Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
BMC Evol Biol ; 20(1): 61, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32450817

RESUMO

BACKGROUND: Invasion of organisms into new ecosystems is increasingly common, due to the global trade in commodities. One of the most complex post-invasion scenarios occurs when an invasive species is related to a native pest, and even more so when they can hybridize and produce fertile progeny. The global pest Helicoverpa armigera was first detected in Brazil in 2013 and generated a wave of speculations about the possibility of hybridization with the native sister taxon Helicoverpa zea. In the present study, we used genome-wide single nucleotide polymorphisms from field-collected individuals to estimate hybridization between H. armigera and H. zea in different Brazilian agricultural landscapes. RESULTS: The frequency of hybridization varied from 15 to 30% depending on the statistical analyses. These methods showed more congruence in estimating that hybrids contained approximately 10% mixed ancestry (i.e. introgression) from either species. Hybridization also varied considerably depending on the geographic locations where the sample was collected, forming a 'mosaic' hybrid zone where introgression may be facilitated by environmental and landscape variables. Both landscape composition and bioclimatic variables indicated that maize and soybean cropland are the main factors responsible for high levels of introgression in agricultural landscapes. The impact of multiple H. armigera incursions is reflected in the structured and inbred pattern of genetic diversity. CONCLUSIONS: Our data showed that the landscape composition and bioclimatic variables influence the introgression rate between H. armigera and H. zea in agricultural areas. Continuous monitoring of the hybridization process in the field is necessary, since agricultural expansion, climatic fluctuations, changing composition of crop species and varieties, and dynamic planting seasons are some factors in South America that could cause a sudden alteration in the introgression rate between Helicoverpa species. Introgression between invasive and native pests can dramatically impact the evolution of host ranges and resistance management.


Assuntos
Adaptação Fisiológica/genética , Introgressão Genética , Lepidópteros/genética , Lepidópteros/fisiologia , Aclimatação , Animais , Ecossistema , Espécies Introduzidas
2.
Heredity (Edinb) ; 120(1): 25-37, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29234172

RESUMO

Human-mediated changes in landscapes can facilitate niche expansion and accelerate the adaptation of insect species. The interaction between the evolutionary history of the sugarcane borer, Diatraea saccharalis Fabricius, and historical and modern agricultural activity in Brazil shaped its spatial genetic structure, facilitating ecological divergence and incipient host shifting. Based on microsatellite data, STRUCTURE analyses identified two (K = 2) and three (K = 3) significant genetic clusters that corresponded to: (a) a strong signal of spatial genetic structure and, (b) a cryptic signal of host differentiation. We inferred that K = 2 reflects the footprint of agricultural activity, such as expansion of crop production (sugarcane and maize), unintentional dispersion of pests, and management practices. In contrast, K = 3 indicated incipient host differentiation between larvae collected from sugarcane or maize. Our estimates of population size changes indicated that a historical bottleneck was associated with a reduction of sugarcane production ≈200 years ago. However, a more recent population expansion was detected (>1950s), associated with agricultural expansion of large crop production into previously unfarmed land. Partial Mantel tests supported our hypothesis of incipient host adaptation, and identified isolation-by-environment (e.g., host plant) in São Paulo and Minas Gerais states, where sugarcane has been traditionally produced in Brazil. The impact of agricultural production on D. saccharalis may continue, as the current population structure may hinder the efficacy of refuge plants in delaying insect resistance evolution to Bt toxin.


Assuntos
Agricultura/métodos , Ecossistema , Mariposas/fisiologia , Saccharum/parasitologia , Agricultura/tendências , Animais , Brasil , Fluxo Gênico , Genótipo , Geografia , Interações Hospedeiro-Parasita , Humanos , Larva/genética , Larva/fisiologia , Repetições de Microssatélites/genética , Mariposas/classificação , Mariposas/genética , Filogenia , Dinâmica Populacional , Saccharum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Zea mays/parasitologia
3.
BMC Genomics ; 18(1): 472, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28645245

RESUMO

BACKGROUND: Genetic resistance of soybean [Glycine max (L.) Merr] against Aphis glycines provides effective management of this invasive pest, though the underlying molecular mechanisms are largely unknown. This study aimed to investigate genome-wide changes in gene expressions of soybean near-isogenic lines (NILs) either with the Rag5 allele for resistance or the rag5 allele for susceptibility to the aphid following infestation with soybean aphid biotype 2. RESULTS: The resistant (R)-NIL responded more rapidly to aphid infestation than the susceptible (S)-NIL, with differential expressions of 2496 genes during first 12 h of infestation (hai), compared to the aphid-free control. Although the majority of the differentially expressed genes (DEGs) in the R-NIL also responded to aphid infestation in S-NIL, overall the response time was longer and/or the magnitude of change was smaller in the S-NIL. In addition, 915 DEGs in R-NIL continued to be regulated at all time points (0, 6, 12, and 48 hai), while only 20 DEGs did so in S-NIL. Enriched gene ontology of the 2496 DEGs involved in plant defense responses including primary metabolite catalysis, oxidative stress reduction, and phytohormone-related signaling. By comparing R- vs. S-NIL, a total of 556 DEGs were identified. Of the 13 genes annotated in a 120-kb window of the Rag5 locus, two genes (Glyma.13 g190200 and Glyma.13 g190600) were differentially expressed (upregulated in S- or R-NIL), and another gene (Glyma.13 g190500) was induced up to 4-fold in the R-NIL at 6 and 12 h following aphid infestation. CONCLUSIONS: This study strengthens our understanding of the defense dynamics in compatible and incompatible interactions of soybean and soybean aphid biotype 2. Several DEGs (e.g., Glyma.13 g190200, Glyma.13 g190500, and Glyma.13 g190600) near the Rag5 locus are strong candidate genes for further investigations.


Assuntos
Alelos , Afídeos/fisiologia , Perfilação da Expressão Gênica , Glycine max/genética , Glycine max/fisiologia , Animais , Cromossomos de Plantas/genética , Loci Gênicos/genética , RNA Mensageiro/genética
4.
Insect Mol Biol ; 24(4): 422-31, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25845267

RESUMO

Vertically transmitted bacterial symbionts are common in arthropods. Aphids undergo an obligate symbiosis with Buchnera aphidicola, which provides essential amino acids to its host and contributes directly to nymph growth and reproduction. We previously found that newly adult Aphis glycines feeding on soybean infected with the beetle-transmitted Bean pod mottle virus (BPMV) had significantly reduced fecundity. We hypothesized that the reduced fecundity was attributable to detrimental impacts of the virus on the aphid microbiome, namely Buchnera. To test this, mRNA sequencing and quantitative real-time PCR were used to assay Buchnera transcript abundance and titre in A. glycines feeding on Soybean mosaic virus-infected, BPMV-infected, and healthy soybean for up to 14 days. Our results indicated that Buchnera density was lower and ultimately suppressed in aphids feeding on virus-infected soybean. While the decreased Buchnera titre may be associated with reduced aphid fecundity, additional mechanisms are probably involved. The present report begins to describe how interactions among insects, plants, and plant pathogens influence endosymbiont population dynamics.


Assuntos
Afídeos/microbiologia , Buchnera/virologia , Comovirus/fisiologia , Glycine max/virologia , Vírus do Mosaico , Animais , Buchnera/genética , Fertilidade , Genes Bacterianos , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , Dinâmica Populacional , Glycine max/parasitologia , Simbiose , Transcriptoma
5.
Theor Appl Genet ; 128(5): 827-38, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25690715

RESUMO

KEY MESSAGE: A major novel QTL was identified in a recombinant inbred line population derived from a cross of 'Wyandot' × PI 567301B for Fusarium graminearum, a seed and seedling pathogen of soybean. Fusarium graminearum is now recognized as a primary pathogen of soybean, causing root, seed rot and seedling damping-off in North America. In a preliminary screen, 'Wyandot' and PI 567301B were identified with medium and high levels of partial resistance to F. graminearum, respectively. The objective of this study was to characterise resistance towards F. graminearum using 184 recombinant inbred lines (RILs) derived from a cross of 'Wyandot' × PI 567301B. The parents and the RILs of the mapping population were evaluated for resistance towards F. graminearum using the rolled towel assay in a randomized incomplete block design. A genetic map was constructed from 2545 SNP markers and 2 SSR markers by composite interval mapping. One major and one minor QTL were identified on chromosomes 8 and 6, respectively, which explained 38.5 and 8.1 % of the phenotypic variance. The major QTL on chromosome 8 was mapped to a 300 kb size genomic region of the Williams 82 sequence. Annotation of this region indicates that there are 39 genes including the Rhg4 locus for soybean cyst nematode (SCN) resistance. Based on previous screens, PI 567301B is susceptible to SCN. Fine mapping of this locus will assist in cloning these candidate genes as well as identifying DNA markers flanking the QTL that can be used in marker-assisted breeding to develop cultivars with high levels of resistance to F. graminearum.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Glycine max/genética , Locos de Características Quantitativas , Cromossomos de Plantas , Fusarium , Ligação Genética , Marcadores Genéticos , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Glycine max/microbiologia
6.
BMC Genomics ; 15: 133, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24524215

RESUMO

BACKGROUND: Insects are the most important epidemiological factors for plant virus disease spread, with >75% of viruses being dependent on insects for transmission to new hosts. The black-faced leafhopper (Graminella nigrifrons Forbes) transmits two viruses that use different strategies for transmission: Maize chlorotic dwarf virus (MCDV) which is semi-persistently transmitted and Maize fine streak virus (MFSV) which is persistently and propagatively transmitted. To date, little is known regarding the molecular and cellular mechanisms in insects that regulate the process and efficiency of transmission, or how these mechanisms differ based on virus transmission strategy. RESULTS: RNA-Seq was used to examine transcript changes in leafhoppers after feeding on MCDV-infected, MFSV-infected and healthy maize for 4 h and 7 d. After sequencing cDNA libraries constructed from whole individuals using Illumina next generation sequencing, the Rnnotator pipeline in Galaxy was used to reassemble the G. nigrifrons transcriptome. Using differential expression analyses, we identified significant changes in transcript abundance in G. nigrifrons. In particular, transcripts implicated in the innate immune response and energy production were more highly expressed in insects fed on virus-infected maize. Leafhoppers fed on MFSV-infected maize also showed an induction of transcripts involved in hemocoel and cell-membrane linked immune responses within four hours of feeding. Patterns of transcript expression were validated for a subset of transcripts by quantitative real-time reverse transcription polymerase chain reaction using RNA samples collected from insects fed on healthy or virus-infected maize for between a 4 h and seven week period. CONCLUSIONS: We expected, and found, changes in transcript expression in G. nigrifrons feeding of maize infected with a virus (MFSV) that also infects the leafhopper, including induction of immune responses in the hemocoel and at the cell membrane. The significant induction of the innate immune system in G. nigrifrons fed on a foregut-borne virus (MCDV) that does not infect leafhoppers was less expected. The changes in transcript accumulation that occur independent of the mode of pathogen transmission could be key for identifying insect factors that disrupt vector-mediated plant virus transmission.


Assuntos
Hemípteros/genética , Hemípteros/virologia , Vírus do Listrado do Milho/fisiologia , Transcriptoma , Waikavirus/fisiologia , Zea mays/virologia , Animais , Metabolismo Energético/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Imunidade Inata/genética , Insetos Vetores/genética , Fatores de Tempo , Regulação para Cima
7.
Genome ; 56(6): 345-50, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23957674

RESUMO

Following its recent invasion of North America, the soybean aphid (Aphis glycines Matsumura) has become the number one insect pest of soybean (Glycine max L. Merr.) in the north central states of the USA. A few studies have been conducted on the population genetic structure and genetic diversity of the soybean aphid and the source of its invasion in North America. Molecular markers, such as simple sequence repeats (SSRs) are very useful in the evaluation of population structure and genetic diversity. We used 18 SSR markers to assess the genetic diversity of soybean aphid collections from the USA, South Korea, and Japan. The aphids were collected from two sites in the USA (Indiana and South Dakota), two sites in South Korea (Yeonggwang district and Cheonan city), and one site in Japan (Utsunomiya). The SSR markers were highly effective in differentiating among aphid collections from different countries. The level of differentiation within each population and among populations from the same country was limited, even in the case of the USA where the two collection sites were more than 1200 km apart.


Assuntos
Afídeos/genética , Variação Genética , Animais , Genética Populacional , Indiana , Japão , Repetições de Microssatélites , Polimorfismo Genético , Análise de Componente Principal , República da Coreia , South Dakota , Glycine max , Estados Unidos
8.
Proc Natl Acad Sci U S A ; 107(21): 9724-9, 2010 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-20457907

RESUMO

Speciation with gene flow is expected to generate a heterogeneous pattern of genomic differentiation. The few genes under or physically linked to loci experiencing strong disruptive selection can diverge, whereas gene flow will homogenize the remainder of the genome, resulting in isolated "genomic islands of speciation." We conducted an experimental test of this hypothesis in Rhagoletis pomonella, a model for sympatric ecological speciation. Contrary to expectations, we found widespread divergence throughout the Rhagoletis genome, with the majority of loci displaying host differences, latitudinal clines, associations with adult eclosion time, and within-generation responses to selection in a manipulative overwintering experiment. The latter two results, coupled with linkage disequilibrium analyses, provide experimental evidence that divergence was driven by selection on numerous independent genomic regions rather than by genome-wide genetic drift. "Continents" of multiple differentiated loci, rather than isolated islands of divergence, may characterize even the early stages of speciation. Our results also illustrate how these continents can exhibit variable topography, depending on selection strength, availability of preexisting genetic variation, linkage relationships, and genomic features that reduce recombination. For example, the divergence observed throughout the Rhagoletis genome was clearly accentuated in some regions, such as those harboring chromosomal inversions. These results highlight how the individual genes driving speciation can be embedded within an actively diverging genome.


Assuntos
Evolução Molecular , Genoma de Inseto , Tephritidae/genética , Animais , Cromossomos , Ligação Genética , Variação Genética , Repetições de Microssatélites , Seleção Genética
9.
J Econ Entomol ; 116(4): 1391-1397, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37300369

RESUMO

Spotted-wing Drosophila, Drosophila suzukii, is an economically important pest of small fruits worldwide. Currently, the timing of management strategies relies on detection of adult flies captured in baited monitoring traps; however, identifying D. suzukii in trap catch based on morphology can be challenging for growers. DNA-based diagnostic methods such as loop-mediated isothermal amplification (LAMP) have the potential to improve D. suzukii detection. This study evaluated a LAMP assay as a diagnostic tool to discriminate between D. suzukii and closely related drosophilid species found commonly in monitoring traps in the Midwestern United States. Targeting the mitochondrial cytochrome oxidase I (COI) gene, we found the LAMP assay accurately detected D. suzukii with as little as 0.1 ng/µl of DNA at 63 °C for 50 min. Under these optimal incubation conditions, D. suzukii could be discriminated from D. affinis and D. simulans consistently, when specimens collected from liquid monitoring traps were tested independently. Compared to other DNA-based diagnostic tools for D. suzukii, LAMP offers unique benefits: DNA extraction is not required, testing occurs at one temperature in less than 1 h, and positive results are visible as a colorimetric change from pink to yellow. The LAMP assay for D. suzukii can reduce reliance on morphological identification, enhance the adoption of monitoring tools, and improve accuracy of detection. Further optimization can be conducted to evaluate the accuracy and sensitivity of results when a mixture of DNA from both D. suzukii and congener flies are tested in a single LAMP reaction.


Assuntos
Drosophila , Controle de Insetos , Estados Unidos , Animais , Meio-Oeste dos Estados Unidos , Frutas
10.
Sci Rep ; 13(1): 8081, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202428

RESUMO

Transgenic corn, Zea mays (L.), expressing insecticidal toxins such as Cry1Fa, from Bacillus thuringiensis (Bt corn) targeting Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) resulted in over 20 years of management success. The first case of practical field-evolved resistance by O. nubilalis to a Bt corn toxin, Cry1Fa, was discovered in Nova Scotia, Canada, in 2018. Laboratory-derived Cry1Fa-resistance by O. nubilalis was linked to a genome region encoding the ATP Binding Cassette subfamily C2 (ABCC2) gene; however, the involvement of ABCC2 and specific mutations in the gene leading to resistance remain unknown. Using a classical candidate gene approach, we report on O. nubilalis ABCC2 gene mutations linked to laboratory-derived and field-evolved Cry1Fa-resistance. Using these mutations, a DNA-based genotyping assay was developed to test for the presence of the Cry1Fa-resistance alleles in O. nubilalis strains collected in Canada. Screening data provide strong evidence that field-evolved Cry1Fa-resistance in O. nubilalis maps to the ABCC2 gene and demonstrates the utility of this assay for detecting the Cry1Fa resistance allele in O. nubilalis. This study is the first to describe mutations linked to Bt resistance in O. nubilalis and provides a DNA-based detection method that can be used for monitoring.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Humanos , Zea mays/genética , Zea mays/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Mariposas/genética , Mariposas/metabolismo , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Nova Escócia , Mutação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Plantas Geneticamente Modificadas/genética , Resistência a Inseticidas/genética
11.
Theor Appl Genet ; 124(1): 13-22, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21912856

RESUMO

The soybean aphid (Aphis glycines Matsumura) is the most damaging insect pest of soybean [Glycine max (L.) Merr.] in North America. New soybean aphid biotypes have been evolving quickly and at least three confirmed biotypes have been reported in USA. These biotypes are capable of defeating most known aphid resistant soybean genes indicating the need for identification of new genes. Plant Introduction (PI) 567301B was earlier identified to have antixenosis resistance against biotype 1 and 2 of the soybean aphid. Two hundred and three F(7:9) recombinant inbred lines (RILs) developed from a cross of soybean aphid susceptible cultivar Wyandot and resistant PI 567301B were used for mapping aphid resistance genes using the quantitative trait loci (QTL) mapping approach. A subset of 94 RILs and 516 polymorphic SNP makers were used to construct a genome-wide molecular linkage map. Two candidate QTL regions for aphid resistance were identified on this linkage map. Fine mapping of the QTL regions was conducted with SSR markers using all 203 RILs. A major gene on chromosome 13 was mapped near the previously identified Rag2 gene. However, an earlier study revealed that the detached leaves of PI 567301B had no resistance against the soybean aphids while the detached leaves of PI 243540 (source of Rag2) maintained aphid resistance. These results and the earlier finding that PI 243540 showed antibiosis resistance and PI 567301B showed antixenosis type resistance, indicating that the aphid resistances in the two PIs are not controlled by the same gene. Thus, we have mapped a new gene near the Rag2 locus for soybean aphid resistance that should be useful in breeding for new aphid-resistant soybean cultivars. Molecular markers closely linked to this gene are available for marker-assisted breeding. Also, the minor locus found on chromosome 8 represents the first reported soybean aphid-resistant locus on this chromosome.


Assuntos
Afídeos/fisiologia , Glycine max/genética , Estresse Fisiológico/genética , Animais , Mapeamento Cromossômico , Ligação Genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
12.
Theor Appl Genet ; 125(6): 1159-68, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22692446

RESUMO

Powdery mildew (PMD) of soybean [Glycine max (L.) Merr.] is caused by the fungus Microsphaera diffusa. Severe infection of PMD on susceptible varieties often causes premature defoliation and chlorosis of the leaves, which can result in considerable yield losses under favorable environmental conditions for disease development in the field. A total of 334 F(7)-derived recombinant inbred lines (RILs) from a cross of a PMD susceptible soybean cultivar Wyandot and PMD-resistant PI 567301B were used for genetic mapping of PMD resistance in PI 567301B and for development of molecular markers tightly linked to the gene. The result of the PMD screening for each line in the field was in agreement with that in the greenhouse test. The genetic map containing the PMD resistance gene was constructed in a 3.3 cM interval flanked by two simple sequence repeat (SSR) markers on chromosome 16. The PMD resistance gene was mapped at the same location with SSR marker BARCSOYSSR_16_1291, indicating that there was no recombination between the 334 RILs and this marker. In addition, a single nucleotide polymorphism (SNP) marker developed by high-resolution melting curve analysis and a cleaved amplified polymorphic sequence (CAPS) marker with Rsa1 recognition site were used for the genetic mapping. These two markers were also mapped to the same genomic location with the PMD resistance gene. We validated three tightly linked markers to the PMD resistance gene using 38 BC(6)F(2) lines and corresponding BC(6)F(2:3) families. The three marker genotypes of the backcross lines predicted the observed PMD phenotypes of the lines with complete accuracy. We have mapped a putatively novel single dominant PMD resistance gene in PI 567301B and developed three new molecular markers closely linked to the gene. Molecular markers developed from this study may be used for high-throughput marker-assisted breeding for PMD resistance with the gene from PI 567301B.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genes de Plantas , Glycine max/genética , Imunidade Vegetal , Sequência de Aminoácidos , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/patogenicidade , Cruzamentos Genéticos , DNA de Plantas/genética , Resistência à Doença , Ligação Genética , Marcadores Genéticos , Repetições Minissatélites , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Glycine max/imunologia , Glycine max/microbiologia
13.
Genome ; 54(5): 360-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21529140

RESUMO

Simple sequence repeats (SSRs) or microsatellites are very useful molecular markers, owing to their locus-specific codominant and multiallelic nature, high abundance in the genome, and high rates of transferability across species. The soybean aphid (Aphis glycines Matsumura) has become the most damaging insect pest of soybean (Glycine max (L.) Merr.) in North America, since it was first found in the Midwest of the United States in 2000. Biotypes of the soybean aphid capable of colonizing newly developed aphid-resistant soybean cultivars have been recently discovered. Genetic resources, including molecular markers, to study soybean aphids are severely lacking. Recently developed next generation sequencing platforms offer opportunities for high-throughput and inexpensive genome sequencing and rapid marker development. The objectives of this study were (i) to develop and characterize genomic SSR markers from soybean aphid genomic sequences generated by next generation sequencing technology and (ii) to evaluate the utility of the SSRs for genetic diversity or relationship analyses. In total 128 SSR primer pairs were designed from sequences generated by Illumina GAII from a reduced representation library of A. glycines. Nearly 94% (120) of the primer pairs amplified SSR alleles of expected size and 24 SSR loci were polymorphic among three aphid samples from three populations. The polymorphic SSRs were successfully used to differentiate among 24 soybean aphids from Ohio and South Dakota. Sequencing of PCR products of two SSR markers from four aphid samples revealed that the allelic polymorphism was due to variation in the SSR repeats among the aphids. These markers should be particularly useful for genetic differentiation among aphids collected from soybean fields at different localities and regions. These SSR markers provide the soybean aphid research community with the first set of PCR-based codominant markers developed from the genomic sequences of A. glycines.


Assuntos
Afídeos/genética , Marcadores Genéticos/genética , Genoma de Inseto/genética , Sequenciamento de Nucleotídeos em Larga Escala , Alelos , Animais , Sequência de Bases , Análise por Conglomerados , Variação Genética , Genótipo , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Ohio , Polimorfismo Genético , Alinhamento de Sequência , South Dakota
14.
J Econ Entomol ; 114(3): 1362-1372, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33885759

RESUMO

Stink bugs represent an increasing risk to soybean production in the Midwest region of the United States. The current sampling protocol for stink bugs in this region is tailored for population density estimation and thus is more relevant to research purposes. A practical decision-making framework with more efficient sampling effort for management of herbivorous stink bugs is needed. Therefore, a binomial sequential sampling plan was developed for herbivorous stink bugs in the Midwest region. A total of 146 soybean fields were sampled across 11 states using sweep nets in 2016, 2017, and 2018. The binomial sequential sampling plans were developed using combinations of five tally thresholds at two proportion infested action thresholds to identify those that provided the best sampling outcomes. Final assessment of the operating characteristic curves for each plan indicated that a tally threshold of 3 stink bugs per 25 sweeps, and proportion infested action thresholds of 0.75 and 0.95 corresponding to the action thresholds of 5 and 10 stink bugs per 25 sweeps, provided the optimal balance between highest probability of correct decisions (≥ 99%) and lowest probability of incorrect decisions (≤ 1%). In addition, the average sample size for both plans (18 and 12 sets of 25 sweeps, respectively) was lower than that for the other proposed plans. The binomial sequential sampling plan can reduce the number of sample units required to achieve a management decision, which is important because it can potentially reduce risk/cost of management for stink bugs in soybean in this region.


Assuntos
Heterópteros , Animais , Herbivoria , Densidade Demográfica , Glycine max , Estados Unidos
15.
J Econ Entomol ; 103(3): 949-57, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20568642

RESUMO

The soybean aphid, Aphis glycines Matsumura, is a pest of cultivated soybean, Glycine max (L.) Merr., in North America. Recent developments in host plant resistance studies have identified at least four soybean aphid resistance genes (Rag1-4) and two soybean aphid biotypes (biotype 1 and 2), defined by differential survivability on resistant soybean. Detached soybean leaves were tested as a more rapid and practical assay to assess host plant resistance and virulence. Two susceptible lines ('Wyandot' and 'Williams 82') and two resistant lines (PI 243540 and PI 567301B) were examined. Various life history characteristics were compared among aphids on whole plants and detached leaves. Results indicated that resistance to soybean aphid was lost using detached leaves of PI 567301B but retained with PI 243540. To test for aphid virulence, net fecundities were compared among biotype 1 and biotype 2 after rearing on detached leaves of the resistant 'Jackson' (to which biotype 2 is virulent). A significant difference was detected in net fecundities among biotypes on detached leaves of Jackson and used to predict growth rates and virulence from 30 field-collected individuals of unknown virulence. No field individuals matched biotype 2 predictions, but four individuals had higher net fecundities than biotype 2 predictions (13%) and could be considered moderately virulent. The results indicated that the retention of soybean aphid resistance in detached leaves is dependent on PI and resistant source, but if resistance is retained, detached leaves could be used to determine soybean aphid virulence.


Assuntos
Afídeos/fisiologia , Glycine max , Animais , Genótipo , Folhas de Planta , Glycine max/genética
16.
Insect Biochem Mol Biol ; 124: 103364, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32360957

RESUMO

Multiple biotypes of soybean aphid, Aphis glycines, occur in North America adapted for survival (virulence) on soybean, Glycine max, with one or more different resistance to A. glycines (Rag) traits. The degree of genome-wide variance between biotypes and the basis of virulence remains unknown, but the latter is hypothesized to involve secreted effector proteins. Between 167,249 and 217,750 single nucleotide polymorphisms (SNPs) were predicted from whole genome re-sequencing of A. glycines avirulent biotype 1 (B1) and virulent B2, B3 and B4 colony-derived iso-female lines when compared to the draft B1 genome assembly, Ag_bt1_v6.0. Differences in nucleotide diversity indices (π) estimated within 1000 bp sliding windows demonstrated that 226 of 353 (64.0%) regions most differentiated between B1 and ≥ 2 virulent biotypes, representing < 0.1% of the 308 Mb assembled genome size, are located on 15 unordered scaffolds. Furthermore, these 226 intervals were coincident and show a significant association with 326 of 508 SNPs with significant locus-by-locus FST estimates between biotype populations (r = 0.6271; F1,70 = 45.36, P < 0.001) and genes showing evidence of directions selection (πN/πS > 2.0; r = 0.6233; F1,70 = 50.20, P < 0.001). A putative secreted effector glycoprotein is encoded in proximity to genome intervals of low estimated π (putative selective sweep) within avirulent B1 compared to all three virulent biotypes. Additionally, SNPs are clustered in or in proximity to genes putatively involved in intracellular protein cargo transport and the regulation of secretion. Results of this study indicate that factors on a small number of scaffolds of the A. glycines genome may contribute to variance in virulence towards Rag traits in G. max.


Assuntos
Afídeos/genética , Glycine max/genética , Defesa das Plantas contra Herbivoria/genética , Virulência/genética , Animais , Afídeos/patogenicidade , Evolução Biológica , Genes de Plantas , Genoma de Inseto , Genômica/métodos , Herbivoria , Controle de Pragas , Plantas , Sequenciamento Completo do Genoma
17.
Environ Entomol ; 38(4): 1301-11, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19689913

RESUMO

The soybean aphid (Aphis glycines Matsumura) is an invasive pest of cultivated soybean (Glycine max L.) in North America. After the initial invasion in 2000, the aphid has quickly spread across most of the United States and Canada, suggesting large-scale dispersal and rapid adaptation to new environments. Using microsatellite markers from closely related species, we compared the genetic diversity and the amount of genetic differentiation within and among 2 South Korean and 10 North American populations. Overall allelic polymorphism was low, never exceeding four alleles per locus. However, differences in genetic diversity were seen among South Korean and North American populations in terms of heterozygote excesses and genotypic richness. Within North America, two populations (Michigan and Ontario), had lower genetic diversities and exhibited high genetic differentiation compared with the remaining eight populations. The earlier collection time of Michigan and Ontario samples explained the genetic differences better than geographic subdivisions. These data indicate a pattern of small colonizing populations on soybeans, followed by rapid clonal amplification and subsequent large-scale dispersal across North America.


Assuntos
Afídeos/genética , Variação Genética , Genética Populacional , Migração Animal , Animais , Genótipo , Great Lakes Region , Coreia (Geográfico) , Repetições de Microssatélites , Meio-Oeste dos Estados Unidos
18.
J Econ Entomol ; 102(3): 1389-92, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19610462

RESUMO

We tested the utility of 18 previously characterized Aphis spp. microsatellite loci for polymorphism and differentiation among populations of the soybean aphid, Aphis glycines. Loci were chosen from a closely related species (Aphis gossypii) and a more distantly related species (Aphis fabae). We found nine loci to be polymorphic among Korean and North American populations. Overall expected heterozygosity was moderate (average: 0.47; range: 0-1), although populations substantially differed in deviations from Hardy-Weinberg equilibrium. These loci will be valuable in characterizing population differentiation, migration and adaptation in an economically important pest of soybeans.


Assuntos
Afídeos/genética , Genética Populacional , Glycine max/parasitologia , Polimorfismo Genético , Animais , Primers do DNA/genética , Coreia (Geográfico) , Repetições de Microssatélites/genética , Técnicas de Amplificação de Ácido Nucleico , Especificidade da Espécie , Estados Unidos
19.
J Econ Entomol ; 112(2): 712-719, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30715412

RESUMO

Thiamethoxam, an insecticide used in soybean seed treatments, effectively suppresses soybean aphids (Aphis glycines) Matsumura (Hemiptera: Aphididae) for a short time after planting. However, exactly when and how quickly soybean aphid populations could increase is unknown. Likewise, we lack data on virulent soybean aphid biotypes (that can overcome soybean resistance) when fed on seed-treated soybean. Determining the survival of soybean aphids over time on insecticidal seed-treated soybean is critical for improving soybean aphid management and may provide insights to manage aphid virulence to aphid resistant-soybean. In greenhouse and field experiments, aphid-susceptible soybean plants (with and without an insecticidal seed treatment) were infested at 7, 14, 21, 28, 35, and 42 days after planting (DAP). We compared aphid survival among biotypes 1 (avirulent) and 4 (virulent) and insecticide treatment 72 h after infestation. We also measured thiamethoxam concentrations in plant tissue using liquid chromatography-tandem mass spectrometry. As expected, soybean aphid survival was significantly lower on seed-treated soybean up to 35 DAP for both biotypes, which correlates with the decrease of thiamethoxam in the plant over time. Moreover, we found no significant difference between avirulent and virulent biotype survivorship on insecticidal seed-treated soybean plants, although we did find significantly greater survival for the virulent biotype compared with the avirulent biotype on untreated soybean in the field. In conclusion, our study further characterized the relative short duration of seed treatment effectiveness on soybean aphid and showed that survivorship of virulent aphids on seed-treated soybean is similar to avirulent aphids.


Assuntos
Afídeos , Inseticidas , Animais , Sementes , Glycine max , Sobrevivência
20.
J Econ Entomol ; 112(4): 1722-1731, 2019 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-31038171

RESUMO

Stink bugs (Hemiptera: Pentatomidae) are an increasing threat to soybean (Fabales: Fabaceae) production in the North Central Region of the United States, which accounts for 80% of the country's total soybean production. Characterization of the stink bug community is essential for development of management programs for these pests. However, the composition of the stink bug community in the region is not well defined. This study aimed to address this gap with a 2-yr, 9-state survey. Specifically, we characterized the relative abundance, richness, and diversity of taxa in this community, and assessed phenological differences in abundance of herbivorous and predatory stink bugs. Overall, the stink bug community was dominated by Euschistus spp. (Hemiptera: Pentatomidae) and Chinavia hilaris (Say) (Hemiptera: Pentatomidae). Euschistus variolarius (Palisot de Beauvois) (Hemiptera: Pentatomidae), C. hilaris and Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) were more abundant in the northwestern, southeastern and eastern parts, respectively, of the North Central Region of the United States. Economically significant infestations of herbivorous species occurred in fields in southern parts of the region. Species richness differed across states, while diversity was the same across the region. Herbivorous and predatory species were more abundant during later soybean growth stages. Our results represent the first regional characterization of the stink bug community in soybean fields and will be fundamental for the development of state- and region-specific management programs for these pests in the North Central Region of the United States.


Assuntos
Glycine max , Heterópteros , Animais , Herbivoria , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa