RESUMO
We have previously shown that naturally occurring as well as acquired Abs against the Mycobacterium tuberculosis heat shock protein (HSP)65 protect against the induction of murine autoimmune inflammatory arthritis. In the present work, we have studied the anti-inflammatory effect of prozumab, a humanized anti-HSP mAb in murine inflammatory arthritis and colitis, and its effects on cytokine secretion. Prozumab was shown to bind to HSP60, the highly conserved mammalian homolog of the bacterial protein, and it was found to be effective in protecting and suppressing autoimmune arthritis in the models of adjuvant arthritis and collagen-induced arthritis in rats and mice, respectively, as well as in acute hapten-mediated colitis and chronic, spontaneous colitis models. Mechanistically, prozumab induces IL-10 secretion from naive human PBMCs and suppresses the secretion of IFN-γ and IL-6 from anti-CD3-activated human PBMCs. These findings make prozumab a promising potential drug for treating human rheumatoid arthritis and inflammatory bowel disease, as well as a wide range of autoimmune inflammatory diseases.
Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Artrite Experimental/tratamento farmacológico , Chaperonina 60/antagonistas & inibidores , Doenças Inflamatórias Intestinais/tratamento farmacológico , Animais , Proteínas de Bactérias/imunologia , Linhagem Celular Tumoral , Chaperonina 60/imunologia , Feminino , Humanos , Interferon gama/metabolismo , Interleucina-10/biossíntese , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Células Jurkat , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Ligação Proteica/imunologia , Ratos , Ratos Endogâmicos LewRESUMO
Hypoxia is a prominent feature of solid tumors known to contribute to malignant progression and therapeutic resistance. Cancer cells adapt to hypoxia using various pathways, allowing tumors to thrive in a low oxygen state. Induction of new blood vessel formation via the secretion of proangiogenic factors is one of the main adaptive responses engaged by tumor cells under hypoxic conditions. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that plays a pivotal role in mediating such responses. In addition, several other transcription factors have also been implicated in hypoxic gene regulation, either independently or in cooperation with HIF-1. In this work, we show that the expression of the angiogenesis-related, immediate early gene CCN1 (formerly known as CYR61), considered to be involved in tumor growth and invasiveness, is enhanced upon hypoxia stress primarily in a protein kinase A and cyclic AMP-responsive element binding protein (CREB) and CRE-dependent manner in various cell lines. The hypoxia-mediated activation of the CCN1 promoter is independent of HIF-1 and HIF-2, as shown by small interfering RNA knockdown. We identify the cis element in the mouse CCN1 promoter responsible for CREB binding to be one of two partial CRE sites present in the promoter. Moreover, we report for the first time that CREB-mediated CCN1 transcription is enhanced in hypoxic regions of tumors in vivo. Identifying and characterizing the molecular mechanisms that govern the response of tumors to hypoxia may be instrumental to identify the tumors that will respond favorably to inhibition of angiogenesis and thus lead to the development of treatments that could complement hypoxia-inducing treatment modalities.
Assuntos
Hipóxia Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Regulação da Expressão Gênica/fisiologia , Proteínas Imediatamente Precoces/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Elementos de Resposta , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Western Blotting , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Células Cultivadas , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Proteína Rica em Cisteína 61 , Dinoprostona/farmacologia , Ensaio de Desvio de Mobilidade Eletroforética , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hibridização In Situ , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Luciferases/metabolismo , Linfoma de Células T/genética , Linfoma de Células T/metabolismo , Linfoma de Células T/patologia , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Regiões Promotoras Genéticas , Sondas RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Transcrição Gênica , TransfecçãoRESUMO
HIV-1 gp120 is an alleged B cell superantigen, binding certain VH3+ human antibodies. We reasoned that a CD4-VH3 fusion protein could possess higher affinity for gp120 and improved HIV-1 inhibitory capacity. To test this we produced several human IgG1 immunoligands harboring VH3. Unlike VH3-IgG1 or VH3-CD4-IgG1, CD4-VH3-IgG1 bound gp120 considerably stronger than CD4-IgG1. CD4-VH3-IgG1 exhibited approximately 1.5-2.5-fold increase in neutralization of two T-cell laboratory-adapted strains when compared to CD4-IgG1. CD4-VH3-IgG1 improved neutralization of 7/10 clade B primary isolates or pseudoviruses, exceeding 20-fold for JR-FL and 13-fold for Ba-L. It enhanced neutralization of 4/8 clade C viruses, and had negligible effect on 1/4 clade A pseudoviruses. We attribute this improvement to possible pairing of VH3 with CD4 D1 and stabilization of an Ig Fv-like structure, rather than to superantigen interactions. These novel findings support the current notion that CD4 fusion proteins can act as better HIV-1 entry inhibitors with potential clinical implications.
Assuntos
Antígenos CD4/imunologia , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Imunoglobulina G/imunologia , Região Variável de Imunoglobulina/imunologia , Proteínas Recombinantes de Fusão/imunologia , Superantígenos/imunologia , Sequência de Aminoácidos , Antígenos CD4/genética , Humanos , Imunoglobulina G/genética , Região Variável de Imunoglobulina/genética , Ligantes , Dados de Sequência Molecular , Testes de Neutralização , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genéticaRESUMO
The envelope glycoprotein of HIV-1 is the principal target for entry inhibitors. The use of soluble CD4 has been found to be impractical as most clinical isolates are resistant to neutralization at feasible concentrations. CG10 is one of a small group of monoclonal antibodies specific to CD4-induced epitopes, which are structurally associated with the chemokine receptor-binding site and are capable of blocking the interaction of gp120 with its obligatory co-receptor. We have reasoned that fusing the single chain Fv of CG10 with CD4 can lead to increased HIV-1 neutralization activity and that this effect could be further enhanced by engrafting this chimeric construct onto an IgG Fc. Here we report the cloning of the genes encoding the variable regions of CG10 heavy and light chains and demonstrate that when attached to human IgG1 Fc, the single chain Fv of CG10 retains the binding properties of the original mouse antibody. Fusing CG10 single chain Fv with the gp120-binding portion of CD4 on a human IgG1 Fc backbone results in stronger binding of gp120 of different tropisms and in enhanced neutralization of laboratory-adapted strains and most, but not all, clade B and clade C isolates tested. Our findings underscore the potential use of CD4-based fusion proteins in the design of HIV immuno-therapeutics.
Assuntos
Anticorpos Monoclonais/imunologia , Antígenos CD4/imunologia , HIV-1/imunologia , Imunoglobulina G/imunologia , Antígenos CD4/genética , Clonagem Molecular , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Humanos , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Testes de Neutralização , Receptores de HIV/imunologia , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/isolamento & purificação , TransfecçãoRESUMO
The nuclear lamina is a structure near the inner nuclear membrane and the peripheral chromatin. It is composed of lamins, which are also present in the nuclear interior, and lamin-associated proteins. The increasing number of proteins that interact with lamins and the compound interactions between these proteins and chromatin-associated proteins make the nuclear lamina a highly complex but also a very exciting structure. The nuclear lamina is an essential component of metazoan cells. It is involved in most nuclear activities including DNA replication, RNA transcription, nuclear and chromatin organization, cell cycle regulation, cell development and differentiation, nuclear migration, and apoptosis. Specific mutations in nuclear lamina genes cause a wide range of heritable human diseases. These diseases include Emery-Dreifuss muscular dystrophy, limb girdle muscular dystrophy, dilated cardiomyopathy (DCM) with conduction system disease, familial partial lipodystrophy (FPLD), autosomal recessive axonal neuropathy (Charcot-Marie-Tooth disorder type 2, CMT2), mandibuloacral dysplasia (MAD), Hutchison Gilford Progeria syndrome (HGS), Greenberg Skeletal Dysplasia, and Pelger-Huet anomaly (PHA). Genetic analyses in Caenorhabditis elegans, Drosophila, and mice show new insights into the functions of the nuclear lamina, and recent structural analyses have begun to unravel the molecular structure and assembly of lamins and their associated proteins.
Assuntos
Núcleo Celular/fisiologia , Doenças Genéticas Inatas/fisiopatologia , Lâmina Nuclear/fisiologia , Proteínas Nucleares/fisiologia , Animais , Núcleo Celular/ultraestrutura , Doenças Genéticas Inatas/genética , Humanos , Lâmina Nuclear/ultraestruturaRESUMO
A method for the discovery of the structure of conformational discontinuous epitopes of monoclonal antibodies (mAbs) is described. The mAb is used to select specific phages from combinatorial phage-display peptide libraries that in turn are used as an epitope-defining database that is applied via a novel computer algorithm to analyze the crystalline structure of the original antigen. The algorithm is based on the following: (1) Most contacts between a mAb and an antigen are through side-chain atoms of the residues. (2) In the three-dimensional structure of a protein, amino acid residues remote in linear sequence can juxtapose to one another through folding. (3) Tandem amino acid residues of the selected phage-displayed peptides can represent pairs of juxtaposed amino acid residues of the antigen. (4) Contact residues of the epitope are accessible to the antigen surface. (5) The most frequent tandem pairs of amino acid residues in the selected phage-displayed peptides can reflect pairs of juxtaposed amino acid residues of the epitope. Application of the algorithm enabled prediction of epitopes. On the basis of these predictions, segments of an antigen were used to reconstitute an antigenic epitope mimetic that was recognized by its original mAb.