Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(1): e1011040, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36630458

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous human pathogen that is transmitted in saliva. EBV transits through the oral epithelium to infect B cells, where it establishes a life-long latent infection. Reinfection of the epithelium is believed to be mediated by virus shed from B cells, but whether a latent reservoir can exist in the epithelia is unknown. We previously developed an in vitro organotypic model of stratified epithelium where EBV can readily replicate within the suprabasal layers of the epithelium following apical infection mediated by virus-producing B cells. Given that infected epithelial cells and cell-free virus are observed in saliva, we examined the ability of both of these to mediate infection in organotypic cultures. Epithelial-derived cell-free virus was able to infect organotypic cultures from the apical surface, but showed enhanced infection of B cells. Conversely, B cell-derived virus exhibited enhanced infection of epithelial cells. While EBV has been detected in basal cells in oral hairy leukoplakia, it is unknown whether EBV can be seen in undifferentiated primary keratinocytes in the basal layer. Undifferentiated epithelial cells expressed proposed EBV receptors in monolayer and were susceptible to viral binding and entry. Integrins, and occasionally ephrin A2, were expressed in the basal layer of gingiva and tonsil derived organotypic cultures, but the known B-cell receptors HLAII and CD21 were not detected. Following infection with cell-free virus or virus-producing B cells at either the apical or basolateral surface of preformed organotypic cultures, abundant infection was detected in differentiated suprabasal cells while more limited but readily detectable infection was observed in the undifferentiated basal cells. Together, our data has provided new insight into EBV infection in stratified epithelium.


Assuntos
Infecções por Vírus Epstein-Barr , Humanos , Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4 , Epitélio/metabolismo , Células Epiteliais/metabolismo , Queratinócitos
2.
J Virol ; 97(2): e0152822, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36688650

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous human pathogen that infects the majority of the adult population regardless of socioeconomic status or geographical location. EBV primarily infects B and epithelial cells and is associated with different cancers of these cell types, such as Burkitt lymphoma and nasopharyngeal carcinoma. While the life cycle of EBV in B cells is well understood, EBV infection within epithelium is not, largely due to the inability to model productive replication in epithelium in vitro. Organotypic cultures generated from primary human keratinocytes can model many aspects of EBV infection, including productive replication in the suprabasal layers. The EBV glycoprotein BDLF2 is a positional homologue of the murine gammaherpesvirus-68 protein gp48, which plays a role in intercellular spread of viral infection, though sequence homology is limited. To determine the role that BDLF2 plays in EBV infection, we generated a recombinant EBV in which the BDLF2 gene has been replaced with a puromycin resistance gene. The ΔBDLF2 recombinant virus infected both B cell and HEK293 cell lines and was able to immortalize primary B cells. However, the loss of BDLF2 resulted in substantially fewer infected cells in organotypic cultures compared to wild-type virus. While numerous clusters of infected cells representing a focus of infection are observed in wild-type-infected organotypic cultures, the majority of cells observed in the absence of BDLF2 were isolated cells, suggesting that the EBV glycoprotein BDLF2 plays a major role in intercellular viral spread in stratified epithelium. IMPORTANCE The ubiquitous herpesvirus Epstein-Barr virus (EBV) is associated with cancers of B lymphocytes and epithelial cells and is primarily transmitted in saliva. While several models exist for analyzing the life cycle of EBV in B lymphocytes, models of EBV infection in the epithelium have more recently been established. Using an organotypic culture model of epithelium that we previously determined accurately reflects EBV infection in situ, we have ascertained that the loss of the viral envelope protein BDLF2 had little effect on the EBV life cycle in B cells but severely restricted the number of infected cells in organotypic cultures. Loss of BDLF2 has a substantial impact on the size of infected areas, suggesting that BDLF2 plays a specific role in the spread of infection in stratified epithelium.


Assuntos
Epitélio , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Proteínas do Envelope Viral , Adulto , Animais , Humanos , Camundongos , Epitélio/virologia , Infecções por Vírus Epstein-Barr/virologia , Células HEK293 , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidade , Neoplasias/virologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33436409

RESUMO

Long noncoding RNAs (lncRNAs) play diverse roles in biological processes, but their expression profiles and functions in cervical carcinogenesis remain unknown. By RNA-sequencing (RNA-seq) analyses of 18 clinical specimens and selective validation by RT-qPCR analyses of 72 clinical samples, we provide evidence that, relative to normal cervical tissues, 194 lncRNAs are differentially regulated in high-risk (HR)-HPV infection along with cervical lesion progression. One such lncRNA, lnc-FANCI-2, is extensively characterized because it is expressed from a genomic locus adjacent to the FANCI gene encoding an important DNA repair factor. Both genes are up-regulated in HPV lesions and in in vitro model systems of HR-HPV18 infection. We observe a moderate reciprocal regulation of lnc-FANCI-2 and FANCI in cervical cancer CaSki cells. In these cells, lnc-FANCI-2 is transcribed from two alternative promoters, alternatively spliced, and polyadenylated at one of two alternative poly(A) sites. About 10 copies of lnc-FANCI-2 per cell are detected preferentially in the cytoplasm. Mechanistically, HR-HPVs, but not low-risk (LR)-HPV oncogenes induce lnc-FANCI-2 in primary and immortalized human keratinocytes. The induction is mediated primarily by E7, and to a lesser extent by E6, mostly independent of p53/E6AP and pRb/E2F. We show that YY1 interacts with an E7 CR3 core motif and transactivates the promoter of lnc-FANCI-2 by binding to two critical YY1-binding motifs. Moreover, HPV18 increases YY1 expression by reducing miR-29a, which targets the 3' untranslated region of YY1 mRNA. These data have provided insights into the mechanisms of how HR-HPV infections contribute to cervical carcinogenesis.


Assuntos
Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Papillomavirus Humano 16/genética , MicroRNAs/genética , Infecções por Papillomavirus/genética , RNA Longo não Codificante/genética , Neoplasias do Colo do Útero/genética , Fator de Transcrição YY1/genética , Processamento Alternativo , Sequência de Bases , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Colo do Útero/metabolismo , Colo do Útero/patologia , Colo do Útero/virologia , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Feminino , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 16/patogenicidade , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/metabolismo , Papillomavirus Humano 18/patogenicidade , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Queratinócitos/virologia , MicroRNAs/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Regiões Promotoras Genéticas , RNA Longo não Codificante/metabolismo , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia , Fator de Transcrição YY1/metabolismo
4.
J Med Virol ; 94(8): 3956-3961, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35411608

RESUMO

Human papillomavirus (HPV) is thought to be sexually transmitted; however, there have been a few studies investigating a possible iatrogenic source of infection. Therefore, it is important to assess the cleaning methods of reusable medical devices. This study assessed whether cleaning methods of flexible endoscopes in an otolaryngology clinic are effective against HPV. There were 24 patients with a history of head and neck cancer in the study; however, two outliers were excluded. Nine patients were confirmed to have HPV-associated cancer. PCR was used to measure and quantify the viral genomes of samples collected before and after cleaning. After cleaning, few HPV+ samples had endoscopes with less DNA than before cleaning. Additionally, for several patients with non-HPV-associated head and neck cancer, PCR showed more DNA after cleaning than before cleaning, suggesting residual HPV DNA within the cleaning solution. There was no significant difference (p > 0.05) between pre- and post-cleaning in both cohorts. Current cleaning methods of reusable endoscopes may not be effective in completely removing viral DNA.


Assuntos
Alphapapillomavirus , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Alphapapillomavirus/genética , DNA Viral/análise , DNA Viral/genética , Humanos , Papillomaviridae/genética
5.
J Med Virol ; 94(7): 3386-3393, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35277984

RESUMO

Medical instruments that are not autoclavable but may become contaminated with high-risk human papillomaviruses (HPVs) during use must be thoroughly disinfected to avoid the possibility of iatrogenic transmission of infection. There is an expectation that prolonged soaking of instruments in the United States Food and Drug Administration-cleared chemical disinfectant solutions will result in high-level decontamination, but HPV16 and HPV18 are known to be resistant to commonly used formulations. However, they are susceptible to a variety of oxidative agents, including those based on chlorine. Here, we tested the efficacy of homogeneous hypochlorous acid (HOCl) solutions against mature infectious virions of HPV16 and HPV18 dried onto butadiene styrene coupons and ultrasonic probes. Both viruses were inactivated to >4 log reduction value (LRV) after 15 s on coupons and 5 min on ultrasonic probes. Morphologic changes became evident within those contact times by transmission electron microscopy when HPV16 virus-like particles were exposed to HOCl under identical conditions. Mass spectrometry analysis of trypsin-digested products of L1 capsid proteins exposed to HOCl showed that mostly conserved residues were modified by oxidation and that these changes rapidly lead to instability of the protein demonstrable on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Modifications to these residues may contribute to rapid virus inactivation. The use of homogeneous HOCl solutions for HPV decontamination provides a highly effective means of assuring the safety of nonautoclavable medical instruments.


Assuntos
Desinfetantes , Infecções por Papillomavirus , Proteínas do Capsídeo/metabolismo , Desinfetantes/farmacologia , Papillomavirus Humano 16/fisiologia , Humanos , Ácido Hipocloroso/farmacologia , Infecções por Papillomavirus/prevenção & controle
6.
J Med Virol ; 93(3): 1605-1612, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32940907

RESUMO

The emergence of the severe acute respiratory syndrome coronavirus 2 pandemic has created an unprecedented healthcare, social, and economic disaster. Wearing of masks and social distancing can significantly decrease transmission and spread, however, due to circumstances such as medical or dental intervention and personal choice these practices have not been universally adopted. Additional strategies are required to lessen transmission. Nasal rinses and mouthwashes, which directly impact the major sites of reception and transmission of human coronaviruses (HCoV), may provide an additional level of protection against the virus. Common over-the-counter nasal rinses and mouthwashes/gargles were tested for their ability to inactivate high concentrations of HCoV using contact times of 30 s, 1 min, and 2 min. Reductions in titers were measured by using the tissue culture infectious dose 50 (TCID50 ) assay. A 1% baby shampoo nasal rinse solution inactivated HCoV greater than 99.9% with a 2-min contact time. Several over-the-counter mouthwash/gargle products including Listerine and Listerine-like products were highly effective at inactivating infectious virus with greater than 99.9% even with a 30-s contact time. In the current manuscript we have demonstrated that several commonly available healthcare products have significant virucidal properties with respect to HCoV.


Assuntos
COVID-19/prevenção & controle , COVID-19/transmissão , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/crescimento & desenvolvimento , Anti-Infecciosos Locais/farmacologia , Linhagem Celular , Humanos , Máscaras/estatística & dados numéricos , Antissépticos Bucais/farmacologia , Distanciamento Físico , Tensoativos/farmacologia , Inativação de Vírus/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
7.
J Virol ; 93(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31189705

RESUMO

Epidemiological data confirm a much higher incidence of high-risk human papillomavirus 16 (HPV16)-mediated carcinogenesis of the cervical epithelium than for other target sites. In order to elucidate tissue-specific responses to virus infection, we compared gene expression changes induced by productive HPV16 infection of cervical, foreskin, and tonsil organotypic rafts. These rafts closely mimic persistent HPV16 infection, long before carcinogenesis sets in. The total number of gene expression changes varied considerably across the tissue types, with only 32 genes being regulated in common. Among them, we confirmed the Kelch-like family protein KLHL35 and the laminin-5 complex to be upregulated and downregulated, respectively, in all the three tissues. HPV16 infection induces upregulation of genes involved in cell cycle control, cell division, mitosis, DNA replication, and DNA damage repair in all the three tissues, indicative of a hyperproliferative environment. In the cervical and tonsil epithelium, we observe significant downregulation of genes involved in epidermis development, keratinocyte differentiation, and extracellular matrix organization. On the other hand, in HPV16-positive foreskin (HPV16 foreskin) tissue, several genes involved in interferon-mediated innate immunity, cytokine signaling, and cellular defenses were downregulated. Furthermore, pathway analysis and experimental validations identified important cellular pathways like STAT1 and transforming growth factor ß (TGF-ß) to be differentially regulated among the three tissue types. The differential modulation of important cellular pathways like TGF-ß1 and STAT1 can explain the sensitivity of tissues to HPV cancer progression.IMPORTANCE Although the high-risk human papillomavirus 16 infects anogenital and oropharyngeal sites, the cervical epithelium has a unique vulnerability to progression of cancer. Host responses during persistent infection and preneoplastic stages can shape the outcome of cancer progression in a tissue-dependent manner. Our study for the first time reports differential regulation of critical cellular functions and signaling pathways during productive HPV16 infection of cervical, foreskin, and tonsil tissues. While the virus induces hyperproliferation in infected cells, it downregulates epithelial differentiation, epidermal development, and innate immune responses, according to the tissue type. Modulation of these biological functions can determine virus fitness and pathogenesis and illuminate key cellular mechanisms that the virus employs to establish persistence and finally initiate disease progression.


Assuntos
Colo do Útero/virologia , Prepúcio do Pênis/virologia , Perfilação da Expressão Gênica/métodos , Papillomavirus Humano 16/patogenicidade , Tonsila Palatina/virologia , Infecções por Papillomavirus/genética , Diferenciação Celular , Linhagem Celular Tumoral , Colo do Útero/química , Colo do Útero/citologia , Feminino , Prepúcio do Pênis/química , Prepúcio do Pênis/citologia , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Papillomavirus Humano 16/genética , Humanos , Queratinócitos/química , Queratinócitos/citologia , Queratinócitos/virologia , Masculino , Análise em Microsséries , Especificidade de Órgãos , Tonsila Palatina/química , Tonsila Palatina/citologia , Infecções por Papillomavirus/virologia , Transdução de Sinais , Replicação Viral
8.
J Med Virol ; 92(8): 1298-1302, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31919857

RESUMO

Sexual transmission is the most common pathway for the spread of Human papillomavirus (HPV). However, the potential for iatrogenic HPV infections is also real. Even though cleared by the Food and Drug Administration and recommended by the World Federation for Ultrasound in Medicine and Biology, several disinfectants including glutaraldehyde and o-phthalaldehyde have shown a lack of efficacy for inactivating HPV. Other methods such as ultraviolet C and concentrated hydrogen peroxide have been shown highly effective at inactivating infectious HPV. In this study, two chlorine dioxide systems are also shown to be highly efficacious at inactivating HPV. An important difference in these present studies is that as opposed to testing in suspension or using a carrier, we dried the infectious virus directly onto endocavitary ultrasound probes and nasendoscopes, therefore, validating a more realistic system to demonstrate disinfectant efficacy.


Assuntos
Alphapapillomavirus/efeitos dos fármacos , Compostos Clorados/farmacologia , Desinfetantes/farmacologia , Desinfecção/métodos , Contaminação de Equipamentos , Equipamentos e Provisões/virologia , Óxidos/farmacologia , Compostos Clorados/química , Endoscopia/instrumentação , Células HaCaT , Humanos , Óxidos/química , Infecções por Papillomavirus/prevenção & controle , Infecções por Papillomavirus/transmissão , Ultrassonografia/instrumentação
9.
J Virol ; 92(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29437958

RESUMO

Superinfection exclusion is a common phenomenon whereby a single cell is unable to be infected by two types of the same pathogen. Superinfection exclusion has been described for various viruses, including vaccinia virus, measles virus, hepatitis C virus, influenza A virus, and human immunodeficiency virus. Additionally, the mechanism of exclusion has been observed at various steps of the viral life cycle, including attachment, entry, viral genomic replication, transcription, and exocytosis. Human papillomavirus (HPV) is the causative agent of cervical cancer. Recent epidemiological studies indicate that up to 50% women who are HPV positive (HPV+) are infected with more than one HPV type. However, no mechanism of superinfection exclusion has ever been identified for HPV. Here, we show that superinfection exclusion exists during a HPV coinfection and that it occurs on the cell surface during the attachment/entry phase of the viral life cycle. Additionally, we are able to show that the minor capsid protein L2 plays a role in this exclusion. This study shows, for the first time, that superinfection exclusion occurs during HPV coinfections and describes a potential molecular mechanism through which it occurs.IMPORTANCE Superinfection exclusion is a phenomenon whereby one cell is unable to be infected by multiple related pathogens. This phenomenon has been described for many viruses and has been shown to occur at various points in the viral life cycle. HPV is the causative agent of cervical cancer and is involved in other anogenital and oropharyngeal cancers. Recent epidemiological research has shown that up to 50% of HPV-positive individuals harbor more than one type of HPV. We investigated the interaction between two high-risk HPV types, HPV16 and HPV18, during a coinfection. We present data showing that HPV16 is able to block or exclude HPV18 on the cell surface during a coinfection. This exclusion is due in part to differences in the HPV minor capsid protein L2. This report provides, for the first time, evidence of superinfection exclusion for HPV and leads to a better understanding of the complex interactions between multiple HPV types during coinfections.


Assuntos
Adesão Celular , Coinfecção/virologia , Papillomavirus Humano 16/fisiologia , Papillomavirus Humano 18/fisiologia , Queratinócitos/metabolismo , Infecções por Papillomavirus/virologia , Superinfecção/virologia , Células Cultivadas , Coinfecção/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/virologia , Infecções por Papillomavirus/metabolismo , Superinfecção/metabolismo , Interferência Viral , Internalização do Vírus , Replicação Viral
10.
J Virol ; 92(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30045992

RESUMO

Human papillomavirus (HPV) infection is the world's most common sexually transmitted infection and is responsible for most cases of cervical cancer. Previous studies of global gene expression changes induced by HPV infection have focused on the cancerous stages of infection, and therefore, not much is known about global gene expression changes at early preneoplastic stages of infection. We show for the first time the global gene expression changes during early-stage HPV16 infection in cervical tissue using 3-dimensional organotypic raft cultures, which produce high levels of progeny virions. cDNA microarray analysis showed that a total of 594 genes were upregulated and 651 genes were downregulated at least 1.5-fold with HPV16 infection. Gene ontology analysis showed that biological processes including cell cycle progression and DNA metabolism were upregulated, while skin development, immune response, and cell death were downregulated with HPV16 infection in cervical keratinocytes. Individual genes were selected for validation at the transcriptional and translational levels, including UBC, which was central to the protein association network of immune response genes, and top downregulated genes RPTN, SERPINB4, KRT23, and KLK8 In particular, KLK8 and SERPINB4 were shown to be upregulated in cancer, which contrasts with the gene regulation during the productive replication stage. Organotypic raft cultures, which allow full progression of the HPV life cycle, allowed us to identify novel gene modulations and potential therapeutic targets of early-stage HPV infection in cervical tissue. Additionally, our results suggest that early-stage productive infection and cancerous stages of infection are distinct disease states expressing different host transcriptomes.IMPORTANCE Persistent HPV infection is responsible for most cases of cervical cancer. The transition from precancerous to cancerous stages of HPV infection is marked by a significant reduction in virus production. Most global gene expression studies of HPV infection have focused on the cancerous stages. Therefore, little is known about global gene expression changes at precancerous stages. For the first time, we measured global gene expression changes at the precancerous stages of HPV16 infection in human cervical tissue producing high levels of virus. We identified a group of genes that are typically overexpressed in cancerous stages to be significantly downregulated at the precancerous stage. Moreover, we identified significantly modulated genes that have not yet been studied in the context of HPV infection. Studying the role of these genes in HPV infection will help us understand what drives the transition from precancerous to cancerous stages and may lead to the development of new therapeutic targets.


Assuntos
Colo do Útero/patologia , Epitélio/patologia , Epitélio/virologia , Interações Hospedeiro-Patógeno , Papillomavirus Humano 16/crescimento & desenvolvimento , Infecções por Papillomavirus/patologia , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Análise em Microsséries , Modelos Biológicos , Técnicas de Cultura de Órgãos
11.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29263274

RESUMO

Retinoic acid-inducible gene I (RIG-I) is a key pattern recognition receptor that senses viral RNA and interacts with the mitochondrial adaptor MAVS, triggering a signaling cascade that results in the production of type I interferons (IFNs). This signaling axis is initiated by K63-linked ubiquitination of RIG-I mediated by the E3 ubiquitin ligase TRIM25, which promotes the interaction of RIG-I with MAVS. USP15 was recently identified as an upstream regulator of TRIM25, stabilizing the enzyme through removal of degradative K48-linked polyubiquitin, ultimately promoting RIG-I-dependent cytokine responses. Here, we show that the E6 oncoprotein of human papillomavirus type 16 (HPV16) as well as of other HPV types form a complex with TRIM25 and USP15 in human cells. In the presence of E6, the K48-linked ubiquitination of TRIM25 was markedly increased, and in line with this, TRIM25 degradation was enhanced. Our results further showed that E6 inhibited the TRIM25-mediated K63-linked ubiquitination of RIG-I and its CARD-dependent interaction with MAVS. HPV16 E6, but not E7, suppressed the RIG-I-mediated induction of IFN-ß, chemokines, and IFN-stimulated genes (ISGs). Finally, CRISPR-Cas9 gene targeting in human keratinocytes showed that the TRIM25-RIG-I-MAVS triad is important for eliciting an antiviral immune response to HPV16 infection. Our study thus identifies a novel immune escape mechanism that is conserved among different HPV strains and further indicates that the RIG-I signaling pathway plays an important role in the innate immune response to HPV infection.IMPORTANCE Persistent infection and tumorigenesis by HPVs are known to require viral manipulation of a variety of cellular processes, including those involved in innate immune responses. Here, we show that the HPV E6 oncoprotein antagonizes the activation of the cytoplasmic innate immune sensor RIG-I by targeting its upstream regulatory enzymes TRIM25 and USP15. We further show that the RIG-I signaling cascade is important for an antiviral innate immune response to HPV16 infection, providing evidence that RIG-I, whose role in sensing RNA virus infections has been well characterized, also plays a crucial role in the antiviral host response to small DNA viruses of the Papillomaviridae family.


Assuntos
Proteína DEAD-box 58/imunologia , Papillomavirus Humano 6/imunologia , Imunidade Inata , Queratinócitos/imunologia , Proteínas Oncogênicas Virais/imunologia , Infecções por Papillomavirus/imunologia , Transdução de Sinais/imunologia , Fatores de Transcrição/imunologia , Proteínas com Motivo Tripartido/imunologia , Ubiquitina-Proteína Ligases/imunologia , Proteases Específicas de Ubiquitina/imunologia , Proteína DEAD-box 58/genética , Células HEK293 , Papillomavirus Humano 6/genética , Humanos , Queratinócitos/patologia , Queratinócitos/virologia , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia , Receptores Imunológicos , Transdução de Sinais/genética , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Proteases Específicas de Ubiquitina/genética
12.
Org Biomol Chem ; 17(3): 585-597, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30574983

RESUMO

This paper describes an access to new nitrogen-containing heterocyclic triterpenoids by the reaction of 2,3-indolotriterpenoids with ozone and dimethyldioxirane. The oxidation of indolo-fused 28-oxo-allobetulin or methyl platanoate with ozone led to a mixture of a quinolone as the major product and a nine-membered 2,3-seco-2-oxolactam and three different types of spiroindoles as byproducts. The formation of quinolone and 2,3-seco-2-oxolactam derivatives could be explained by the standard 1,3-dipolar cycloaddition of ozone to the C2(3)-double bond of the triterpene core similar to the products observed in the ozonolysis of indoles in the Witkop-Winterfeldt oxidation (WWO). The formation of spiroindoles was unexpected and could be explained through the 1,2-cycloaddition of ozone to the C2(3)-double bond with consecutive intramolecular rearrangements of the 2,3-epoxy-intermediate. These spiroindoles seem to be novel structures observed in the WWO reaction. The formation of only two isomeric triterpene spiroindolinones was achieved by the oxidation of 2,3-indolo-28-oxo-allobetulin with dimethyldioxirane that could be explained by the rearrangement of the 2,3-epoxy-intermediate. 19ß,28-Epoxy-18α-olean-28-oxo-2-nor-2,3-4'(1H)-quinolone was the most active against HPV-11 with EC50 0.45 µM and SI50 322 in a primary assay and SI90 < 10 against HPV-16 in a secondary assay. The oxidative transformations of indolotriterpenoids have great potential for further modifications towards the preparation of new biologically active compounds.

13.
Mol Med ; 24(1): 23, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30134802

RESUMO

BACKGROUND: Stratified human keratinocytes (SHKs) are an essential part of mucosal innate immune response that modulates adaptive immunity to microbes encountered in the environment. The importance of these SHKs in mucosal integrity and development has been well characterized, however their regulatory immunologic role at different mucosal sites, has not. In this study we compared the immune gene expression of SHKs from five different anatomical sites before and after HPV16 transfection using microarray analyses. METHODS: Individual pools of human keratinocytes from foreskin, cervix, vagina, gingiva, and tonsils (HFKs, HCKs, HVKs, HGKs and HTLKs) were prepared. Organotypic (raft) cultures were established for both normal and HPV16 immortalized HFKs, HCKs, HVKs, HGKs and HTLKs lines which stably maintained episomal HPV16 DNA. Microarray analysis was carried out using the HumanHT-12 V4 gene chip (Illumina). Immune gene expression profiles were obtained by global gene chip (GeneSifter) and Ingenuity pathway analysis (IPA) for each individual site, with or without HPV16 transfection. RESULTS: We examined site specific innate immune response gene expression in SHKs from all five different anatomical sites before and after HPV16 transfection. We observed marked differences in SHK immune gene repertoires within and between mucosal tracts before HPV 16 infection. In addition, we observed additional changes in SHKs immune gene repertoire patterns when these SHKs were productively transfected with HPV16. Some immune response genes were similarly expressed by SHKs from different sites. However, there was also variable expression of non-immune response genes, such as keratin genes, by the different SHKs. CONCLUSIONS: Our results suggest that keratinocytes from different anatomical sites are likely hard wired in their innate immune responses, and that these immune responses are unique depending on the anatomical site from which the SHKs were derived. These observations may help explain why select HPV types predominate at different mucosal sites, cause persistent infection at these sites, and on occasion, lead to HPV induced malignant and benign tumor development.


Assuntos
Papillomavirus Humano 16/genética , Queratinócitos/imunologia , Transcriptoma/imunologia , Colo do Útero , Feminino , Prepúcio do Pênis , Gengiva , Humanos , Imunidade Inata , Masculino , Análise em Microsséries , Tonsila Palatina , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/imunologia , Transdução de Sinais , Transfecção , Vagina
14.
J Biol Chem ; 291(5): 2302-9, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26699195

RESUMO

Argonaute-2 protein (Ago2), a major component of RNA-induced silencing complex (RISC), has been viewed as a cytoplasmic protein. In this study, we demonstrated by immunofluorescence confocal microscopy that Ago2 is distributed mainly as a nuclear protein in primary human foreskin keratinocytes in monolayer cultures and their derived organotypic (raft) cultures, although it exhibits only a minimal level of nuclear distribution in continuous cell lines such as HeLa and HaCaT cells. Oncogenic human papillomavirus type 16 (HPV16) or type 18 (HPV18) infection of the keratinocytes does not affect the nuclear Ago2 distribution. Examination of human tissues reveals that Ago2 exhibits primarily as a nuclear protein in skin, normal cervix, and cervical cancer tissues, but not in larynx. Together, our data provide the first convincing evidence that the subcellular distribution of Ago2 occurs in a cell type- and tissue context-dependent manner and may correlate with its various functions in regulation of gene expression.


Assuntos
Proteínas Argonautas/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Infecções por Papillomavirus/metabolismo , Linhagem Celular Tumoral , Colo do Útero/metabolismo , Colo do Útero/virologia , Feminino , Inativação Gênica , Células HEK293 , Células HeLa , Papillomavirus Humano 16 , Papillomavirus Humano 18 , Humanos , Queratinócitos/citologia , Laringe/metabolismo , Laringe/virologia , RNA Interferente Pequeno/metabolismo , Pele/metabolismo , Pele/virologia , Frações Subcelulares , Distribuição Tecidual , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/virologia
15.
Proc Natl Acad Sci U S A ; 111(46): 16544-9, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25313069

RESUMO

Epstein-Barr virus is a ubiquitous human herpesvirus associated with epithelial and lymphoid tumors. EBV is transmitted between human hosts in saliva and must cross the oral mucosal epithelium before infecting B lymphocytes, where it establishes a life-long infection. The latter process is well understood because it can be studied in vitro, but our knowledge of infection of epithelial cells has been limited by the inability to infect epithelial cells readily in vitro or to generate cell lines from EBV-infected epithelial tumors. Because epithelium exists as a stratified tissue in vivo, organotypic cultures may serve as a better model of EBV in epithelium than monolayer cultures. Here, we demonstrate that EBV is able to infect organotypic cultures of epithelial cells to establish a predominantly productive infection in the suprabasal layers of stratified epithelium, similar to that seen with Kaposi's-associated herpesvirus. These cells did express latency-associated proteins in addition to productive-cycle proteins, but a population of cells that exclusively expressed latency-associated viral proteins could not be detected; however, an inability to infect the basal layer would be unlike other herpesviruses examined in organotypic cultures. Furthermore, infection did not induce cellular proliferation, as it does in B cells, but instead resulted in cytopathic effects more commonly associated with productive viral replication. These data suggest that infection of epithelial cells is an integral part of viral spread, which typically does not result in the immortalization or enhanced growth of infected epithelial cells but rather in efficient production of virus.


Assuntos
Herpesvirus Humano 4/fisiologia , Queratinócitos/virologia , Replicação Viral , Aciclovir/farmacologia , Antivirais/farmacologia , Técnicas de Cultura de Células , Diferenciação Celular , Efeito Citopatogênico Viral , DNA Viral/análise , DNA Viral/genética , Antígenos Nucleares do Vírus Epstein-Barr/biossíntese , Antígenos Nucleares do Vírus Epstein-Barr/genética , Regulação Viral da Expressão Gênica , Gengiva/citologia , Humanos , Queratinócitos/metabolismo , Queratinócitos/ultraestrutura , Queratinas/análise , Tonsila Palatina/citologia , Plasmídeos/genética , Precursores de Proteínas/análise , RNA Viral/biossíntese , RNA Viral/genética , Transativadores/biossíntese , Transativadores/genética , Proteínas da Matriz Viral/biossíntese , Proteínas da Matriz Viral/genética , Proteínas Virais/biossíntese , Proteínas Virais/genética , Cultura de Vírus , Latência Viral , Replicação Viral/efeitos dos fármacos
16.
Proc Natl Acad Sci U S A ; 111(11): 4262-7, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24591631

RESUMO

Cellular and viral microRNAs (miRNAs) are the transcriptional products of RNA polymerase II and are regulated by transcriptional factors for their differential expression. The altered expression of miRNAs in many cancer types has been explored as a marker for possible diagnosis and therapy. We report in this study that oncogenic human papillomaviruses (HPVs) induce aberrant expression of many cellular miRNAs and that HPV18 infection produces no detectable viral miRNA. Thirteen abundant host miRNAs were specifically regulated by HPV16 and HPV18 in organotypic raft cultures of foreskin and vaginal keratinocytes as determined by miRNA array in combination with small RNA sequencing. The increase of miR-16, miR-25, miR-92a, and miR-378 and the decrease of miR-22, miR-27a, miR-29a, and miR-100 could be attributed to viral oncoprotein E6, E7, or both, all of which are known to target many cellular transcription factors. The examination of 158 cervical specimens, including 38 normal, 52 cervical intraepithelial neoplasia (CIN), and 68 cervical cancer (CC) tissues, for the expression of these eight miRNAs showed a remarkable increase of miR-25, miR-92a, and miR-378 with lesion progression but no obvious change of miR-22, miR-29a, and miR-100 among the HPV-infected tissues. Further analyses indicate that an expression ratio ≥1.5 of miR-25/92a group over miR-22/29a group could serve as a cutoff value to distinguish normal cervix from CIN and from CIN to CC.


Assuntos
Biomarcadores/metabolismo , Papillomavirus Humano 16 , Papillomavirus Humano 18 , MicroRNAs/metabolismo , Vírus Oncogênicos/genética , Infecções por Papillomavirus/genética , Neoplasias do Colo do Útero/virologia , Sequência de Bases , Northern Blotting , Primers do DNA/genética , Feminino , Humanos , MicroRNAs/genética , Dados de Sequência Molecular , Oligonucleotídeos Antissenso/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Neoplasias do Colo do Útero/genética
17.
J Med Virol ; 88(6): 1076-80, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26519866

RESUMO

Ultrasound probes used in endocavitary procedures have been shown to be contaminated with high-risk HPV after routine use and HPV is also known to be resistant to some high level disinfectants (HLDs). This study compared efficacy of two leading ultrasound probe HLD methods; liquid ortho-phthalaldehyde (Cidex® OPA) and an automated device using sonicated hydrogen peroxide (trophon® EPR) against HPV16 and HPV18 in a hard-surface carrier test. Native HPV16 and HPV18 virions were generated in organotypic epithelial raft cultures. Viral lysates were dried onto carriers with a 5% (v/v) protein soil. Efficacy tests were performed against the automated device at 35% and 31.5% H2 O2 and 0.55% OPA in quadruplicate with matched input, neutralization, and cytotoxicity controls. Hypochlorite was included as a positive control. Infectivity was determined by the abundance (qRT-PCR) of the spliced E1^E4 transcript in infected recipient cells. The automated HLD device showed excellent efficacy against HPV16 and HPV18 (>5 log10 reductions in infectivity) whereas OPA showed minimal efficacy (<0.6 log10 reductions). While HPV is highly resistant to OPA, sonicated hydrogen peroxide offers an effective disinfection solution for ultrasound probes. Disinfection methods that are effective against HPV should be adopted where possible.


Assuntos
Desinfetantes/farmacologia , Desinfecção/métodos , Papillomavirus Humano 16/efeitos dos fármacos , Ultrassonografia/instrumentação , Linhagem Celular , Células Cultivadas , Células Epiteliais/virologia , Glutaral/farmacologia , Papillomavirus Humano 16/genética , Humanos , Peróxido de Hidrogênio/farmacologia , Ácido Hipocloroso/farmacologia , Queratinócitos/virologia , Vírion/efeitos dos fármacos
19.
PLoS Pathog ; 9(5): e1003384, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717208

RESUMO

Persistent infection of basal keratinocytes with high-risk human papillomavirus (hrHPV) may cause cancer. Keratinocytes are equipped with different pattern recognition receptors (PRRs) but hrHPV has developed ways to dampen their signals resulting in minimal inflammation and evasion of host immunity for sustained periods of time. To understand the mechanisms underlying hrHPV's capacity to evade immunity, we studied PRR signaling in non, newly, and persistently hrHPV-infected keratinocytes. We found that active infection with hrHPV hampered the relay of signals downstream of the PRRs to the nucleus, thereby affecting the production of type-I interferon and pro-inflammatory cytokines and chemokines. This suppression was shown to depend on hrHPV-induced expression of the cellular protein ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) in keratinocytes. UCHL1 accomplished this by inhibiting tumor necrosis factor receptor-associated factor 3 (TRAF3) K63 poly-ubiquitination which lead to lower levels of TRAF3 bound to TANK-binding kinase 1 and a reduced phosphorylation of interferon regulatory factor 3. Furthermore, UCHL1 mediated the degradation of the NF-kappa-B essential modulator with as result the suppression of p65 phosphorylation and canonical NF-κB signaling. We conclude that hrHPV exploits the cellular protein UCHL1 to evade host innate immunity by suppressing PRR-induced keratinocyte-mediated production of interferons, cytokines and chemokines, which normally results in the attraction and activation of an adaptive immune response. This identifies UCHL1 as a negative regulator of PRR-induced immune responses and consequently its virus-increased expression as a strategy for hrHPV to persist.


Assuntos
Regulação Enzimológica da Expressão Gênica/imunologia , Papillomavirus Humano 16/imunologia , Imunidade Inata , Queratinócitos/imunologia , Infecções por Papillomavirus/imunologia , Ubiquitina Tiolesterase/imunologia , Regulação para Cima/imunologia , Células 3T3 , Animais , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Regulação Viral da Expressão Gênica/imunologia , Papillomavirus Humano 16/metabolismo , Humanos , Queratinócitos/enzimologia , Queratinócitos/patologia , Queratinócitos/virologia , Camundongos , Infecções por Papillomavirus/enzimologia , Infecções por Papillomavirus/patologia , Fosforilação/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/imunologia , Fator 3 Associado a Receptor de TNF/imunologia , Fator 3 Associado a Receptor de TNF/metabolismo , Fator de Transcrição RelA/imunologia , Fator de Transcrição RelA/metabolismo , Ubiquitina Tiolesterase/biossíntese , Ubiquitinação/imunologia , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
20.
J Public Health Manag Pract ; 21(6): 573-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26035648

RESUMO

CONTEXT: The Centers for Disease Control and Prevention Advisory Committee for Immunization Practices has recommended human papillomavirus (HPV) vaccines for use in children and young adults for preventing HPV-related diseases, but HPV vaccine coverage is low in the United States. OBJECTIVE: To assess HPV vaccination among US adults and children and to identify characteristics associated with HPV vaccination. METHODS: We used the 2010 Behavioral Risk Factors Surveillance System data to examine HPV vaccine initiation and completion among adults aged 18 to 26 years and children aged 9 to 17 years in 5 US states. We performed a multivariate logistic regression to evaluate factors associated with HPV vaccination. RESULTS: We assessed the HPV vaccination status of 706 women and 560 men and 2201 girls and 2292 boys. In 2010, a total of 258 (41.6%) women and 21 (4.3%) men had initiated HPV vaccination. Of those vaccinated women, 182 (75%) completed the 3-dose vaccine series. Rural residence (adjusted odds ratio [aOR] = 0.37) and not having a Papanicolaou test (aOR = 0.44) were negatively associated with HPV vaccine initiation among women. Women who were aged 18 to 20 years (aOR = 2.93) were more likely to complete HPV vaccination. A total of 612 (24.6%) girls and 86 (5.2%) boys received 1 or more doses of HPV vaccines; 308 (50.3%) vaccinated girls and 14 (10.8%) vaccinated boys completed the vaccine series. Younger age (9-12 years: aOR = 0.09) and not receiving a seasonal influenza vaccine (aOR = 0.44) were negatively related to HPV vaccine initiation in girls. Girls were less likely to initiate and complete HPV vaccination if their parents did not have a routine checkup within 1 year. CONCLUSION: HPV vaccination in the United States remains below the Healthy People 2020 objective (80%). To increase HPV vaccination, strategies still need to focus on improving access to HPV vaccines and utilization of health services.


Assuntos
Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/uso terapêutico , Adolescente , Adulto , Sistema de Vigilância de Fator de Risco Comportamental , Criança , Connecticut , Feminino , Humanos , Masculino , Vacinação em Massa/normas , Massachusetts , Pessoa de Meia-Idade , Vacinas contra Papillomavirus/farmacologia , Rhode Island , Inquéritos e Questionários , West Virginia , Wyoming
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa