1, +10, +20, and +40 relative to calving. In a second experiment, 7 cows in second mid-lactation were sampled for CSF and plasma after ad libitum feeding and again after feeding 50% of the previous ad libitum intake for 4 d. Intact IGFBP-2, IGFBP-3, and IGFBP-4 were detected in plasma by quantitative Western ligand blot analysis. In CSF, we were able to predominantly identify intact IGFBP-2 and a specific IGFBP-2 fragment containing detectable binding affinities for biotinylated IGF-II. Whereas plasma concentrations of IGFBP-2 and IGFBP-4 increased during the periparturient period, IGFBP-3 was unaffected over time. In CSF, concentrations of IGFBP-2, both intact and fragmented, were not affected during the periparturient period. Plasma IGF-I continuously decreased until calving but remained at a lower concentration in early lactation than in late pregnancy. Food restriction did not affect concentrations of IGF components present in plasma or CSF. We could show that the IGFBP profiles in plasma and CSF are clearly distinct and that changes in IGFBP in plasma do not simply correspond in the brain. We thus assume independent control of IGFBP distribution between plasma and CSF. Due to the known anorexic effect of IGF-I, elevated plasma concentrations of IGFBP-2 and IGFBP-4 during the postpartum period in conjunction with reduced plasma IGF-I concentrations may be interpreted as an endocrine response against negative energy balance in early lactation in dairy cows.


Assuntos
Bovinos/fisiologia , Metabolismo Energético/fisiologia , Privação de Alimentos/fisiologia , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/sangue , Lactação/fisiologia , Animais , Sistema Endócrino/metabolismo , Feminino , Regulação da Expressão Gênica , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/líquido cefalorraquidiano , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Parto , Período Pós-Parto , Gravidez , Somatomedinas
10.
J Dairy Sci ; 96(4): 2303-2313, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23403185

RESUMO

Because of their health-promoting properties, flavonoids are used in feed supplements for ruminants, although scientific evidence for their efficacy in vivo is limited. It has been shown recently that bioavailability of quercetin is low after ruminal administration in cows because of degradation by the ruminal microbiota. It is unknown whether quercetin could be absorbed from the small intestine in ruminants if degradation is prevented; therefore, we investigated the bioavailability of quercetin after duodenal administration in 6 German Holstein cows. On 88 ± 3 d in milk, each cow received equivalent doses of quercetin [9, 18, or 27 mg of quercetin equivalents (QE)/kg of body weight] either as quercetin aglycone (QA) or as its glucorhamnoside rutin (RU). In addition, 2 control studies with duodenal administration of NaCl solution (0.9%) were conducted per cow to examine concentrations of flavonoids in plasma during regular feeding. Blood samples were collected at defined time intervals over a period of 24h before and after administration of the test compounds. A washout period of 2d was applied between the runs to avoid possible carryover effects. Concentrations of plasma quercetin aglycone and its metabolites isorhamnetin, tamarixetin, and kaempferol were measured after treatment with glucuronidase/sulfatase by HPLC with fluorescence detection. After administration of RU, levels of plasma quercetin did not increase above baseline, irrespective of dose administered. After duodenal administration of QA, the plasma concentration of QA and its methylated metabolites clearly increased above baseline. The maximal plasma concentrations of total flavonols (about 2h after application) increased in a dose-dependent manner but showed high interindividual variability (range 368.8 to 983.3 nmol/L at 27 mg of QE/kg of body weight) but peak time did not differ. Preadministration baseline values of total flavonols were reached again 3 to 4h after QA administration. The bioavailability of quercetin and its metabolites, as measured by the area under the concentration-time curve, was affected by the quercetin source applied, whereby quercetin from RU was unavailable. Taken together, duodenal administration enhanced bioavailability of QA almost to values previously reported in pigs after oral administration of QA. In contrast to findings in monogastrics or after oral administration in cows, quercetin from RU seems to be unavailable when administered duodenally.


Assuntos
Disponibilidade Biológica , Bovinos/metabolismo , Duodeno/efeitos dos fármacos , Duodeno/metabolismo , Quercetina/farmacocinética , Rutina/farmacocinética , Animais , Glicemia/análise , Cromatografia Líquida de Alta Pressão , Dissacarídeos/sangue , Ácidos Graxos não Esterificados/sangue , Feminino , Absorção Intestinal , Quempferóis , Lactação/efeitos dos fármacos , Quercetina/administração & dosagem , Quercetina/análogos & derivados , Quercetina/sangue , Rúmen/efeitos dos fármacos , Rúmen/metabolismo , Rutina/administração & dosagem
11.
J Dairy Sci ; 96(5): 2883-93, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23498004

RESUMO

During early lactation, high-yielding dairy cows often show insufficient feed intake (FI) and, as a consequence, they enter into a negative energy balance associated with an altered pattern of plasma metabolites and hormones. These act as short- and long-term hunger or satiety signals in the brain and play an important role in the control of FI. Metabolites and hormones also occur in cerebrospinal fluid (CSF), which surrounds the hypothalamus and brainstem, 2 major centers of FI regulation. The CSF hormone and metabolite concentrations are mainly under control of the blood-brain barrier. Consequently, CSF hormone and metabolite concentrations differ from those in blood. However, the contribution of putative orexigenic and anorexigenic CSF signals possibly leading to insufficient FI of high-yielding dairy cows during early lactation has not been studied so far. Therefore, the aim of this study was to elucidate associations existing between both plasma and CSF hormones and metabolites during the periparturient period. Ten multiparous German Holstein dairy cows were fed ad libitum and samples of CSF from the spinal cord and blood from the jugular vein were withdrawn before morning feeding on d -20, -10, +1, +10, +20, and +40 relative to calving. Feed intake started to decrease from d 5 before calving and increased thereafter. Glucose, ß-hydroxybutyrate (BHBA), cholesterol, nonesterified fatty acids, urea (all enzymatic), lactate (colorimetric), amino acids (HPLC), osmolality (osmometer), ghrelin (RIA), leptin (ELISA), and resistin (Western immunoblot) were measured in both CSF and plasma, whereas free fatty acids (gas chromatography-mass spectrometry) and volatile fatty acids (gas chromatography-flame-ionization detector) were determined in plasma only. Whereas leptin concentrations decreased after calving in both plasma and CSF, ghrelin concentrations were not altered, and abundances of total resistin and its hexamers decreased only in plasma. Although plasma concentrations of cholesterol and nonesterified fatty acids changed during the periparturient period, their concentrations were not affected in CSF. In contrast, CSF Gln concentration tended to increase until calving, whereas CSF concentrations of BHBA, α-aminobutyric acid, Cit, Gly, Ile, Val, and Leu were increased in early lactation compared with the preparturient period. Because Gln is known to serve as neuronal substrate generating ATP, Gln is suggested to act as a central anorexigenic signal shortly before parturition. Moreover, due to their known anorexic effect, BHBA and Leu may potentially act as central signals and thereby suppress a sufficient increase in FI during early lactation.


Assuntos
Período Periparto/fisiologia , Ácido 3-Hidroxibutírico/sangue , Aminoácidos/sangue , Aminoácidos/líquido cefalorraquidiano , Animais , Glicemia/análise , Nitrogênio da Ureia Sanguínea , Bovinos , Colesterol/sangue , Indústria de Laticínios , Ácidos Graxos não Esterificados/sangue , Feminino , Grelina/sangue , Grelina/líquido cefalorraquidiano , Lactatos/sangue , Leptina/sangue , Leptina/líquido cefalorraquidiano , Período Periparto/sangue , Período Periparto/líquido cefalorraquidiano , Período Periparto/metabolismo , Resistina/sangue , Resistina/líquido cefalorraquidiano
12.
J Dairy Sci ; 96(4): 2400-2412, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23415525

RESUMO

The study was designed to examine whether feeding soy protein isolate as partial replacement of casein (CN) affects glucose metabolism in young goats and whether effects may be ameliorated by supplementation of those AA known to be lower concentrated in soy than in CN. Goat kids (d 20 of age) were fed comparable milk protein diets, in which 50% of the crude protein was either CN (control, CON), soy protein isolate (SPI), or soy protein isolate supplemented with AA (SPIA) for 43 d (n=8 per group). On d 62 of age, a single bolus dose of d-[(13)C6]glucose (10mg/kg of BW) was given with the morning diet, and simultaneously, a single bolus dose of d-[6,6-(2)H2]glucose (5mg/kg of BW) was injected into a jugular vein. Blood samples were collected between -30 and +420 min relative to the tracer administration to measure the (13)C and (2)H enrichments of plasma glucose and the (13)C enrichment of blood CO2. Glucose first-pass uptake by the splanchnic tissues was calculated from the rate of appearance of differentially labeled glucose tracer in plasma. Glucose oxidation was calculated from (13)C enrichment in blood CO2. In addition, plasma concentrations of triglycerides, nonesterified fatty acids, glucose, insulin, and glucagon were measured. On d 63 of age, kids were killed and jejunal mucosa and liver samples were collected to measure lactase mRNA levels and lactase and maltase activities in the jejunum and activities of pyruvate carboxylase and phosphoenolpyruvate carboxykinase (PEPCK) in the liver. Basal plasma glucose concentration tended to be higher in the CON than the SPIA group, whereas basal insulin was higher in the CON group than the SPI and SPIA groups, and glucagon was higher in the CON than the SPIA group. Plasma glucose and insulin concentrations increased during the first hour after feeding, whereas plasma glucagon increased immediately after feeding and after 1h of feeding. First-pass uptake and glucose oxidation were not affected by diet. Maltase activities in proximal and mid jejunum and lactase activities in mid jejunum were lower in the CON than in the SPIA group. Activities of PEPCK were higher in the SPIA than in the SPI group. In conclusion, feeding milk diets with soy protein isolate seems to affect glucose status in kids, but has no effect on first-pass uptake and oxidation of glucose. The highest activities of lactase and maltase were observed after supplementation with AA. Higher PEPCK activities in the liver may point at elevated gluconeogenic activities after AA supplementation in soy-fed kids.


Assuntos
Aminoácidos/administração & dosagem , Glucose/metabolismo , Cabras/metabolismo , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Alimentos de Soja , Fenômenos Fisiológicos da Nutrição Animal , Animais , Glicemia/análise , Dieta/veterinária , Suplementos Nutricionais , Gluconeogênese , Glucose/administração & dosagem , Intestinos/efeitos dos fármacos , Intestinos/enzimologia , Lactase/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Proteínas do Leite/administração & dosagem , Oxirredução , Leite de Soja/administração & dosagem , Proteínas de Soja/administração & dosagem , alfa-Glucosidases/metabolismo
13.
J Dairy Sci ; 96(2): 971-80, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23219119

RESUMO

In addition to plasma metabolites and hormones participating as humoral signals in the control of feed intake, oxidative metabolic processes in peripheral organs also generate signals to terminate feeding. Although the degree of oxidation over longer periods is relatively constant, recent work suggests that the periprandial pattern of fuel oxidation is involved in regulating feeding behavior in the bovine. However, the association between periprandial oxidative metabolism and feed intake of dairy cows has not yet been studied. Therefore, the aim of this study was to elucidate possible associations existing between single feed intake events and whole-body net fat and net carbohydrate oxidation as well as their relation to plasma metabolite concentrations. To this end, 4 late-lactating cows equipped with jugular catheters were kept in respiratory chambers with continuous and simultaneous recording of gas exchange and feed intake. Animals were fed ad libitum (AL) for 24h and then feed restricted (RE) to 50% of the previous AL intake for a further 24h. Blood samples were collected hourly to analyze ß-hydroxybutyrate (BHBA), glucose, nonesterified fatty acids (NEFA), insulin, and acylated ghrelin concentrations. Cross-correlation analysis revealed an offset ranging between 30 and 42 min between the maximum of a feed intake event and the lowest level of postprandial net fat oxidation (FOX(net)) and the maximum level of postprandial net carbohydrate oxidation (COX(net)), respectively. During the AL period, FOX(net) did not increase above -0.2g/min, whereas COX(net) did not decrease below 6g/min before the start of the next feed intake event. A strong inverse cross-correlation was obtained between COX(net) and plasma glucose concentration. Direct cross-correlations were observed between COXnet and insulin, between heat production and BHBA, between insulin and glucose, and between BHBA and ghrelin. We found no cross-correlation between FOX(net) and NEFA. During RE, FOX(net) increased with an exponential slope, exceeded the threshold of -0.2g/min as indicated by increasing plasma NEFA concentrations, and approached a maximum rate of 0.1g/min, whereas COX(net) decayed in an exponential manner, approaching a minimal COX(net) rate of about 2.5 g/min in all cows. Our novel findings suggest that, in late-lactating cows, postprandial increases in metabolic oxidative processes seem to signal suppression of feed intake, whereas preprandially an accelerated FOX(net) rate and a decelerated COX(net) rate initiate feed intake.


Assuntos
Regulação do Apetite/fisiologia , Alimentos , Lactação/fisiologia , Oxirredução , Ácido 3-Hidroxibutírico/sangue , Animais , Glicemia/análise , Bovinos/fisiologia , Ingestão de Alimentos/fisiologia , Ácidos Graxos não Esterificados/sangue , Feminino , Privação de Alimentos/fisiologia , Grelina/sangue , Insulina/sangue , Período Pós-Prandial/fisiologia
15.
J Dairy Sci ; 96(11): 6986-7000, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24054306

RESUMO

Quercetin has been shown to be a potent antioxidant, acts hepatoprotectively, and affects glucose and lipid metabolism in monogastrics. If this is also true in ruminants, quercetin could be beneficial in periparturient high-yielding dairy cows by ameliorating the negative effects of free radical formation and reducing the severity of liver lipidosis and ketosis. In a first attempt to evaluate effects of a long-term quercetin treatment, we intraduodenally administered twice daily 18 mg of quercetin (Q)/kg of body weight to 5 late-lactation (215d in milk) dairy cows over a period of 28 d. Frequent blood samples were taken before and during administration to determine plasma concentrations of flavonols and metabolites. Before and after 1 and 4 wk of Q administration, glycogen and fat content as well as mRNA expression of selected genes were measured in liver biopsies. Furthermore, euglycemic, hyperinsulinemic, and hyperglycemic clamp studies were conducted before and after 2 wk of Q administration. During the experiment, dry matter intake and most other zootechnical data remained unchanged. Milk protein content was increased in wk 2 and 4 of Q administration compared with basal values, whereas fat and lactose contents of milk remained unchanged. Plasma nonesterified fatty acids, γ-glutamyl transferase, cholesterol, glutamate dehydrogenase, triglyceride, and albumin concentrations, as well as liver fat and glycogen concentrations, were not affected by Q supplementation. Plasma glucose and ß-hydroxybutyrate concentrations in plasma decreased and increased, respectively, under the influence of quercetin. During hyperglycemic clamp conditions, the relative increase of plasma insulin was higher after 2 wk of Q administration, and a tendency for an increased rQUICKI (revised quantitative insulin sensitivity check index) was observed. The relative mRNA expression levels of selected genes related to glucose metabolism, fat metabolism, and antioxidative status were not altered after 1 or 4 wk of Q supplementation. In conclusion, the effects on insulin release and sensitivity support the assumption that administration of Q could have positive effects on the metabolic adaption of high-yielding cows to early lactation. The increase of milk protein content in response to Q supplementation needs to be verified.


Assuntos
Antioxidantes , Glicemia/metabolismo , Bovinos/metabolismo , Duodeno/efeitos dos fármacos , Quercetina/administração & dosagem , RNA Mensageiro/análise , Ácido 3-Hidroxibutírico/sangue , Animais , Glicemia/genética , Suplementos Nutricionais , Metabolismo Energético/fisiologia , Feminino , Flavonóis/sangue , Técnica Clamp de Glucose , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Lactação/fisiologia , Fígado/química , Fígado/metabolismo , Leite/química , Proteínas do Leite/análise , RNA Mensageiro/metabolismo
16.
Animal ; 17 Suppl 3: 100860, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37316380

RESUMO

Society is becoming increasingly critical of animal husbandry due to its environmental impact and issues involving animal health and welfare including scientific experiments conducted on farm animals. This opens up two new fields of scientific research, the development of non- or minimally invasive (1) methods and techniques using faeces, urine, breath or saliva sampling to replace existing invasive models, and (2) biomarkers reflecting a disease or malfunction of an organ that may predict the future outcome of a pig's health, performance or sustainability. To date, there is a paucity of non- or minimally invasive methods and biomarkers investigating gastrointestinal function and health in pigs. This review describes recent literature pertaining to parameters that assess gastrointestinal functionality and health, tools currently used to investigate them, and the development or the potential to develop new non- and minimally invasive methods and/or biomarkers in pigs. Methods described within this review are those that characterise gastrointestinal mass such as the citrulline generation test, intestinal protein synthesis rate, first pass splanchnic nutrient uptake and techniques describing intestinal proliferation, barrier function and transit rate, and microbial composition and metabolism. An important consideration is gut health, and several molecules with the potential to act as biomarkers of compromised gut health in pigs are reported. Many of these methods to investigate gut functionality and health are considered 'gold standards' but are invasive. Thus, in pigs, there is a need to develop and validate non-invasive methods and biomarkers that meet the principles of the 3 R guidelines, which aim to reduce and refine animal experimentation and replace animals where possible.


Assuntos
Digestão , Trato Gastrointestinal , Suínos , Animais , Trato Gastrointestinal/metabolismo , Fezes , Biomarcadores/metabolismo
17.
J Dairy Sci ; 95(3): 1198-208, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22365204

RESUMO

Endocrines and metabolites in the circulation act as long-term hunger or satiety signals in the brain during negative energy balance and play an important role in the control of feed intake. These signals also occur in the cerebrospinal fluid (CSF), which surrounds the hypothalamus and brainstem: 2 major centers of feed intake regulation. Thus CSF functions as a transport medium for fuel signals between blood and brain. The CSF metabolite concentrations are mainly under control of the blood-brain barriers, which provide specific carrier molecules facilitating the entry of substances required by the brain and protect the brain from factors that could impair neuronal function. The transport of small molecules such as amino acids (AA) across the blood-brain barriers may be limited by competing AA that share a common transporter for the uptake into brain. Consequently, CSF metabolite concentrations differ from those in blood. Thus it appears likely that central (CSF) rather than peripheral (blood) metabolites act as pivotal signals for the control of feed intake. However, the contribution of putative orexigenic and anorexigenic signals in CSF of cows has not been studied so far. Therefore, the aim of this study was to elucidate associations existing between both plasma and CSF metabolites, each in response to feed restriction-induced negative energy balance. Seven German Holstein dairy cows, between 87 and 96 DIM of the second lactation (milk yield, 27.9 L/d) were fed ad libitum (AL) for 4 d and CSF from the spinal cord and blood from the jugular vein was withdrawn before morning feeding at the fifth day. Subsequently, animals were feed restricted (R) to 50% of the previous AL intake for 4 d and CSF and plasma were collected at the ninth day. Body weight, feed intake, water intake, and milk production were determined. Thirty-one AA, ß-hydroxybutyric acid, cholesterol, glucose, lactate, nonesterified fatty acids, urea, and osmolality were measured in both CSF and plasma, whereas free fatty acids and volatile fatty acids were determined in plasma only. Although plasma arginine (132%), leucine (134%), lysine (117%), nonesterified fatty acids (224%), and cholesterol (112%) increased, tryptophan and carnosine decreased (-33% and -20%, respectively) in R animals as compared with AL animals. In CSF, concentrations of these metabolites were not affected after R feeding, suggesting that these identified plasma metabolites have only little potential to contribute to central feed intake regulatory signaling in cows. By contrast, in CSF, serine, threonine, and tyrosine decreased (-20, -24, and -31%, respectively) after R feeding. Therefore, these 3 AA are potential centrally acting anorexigenic signals in cows.


Assuntos
Bovinos/fisiologia , Privação de Alimentos/fisiologia , Aminoácidos/sangue , Aminoácidos/líquido cefalorraquidiano , Animais , Glicemia/análise , Barreira Hematoencefálica/fisiologia , Bovinos/sangue , Bovinos/líquido cefalorraquidiano , Colesterol/sangue , Colesterol/líquido cefalorraquidiano , Metabolismo Energético/fisiologia , Ácidos Graxos não Esterificados/sangue , Ácidos Graxos não Esterificados/líquido cefalorraquidiano , Ácidos Graxos Voláteis/sangue , Ácidos Graxos Voláteis/líquido cefalorraquidiano , Feminino , Glucose/líquido cefalorraquidiano , Lactatos/sangue , Lactatos/líquido cefalorraquidiano
18.
J Dairy Sci ; 95(9): 5047-5055, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22916908

RESUMO

The bioavailability of quercetin has been intensively investigated in monogastric species, but knowledge about its bioavailability in ruminants does not exist. Thus, the aim of the present study was to determine the bioavailability of quercetin in nonlactating cows equipped with indwelling catheters placed in one jugular vein after intraruminal and additionally after i.v. application, respectively. Quercetin was administered intraruminally in equimolar amounts, either in the aglycone form or as its glucorhamnoside rutin, each at 2 dosages [10 and 50 mg of quercetin/kg of body weight (BW)]. In a second trial, 0.8 mg of quercetin aglycone/kg of BW was applied i.v. Blood samples were drawn 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 12, and 24 h after intraruminal application and every 5 min (first hour), every 10 min(second hour), and at 3 and 6h after i.v. bolus application, respectively. Quercetin and quercetin metabolites with an intact flavonol structure (isorhamnetin, tamarixetin, and kaempferol) in plasma samples were analyzed by HPLC with fluorescence detection. After intraruminal application of quercetin and rutin, respectively, quercetin and its methylated (isorhamnetin, tamarixetin) and dehydroxylated (kaempferol) derivatives were present in plasma mainly as conjugated forms, whereas free quercetin and its derivatives were scarcely detected. For rutin, the relative bioavailability of total flavonols (sum of conjugated and nonconjugated quercetin and its conjugated and nonconjugated derivatives after intake of 50 mg/kg of BW) was 767.3% compared with quercetin aglycone (100%). Absolute bioavailability of total flavonols was only 0.1 and 0.5% after quercetin aglycone and rutin applications, respectively. Our data demonstrate that bioavailability of quercetin from rutin is substantially higher compared with that from quercetin aglycone in cows after intraruminal (or oral) application, unlike in monogastric species.


Assuntos
Quercetina/farmacocinética , Animais , Disponibilidade Biológica , Bovinos , Cromatografia Líquida de Alta Pressão/veterinária , Relação Dose-Resposta a Droga , Feminino , Infusões Intravenosas , Quercetina/administração & dosagem , Quercetina/sangue , Rúmen , Rutina/administração & dosagem , Rutina/sangue , Rutina/farmacocinética
19.
Poult Sci ; 101(12): 102202, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257076

RESUMO

Meal of black soldier fly larvae (BSFL), which requires extraction of protein and fat, is a novel protein source for poultry, while unprocessed whole BSFL could even directly be fed to chickens. Newly hatched Ross-308 chicks (n = 252) received whole BSFL at 10% (L10), 20% (L20), or 30% (L30) of voluntary feed intake (FI) of control chickens (CON) that received no BSFL but only age-specific diets (n = 63 birds / group) for 42 days (d). Acceptance and nutrient and energy intake of birds by BSFL and FI were calculated. Plasma metabolites were measured using an automatic enzymatic analyzer and immunoglobulins with ELISA. Depending on the variable, data were analyzed using ANOVA or repeated measures ANOVA to address treatment, time and interaction effects. Birds consumed all offered larvae. With the exception of d1, time spent by birds eating their daily portion of larvae (TSL, min/pen) did not differ among the larvae supply groups (P = 0.982). The L10 had a higher larvae eating rate (LER) that is, speed of larvae intake than did L20 and L30 (P < 0.05), implying increased competition for less available BSFL. The ratio of LER to feed eating rate (FER) was greater than 50 fold change difference (FCD), indicating a strong interest of chickens in BSFL over regular feed. Whole BSFL intake up to 30% of voluntary FI did not adversely affect broiler growth (P > 0.05). The L30 had lower total dry matter and metabolizable energy intakes (P < 0.05), although total fat intake was higher in L30 than in CON (P < 0.05). Compared with CON, 30% whole BSFL increased dietary protein-to-energy ratios, plasma uric acid and serum alkaline phosphatase concentrations (P < 0.05). We conclude that whole BSFL can be included in broiler rations up to 20% without negatively affecting growth performance and nutrient conversion efficiency, whereas a higher proportion is associated with lower protein utilization efficiency, possibly due to lower total energy intake.


Assuntos
Galinhas , Dípteros , Animais , Larva , Nutrientes , Ingestão de Energia , Proteínas Alimentares , Ração Animal/análise
20.
Anim Health Res Rev ; 23(2): 165-193, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36688278

RESUMO

Dietary fiber (DF) is receiving increasing attention, and its importance in pig nutrition is now acknowledged. Although DF for pigs was frowned upon for a long time because of reductions in energy intake and digestibility of other nutrients, it has become clear that feeding DF to pigs can affect their well-being and health. This review aims to summarize the state of knowledge of studies on DF in pigs, with an emphasis on the underlying mode of action, by considering research using DF in sows as well as suckling and weaned piglets, and fattening pigs. These studies indicate that DF can benefit the digestive tracts and the health of pigs, if certain conditions or restrictions are considered, such as concentration in the feed and fermentability. Besides the chemical composition and the impact on energy and nutrient digestibility, it is also necessary to evaluate the possible physical and physiologic effects on intestinal function and intestinal microbiota, to better understand the relation of DF to animal health and welfare. Future research should be designed to provide a better mechanistic understanding of the physiologic effects of DF in pigs.


Assuntos
Fibras na Dieta , Microbioma Gastrointestinal , Suínos , Animais , Feminino , Fibras na Dieta/análise , Microbioma Gastrointestinal/fisiologia , Ração Animal/análise , Dieta/veterinária
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa