Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Phys Chem Chem Phys ; 26(20): 14970-14979, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739372

RESUMO

Curcumin is a medicinal agent that exhibits anti-cancer and anti-Alzheimer's disease properties. It has a keto-enol moiety that gives rise to many of its chemical properties including metal complexation and acid-base equilibria. A previous study has shown that keto-enol tautomerization at this moiety is implicated in the anti-Alzheimer's disease effect of curcumin, highlighting the importance of this process. In this study, tautomerization of curcumin in methanol, acetone and acetonitrile was investigated using time-resolved 1H nuclear magnetic resonance spectroscopy. Curcumin undergoes hydrogen-deuterium exchange with the solvents and the proton resonance peak corresponding to the hydrogen at the α-carbon position (Cα) decays as a function of time, signifying deuteration at this position. Because tautomerization is the rate limiting step in the deuteration of curcumin at the Cα position, the rate of tautomerization is inferred from the rate of deuteration. The rate constant of tautomerization of curcumin shows a temperature dependence and analysis using the Arrhenius equation revealed activation energies (Ea) of tautomerization of (80.1 ± 5.9), (64.1 ± 1.0) and (68.3 ± 5.5) kJ mol-1 in methanol, D2O/acetone and D2O/acetonitrile, respectively. Insight into the role of water in tautomerization of curcumin was further offered by density functional theory studies. The transition state of tautomerization was optimized in the presence of water molecules. The results show a hydrogen-bonded solvent bridge between the diketo moiety and Cα of curcumin. The Ea of tautomerization of curcumin shows a strong dependence on the number of water molecules in the solvent bridge, indicating the critical role played by the solvent bridge in catalyzing tautomerization of curcumin.


Assuntos
Curcumina , Curcumina/química , Metanol/química , Acetonitrilas/química , Acetona/química , Isomerismo , Termodinâmica , Solventes/química
2.
Phys Chem Chem Phys ; 26(6): 5289-5295, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38264912

RESUMO

Incorporation of other transition metals in Au nanoclusters has been thriving recently due to its effect on their electronic and photophysical properties. Here, the ultrasmall phosphine-stabilized Rh-doped gold clusters AunRh (n = 5, 6, 7, 8), with metal core structures represented as fragments of a rhodium-centered icosahedron, are considered. The geometric and electronic properties of these nanoclusters are revisited and analyzed using density functional theory (DFT). Moreover, infrared spectra are simulated to identify the effects of Rh doping on the clusters through vibrational properties. Peaks are assigned to breathing-like normal modes for all AuRh clusters except for Au8Rh, likely due to the presence of bound Cl ligands. Unlike their pure gold core counterparts, the % motions of both Au and Rh atoms are lower in the mixed metal clusters, suggesting more restrained metal cores by rhodium, which could result in other novel physical and chemical properties not hitherto discovered.

3.
Phys Chem Chem Phys ; 26(28): 19117-19129, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38957118

RESUMO

Ru is a metal of interest in catalysis. Monodisperse Ru3 clusters as catalytic sites are relevant for the development of catalysts because clusters use significantly lower amounts of precious materials for forming active sites due to the small size of the cluster. However, retaining the mono-dispersity of the cluster size after deposition is a challenge because surface energy could drive both agglomeration and encapsulation of the clusters. In the present work Ru3 clusters are deposited by chemical vapor deposition (CVD) of Ru3(CO)12 and cluster source depositions of bare Ru3 onto radio frequency sputter-deposited TiO2 (RF-TiO2) substrates, TiO2(100), and SiO2. When supported on RF-TiO2, bare Ru3 is encapsulated by a layer of titania substrate material during deposition with a cluster source. Ligated Ru3(CO)12 is also encapsulated by a layer of titania when deposited onto sputter-treated RF-TiO2, but only through heat treatment which is required to remove most of the ligands. The titania overlayer thickness was determined to be 1-2 monolayers for Ru3(CO)12 clusters on RF-TiO2, which is thin enough for catalytic or photocatalytic reactions to potentially occur even without clusters being part of the very outermost layer. The implication for catalysis of the encapsulation of Ru3 into the RF-TiO2 is discussed. Temperature-dependent X-ray photoelectron spectroscopy (XPS), angle-resolved XPS, and temperature-dependent low energy ion scattering (TD-LEIS) are used to probe how the cluster-surface interaction changes due to heat treatment and scanning transmission electron microscopy (STEM) was used to image the depth of the surface from side-on.

4.
Small ; 19(34): e2208287, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093189

RESUMO

For the realization of a next-generation energy society, further improvement in the activity of water-splitting photocatalysts is essential. Platinum (Pt) is predicted to be the most effective cocatalyst for hydrogen evolution from water. However, when the number of active sites is increased by decreasing the particle size, the Pt cocatalyst is easily oxidized and thereby loses its activity. In this study, a method to load ultrafine, monodisperse, metallic Pt nanoclusters (NCs) on graphitic carbon nitride is developed, which is a promising visible-light-driven photocatalyst. In this photocatalyst, a part of the surface of the Pt NCs is protected by sulfur atoms, preventing oxidation. Consequently, the hydrogen-evolution activity per loading weight of Pt cocatalyst is significantly improved, 53 times, compared with that of a Pt-cocatalyst loaded photocatalyst by the conventional method. The developed method is also effective to enhance the overall water-splitting activity of other advanced photocatalysts such as SrTiO3 and BaLa4 Ti4 O15 .

5.
J Chem Phys ; 155(16): 164702, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34717368

RESUMO

The properties of semiconductor surfaces can be modified by the deposition of metal clusters consisting of a few atoms. The properties of metal clusters and of cluster-modified surfaces depend on the number of atoms forming the clusters. Deposition of clusters with a monodisperse size distribution thus allows tailoring of the surface properties for technical applications. However, it is a challenge to retain the size of the clusters after their deposition due to the tendency of the clusters to agglomerate. The agglomeration can be inhibited by covering the metal cluster modified surface with a thin metal oxide overlayer. In the present work, phosphine-protected Au clusters, Au9(PPh3)8(NO3)3, were deposited onto RF-sputter deposited TiO2 films and subsequently covered with a Cr2O3 film only a few monolayers thick. The samples were then heated to 200 °C to remove the phosphine ligands, which is a lower temperature than that required to remove thiolate ligands from Au clusters. It was found that the Cr2O3 covering layer inhibited cluster agglomeration at an Au cluster coverage of 0.6% of a monolayer. When no protecting Cr2O3 layer was present, the clusters were found to agglomerate to a large degree on the TiO2 surface.

6.
Angew Chem Int Ed Engl ; 60(39): 21340-21350, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34038609

RESUMO

Recently, the creation of new heterogeneous catalysts using the unique electronic/geometric structures of small metal nanoclusters (NCs) has received considerable attention. However, to achieve this, it is extremely important to establish methods to remove the ligands from ligand-protected metal NCs while preventing the aggregation of metal NCs. In this study, the ligand-desorption process during calcination was followed for metal-oxide-supported 2-phenylethanethiolate-protected gold (Au) 25-atom metal NCs using five experimental techniques. The results clearly demonstrate that the ligand-desorption process consists of ligand dissociation on the surface of the metal NCs, adsorption of the generated compounds on the support and desorption of the compounds from the support, and the temperatures at which these processes occurred were elucidated. Based on the obtained knowledge, we established a method to form a metal-oxide layer on the surface of Au NCs while preventing their aggregation, thereby succeeding in creating a water-splitting photocatalyst with high activity and stability.

7.
J Phys Chem A ; 124(28): 5812-5823, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32569468

RESUMO

The characteristics of small cerium oxide and gold-cerium oxide clusters were investigated as models for gold attachment to various defect sites on a ceria surface. Photoionization efficiency (PIE) spectra of gas phase Ce3On (n = 0-4) and AuCe3On (n = 0-3) clusters were recorded and compared to spectral simulations based on DFT calculations. Calculated structures and PIE spectra for the Ce3O5,6 and AuCe3O4-6 clusters are also presented; however, these species were not detected during photoionization experiments. Addition of an Au atom to Ce3 was found to increase the energy of the ionization onset by ∼0.4 eV, whereas addition of one or more oxygen atoms decreases the onset by ∼0.25 eV. The optimized AuCe3On (n = 0-4) cluster geometries correlate with Au atoms adsorbed to oxygen vacancy sites while the AuCe3O5 and AuCe3O6 clusters are consistent with Au adsorption to CeO3 and CeO2 vacancies, respectively. The interactions between the cerium oxide cluster surface and the adsorbed Au atom were found to strongly depend on the nature the of the adsorption site. Au adsorbed to O vacancies are negatively charged with a Ce → Au charge transfer, whereas Au adsorbed to CeO2 and CeO3 vacancies have a reversed Au → Ce charge transfer, resulting in a positively charged Au atom. Au adsorption to the Ce3On clusters has the effect of (i) reducing the differences in the HOMO energies of the AuCe3O4, AuCe3O5, and AuCe3O6 clusters and (ii) lowering the binding energy of oxygen atoms for all AuCe3On (n = 1-6) clusters. Au adsorption appears to have a minimal effect on CeO2 vacancy formation, although CeO2 vacancies were calculated to form more readily than O vacancies on both the Ce3On and AuCe3On clusters. The low energy fragmentation calculated for the Ce3O5,6 and AuCe3O4-6 clusters, via loss of either Au, O, or CeO2, could potentially make photoionization experiments unfeasible since these clusters may simply dissociate when exposed to high energy photons above the ionization threshold.

8.
Angew Chem Int Ed Engl ; 59(18): 7076-7082, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32043742

RESUMO

The activity of many water-splitting photocatalysts could be improved by the use of RhIII -CrIII mixed oxide (Rh2-x Crx O3 ) particles as cocatalysts. Although further improvement of water-splitting activity could be achieved if the size of the Rh2-x Crx O3 particles was decreased further, it is difficult to load ultrafine (<2 nm) Rh2-x Crx O3 particles onto a photocatalyst by using conventional loading methods. In this study, a new loading method was successfully established and was used to load Rh2-x Crx O3 particles with a size of approximately 1.3 nm and a narrow size distribution onto a BaLa4 Ti4 O15 photocatalyst. The obtained photocatalyst exhibited an apparent quantum yield of 16 %, which is the highest achieved for BaLa4 Ti4 O15 to date. Thus, the developed loading technique of Rh2-x Crx O3 particles is extremely effective at improving the activity of the water-splitting photocatalyst BaLa4 Ti4 O15 . This method is expected to be extended to other advanced water-splitting photocatalysts to achieve higher quantum yields.

9.
J Phys Chem A ; 123(46): 10158-10168, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31702915

RESUMO

The properties of small cerium oxide and gold-cerium oxide clusters were explored as analogues for gold deposition at defect sites on a cerium oxide surface. Ce2On (n = 0-2) and AuCe2On (n = 0-2) clusters were prepared in the gas phase and investigated using photoionization efficiency spectroscopy complemented by spectral simulations based on DFT calculations; purely theoretical investigations were conducted on the Ce2O3, Ce2O4, AuCe2O3, and AuCe2O4 clusters due to these species not being detected. The optimized AuCe2On (n = 0-3) cluster geometries are consistent with Au adsorption to oxygen vacancy sites while the AuCe2O4 cluster correlates with Au adsorption to a CeO2 vacancy site. The electronic properties of the adsorbed Au atom depend strongly on the nature of the ceria adsorption site: O vacancy-adsorbed Au is negatively charged with a Ce → Au charge transfer occurring at the adsorption interface, whereas Au adsorbed to a CeO2 vacancy is positively charged with an Au → Ce charge transfer. The adsorbed Au atom is proposed to enhance the catalytic properties of the AuCe2On cluster by (i) stabilizing the negatively charged Au atom on reduced AuCe2On clusters to enhance nucleophilicity; (ii) increasing the electron accepting capability of the AuCe2O4 species; (iii) destabilizing the HOMO of the AuCe2O4 cluster; and (iv) facilitating the abstraction of additional surface oxygen atoms by reactants.

10.
Angew Chem Int Ed Engl ; 56(29): 8412-8416, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28160366

RESUMO

Single-crystal X-ray crystallography is employed to characterize the reaction species of a full catalytic carbonylation cycle within a MnII -based metal-organic framework (MOF) material. The structural insights explain why the Rh metalated MOF is catalytically competent toward the carbonylation of MeBr but only affords stoichiometric turn-over in the case of MeI. This work highlights the capability of MOFs to act as platform materials for studying single-site catalysis in heterogeneous systems.

11.
J Chem Phys ; 145(4): 044320, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27475374

RESUMO

The velocity map imaging technique was used in the investigation of gold(i) butadiynylide, AuC4H(-), with images recorded at two excitation wavelengths. The resultant photodetachment spectra show a well defined vibrational progression in the neutral with an energy spacing of 343 ± 3 cm(-1). The adiabatic electron affinity was determined to be 1.775 ± 0.005 eV and assigned to the X(1)Σ(+)←X(2)Σ(+) transition between the anionic and neutral ground states. Franck-Condon simulations performed on density functional theory optimized geometries assisted the assignment of linear geometries to the neutral and anion and the observed vibrational progression to that of the Au-C4H stretch.

12.
J Chem Phys ; 144(11): 114703, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27004889

RESUMO

Triphenylphosphine ligand-protected Au9 clusters deposited onto titania nanosheets show three different atomic configurations as observed by scanning transmission electron microscopy. The configurations observed are a 3-dimensional structure, corresponding to the previously proposed Au9 core of the clusters, and two pseudo-2-dimensional (pseudo-2D) structures, newly found by this work. With the help of density functional theory (DFT) calculations, the observed pseudo-2D structures are attributed to the low energy, de-ligated structures formed through interaction with the substrate. The combination of scanning transmission electron microscopy with DFT calculations thus allows identifying whether or not the deposited Au9 clusters have been de-ligated in the deposition process.

13.
J Phys Chem A ; 119(22): 5545-52, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25965076

RESUMO

Oxygen deficient cerium oxide cluster ions, Ce(n)O(m)(+) (n = 2-10, m = 1-2n) were prepared in the gas phase by laser ablation of a cerium oxide rod. The reactivity of the cluster ions was investigated using mass spectrometry, finding that oxygen deficient clusters are able to extract oxygen atoms from CO, CO2, NO, N2O, and O2 in the gas phase. The oxygen transfer reaction is explained in terms of the energy balance between the bond dissociation energy of an oxygen containing molecule and the oxygen affinity of the oxygen-deficient cerium oxide clusters, which is supported by DFT calculations. The reverse reaction, i.e., formation of the oxygen deficient cluster ions from the stoichiometric ones was also examined. It was found that intensive heating of the stoichiometric clusters results in formation of oxygen deficient clusters via Ce(n)O(2n)(+) → Ce(n)O(2n-2)(+) + O2, which was found to occur at different temperatures depending on cluster size, n.

14.
Inorg Chem ; 53(9): 4340-9, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24758282

RESUMO

High-quality far-IR absorption spectra for a series of ligated atomically precise clusters containing Ru3, Ru4, and AuRu3 metal cores have been observed using synchrotron radiation, the latter two for the first time. The experimental spectra are compared with predicted IR spectra obtained following complete geometric optimization of the full cluster, including all ligands, using DFT. We find strong correlations between the experimental and predicted transitions for the low-frequency, low-intensity metal core vibrations as well as the higher frequency and intensity metal-ligand vibrations. The metal core vibrational bands appear at 150 cm(-1) for Ru3(CO)12, and 153 and 170 cm(-1) for H4Ru4(CO)12, while for the bimetallic Ru3(µ-AuPPh3)(µ-Cl)(CO)10 cluster these are shifted to 177 and 299 cm(-1) as a result of significant restructuring of the metal core and changes in chemical composition. The computationally predicted IR spectra also reveal the expected atomic motions giving rise to the intense peaks of metal-ligand vibrations at ca. 590 cm(-1) for Ru3, 580 cm(-1) for Ru4, and 560 cm(-1) for AuRu3. The obtained correlations allow an unambiguous identification of the key vibrational modes in the experimental far-IR spectra of these clusters for the first time.


Assuntos
Ouro/química , Compostos de Rutênio/química , Espectrofotometria Infravermelho/métodos , Vibração
15.
J Chem Phys ; 141(1): 014702, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25005298

RESUMO

Chemically made, atomically precise phosphine-stabilized clusters Au9(PPh3)8(NO3)3 were deposited on titania and silica from solutions at various concentrations and the samples heated under vacuum to remove the ligands. Metastable induced electron spectroscopy was used to determine the density of states at the surface, and X-ray photoelectron spectroscopy for analysing the composition of the surface. It was found for the Au9 cluster deposited on titania that the ligands react with the titania substrate. Based on analysis using the singular value decomposition algorithm, the series of MIE spectra can be described as a linear combination of 3 base spectra that are assigned to the spectra of the substrate, the phosphine ligands on the substrate, and the Au clusters anchored to titania after removal of the ligands. On silica, the Au clusters show significant agglomeration after heat treatment and no interaction of the ligands with the substrate can be identified.

16.
Adv Mater ; 36(15): e2309672, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38206096

RESUMO

Development of both organic photovoltaics (OPVs) and organic photocatalysts has focused on utilizing the bulk heterojunction (BHJ). The BHJ promotes charge separation and enhances the carrier lifetime, but may give rise to increased charge traps, hindering performance. Here, high photocatalytic and photovoltaic performance is displayed by electron donor-acceptor (D-A) nanoparticles (NPs) and films, using the nonfullerene acceptor Y6 and polymer donor PIDT-T8BT. In contrast to conventional D-A systems, the charge generation in PIDT-T8BT:Y6 NPs is mainly driven by Y6, allowing a high performance even at a low D:A mass ratio of 1:50. The high performance at the low mass ratio is attributed to the amorphous behavior of PIDT-T8BT. Low ratios are generally thought to yield lower efficiency than the more conventional ≈1:1 ratio. However, the OPVs exhibit peak performance at a D:A ratio of 1:5. Similarly the NPs used for photocatalytic hydrogen evolution show peak performance at the 1:6.7 D:A ratio. Interestingly, for the PIDT-T8BT:Y6 system, as the polymer proportion increases, a reduced photocatalytic and photovoltaic performance is observed. The unconventional D:A ratios provide lower recombination losses and increased charge-carrier lifetime with undisrupted ambipolar charge transport in bulk Y6, enabling better performance than conventional ratios. This work reports novel light-harvesting materials in which performance is reduced due to unfavorable morphology as D:A ratios move toward conventional ratios of 1:1.2-1:1.

17.
Langmuir ; 29(40): 12452-62, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24015926

RESUMO

We report on the time evolution of gold nanoparticles produced by laser ablation in the presence of the cationic surfactants cetyltrimethylammonium bromide (CTAB) and cetyltrimethylammonium chloride (CTAC) in aqueous solution. The broader applicability of a laser-induced nanoparticle formation kinetic model previously developed by us for the case of anionic surfactants in aqueous solution [ J. Phys. Chem. C 2010 , 114 , 15931 - 15940 ] is shown to also apply in the presence of cationic surfactants. We explore the surface properties of the nanoparticles produced in the presence of the cationic surfactants via synchrotron X-ray photoelectron spectroscopy (XPS). The XPS data indicate that at CTA(+) concentrations approximating the aqueous critical micelle concentration Au(III) is present on the nanoparticle surface. Such oxidation is not observed at (i) lower CTA(+) concentrations, (ii) in the presence of an anionic surfactant, or (iii) in the case of pure water as a solvent.

18.
Phys Chem Chem Phys ; 15(11): 3917-29, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23400365

RESUMO

Synchrotron XPS was used to investigate a series of chemically-synthesised, atomically-precise gold clusters Au(n)(PPh(3))(y) (n = 8, 9, 11 and 101, with y depending on cluster size) immobilized on titania nanoparticles. The gold clusters were washed with toluene at 100 °C or calcined at 200 °C to remove the organic ligand. From the position of the Au 4f(7/2) peak it is concluded that cluster size is not altered through the deposition. From the analysis of the phosphorous spectra, it can be concluded that the applied heat treatment removes the organic ligands. Washing and calcination leads to partial oxidation and partial agglomeration of the clusters. Oxidation of the clusters is most likely due to the interaction of the cluster core with the oxygen of the titania surface after removal of ligands. The position of the Au 4f(7/2) peak indicates that the size of the agglomerated clusters is still smaller than that of Au(101).

19.
Phys Chem Chem Phys ; 15(35): 14806-13, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23907108

RESUMO

Synchrotron XPS was used to investigate a series of chemically synthesised, atomically precise gold clusters Au(n)(PPh3)y (n = 8, 9 and 101, y depending on the cluster size) immobilized on anatase (titania) nanoparticles. Effects of post-deposition treatments were investigated by comparison of untreated samples with analogues that have been heat treated at 200 °C in O2, or in O2 followed by H2 atmosphere. XPS data shows that the phosphine ligands are oxidised upon heat treatment in O2. From the position of the Au 4f(7/2) peak it can be concluded that the clusters partially agglomerate immediately upon deposition. Heating in oxygen, and subsequently in hydrogen, leads to further agglomeration of the gold clusters. It is found that the pre-treatment plays a crucial role in the removal of ligands and agglomeration of the clusters.

20.
J Chem Phys ; 138(17): 174310, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23656137

RESUMO

Photoelectron spectra following photodetachment of the gold dicarbide anion, AuC2(-), have been recorded using the velocity map imaging technique at several excitation wavelengths. The binding energy spectra show well-defined vibrational structure which, with the aid of computational calculations and Franck-Condon simulations, was assigned to a progression in the Au-C stretching mode, ν3. The experimental data indicate that the features in the spectrum correspond to a (2)A' ← (3)A' transition, involving states which we calculate to have bond angles ~147° but with a low barrier to linearity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa