Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(11): 112501, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36154392

RESUMO

The reduced transition probabilities for the 4_{1}^{+}→2_{1}^{+} and 2_{1}^{+}→0_{1}^{+} transitions in ^{92}Mo and ^{94}Ru and for the 4_{1}^{+}→2_{1}^{+} and 6_{1}^{+}→4_{1}^{+} transitions in ^{90}Zr have been determined in this experiment making use of a multinucleon transfer reaction. These results have been interpreted on the basis of realistic shell-model calculations in the f_{5/2}, p_{3/2}, p_{1/2}, and g_{9/2} proton valence space. Only the combination of extensive lifetime information and large scale shell-model calculations allowed the extent of the seniority conservation in the N=50 g_{9/2} orbital to be understood. The conclusion is that seniority is largely conserved in the first πg_{9/2} orbital.

2.
Phys Rev Lett ; 125(10): 102502, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32955302

RESUMO

The low-spin structure of the semimagic ^{64}Ni nucleus has been considerably expanded: combining four experiments, several 0^{+} and 2^{+} excited states were identified below 4.5 MeV, and their properties established. The Monte Carlo shell model accounts for the results and unveils an unexpectedly complex landscape of coexisting shapes: a prolate 0^{+} excitation is located at a surprisingly high energy (3463 keV), with a collective 2^{+} state 286 keV above it, the first such observation in Ni isotopes. The evolution in excitation energy of the prolate minimum across the neutron N=40 subshell gap highlights the impact of the monopole interaction and its variation in strength with N.

3.
Phys Rev Lett ; 121(3): 032502, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30085775

RESUMO

Energy differences between analogue states in the T=1/2 ^{23}Mg-^{23}Na mirror nuclei have been measured along the rotational yrast bands. This allows us to search for effects arising from isospin-symmetry-breaking interactions (ISB) and/or shape changes. Data are interpreted in the shell model framework following the method successfully applied to nuclei in the f_{7/2} shell. It is shown that the introduction of a schematic ISB interaction of the same type of that used in the f_{7/2} shell is needed to reproduce the data. An alternative novel description, applied here for the first time, relies on the use of an effective interaction deduced from a realistic charge-dependent chiral nucleon-nucleon potential. This analysis provides two important results: (i) The mirror energy differences give direct insight into the nuclear skin; (ii) the skin changes along the rotational bands are strongly correlated with the difference between the neutron and proton occupations of the s_{1/2} "halo" orbit.

4.
Phys Rev Lett ; 121(19): 192502, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30468583

RESUMO

Lifetime measurements of excited states of the light N=52 isotones ^{88}Kr, ^{86}Se, and ^{84}Ge have been performed, using the recoil distance Doppler shift method and VAMOS and AGATA spectrometers for particle identification and gamma spectroscopy, respectively. The reduced electric quadrupole transition probabilities B(E2;2^{+}→0^{+}) and B(E2;4^{+}→2^{+}) were obtained for the first time for the hard-to-reach ^{84}Ge. While the B(E2;2^{+}→0^{+}) values of ^{88}Kr, ^{86}Se saturate the maximum quadrupole collectivity offered by the natural valence (3s, 2d, 1g_{7/2}, 1h_{11/2}) space of an inert ^{78}Ni core, the value obtained for ^{84}Ge largely exceeds it, suggesting that shape coexistence phenomena, previously reported at N≲49, extend beyond N=50. The onset of collectivity at Z=32 is understood as due to a pseudo-SU(3) organization of the proton single-particle sequence reflecting a clear manifestation of pseudospin symmetry. It is realized that the latter provides actually reliable guidance for understanding the observed proton and neutron single particle structure in the whole medium-mass region, from Ni to Sn, pointing towards the important role of the isovector-vector ρ field in shell-structure evolution.

5.
Phys Rev Lett ; 121(19): 192501, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30468600

RESUMO

The lifetimes of the first excited 2^{+}, 4^{+}, and 6^{+} states in ^{98}Zr were measured with the recoil-distance Doppler shift method in an experiment performed at GANIL. Excited states in ^{98}Zr were populated using the fission reaction between a 6.2 MeV/u ^{238}U beam and a ^{9}Be target. The γ rays were detected with the EXOGAM array in correlation with the fission fragments identified by mass and atomic number in the VAMOS++ spectrometer. Our result shows a very small B(E2;2_{1}^{+}→0_{1}^{+}) value in ^{98}Zr, thereby confirming the very sudden onset of collectivity at N=60. The experimental results are compared to large-scale Monte Carlo shell model and beyond-mean-field calculations. The present results indicate the coexistence of two additional deformed shapes in this nucleus along with the spherical ground state.

6.
Phys Rev Lett ; 118(16): 162501, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28474951

RESUMO

Prompt γ-ray spectroscopy of the neutron-rich ^{96}Kr, produced in transfer- and fusion-induced fission reactions, has been performed using the combination of the Advanced Gamma Tracking Array and the VAMOS++ spectrometer. A second excited state, assigned to J^{π}=4^{+}, is observed for the first time, and a previously reported level energy of the first 2^{+} excited state is confirmed. The measured energy ratio R_{4/2}=E(4^{+})/E(2^{+})=2.12(1) indicates that this nucleus does not show a well-developed collectivity contrary to that seen in heavier N=60 isotones. This new measurement highlights an abrupt transition of the degree of collectivity as a function of the proton number at Z=36, of similar amplitude to that observed at N=60 at higher Z values. A possible reason for this abrupt transition could be related to the insufficient proton excitations in the g_{9/2}, d_{5/2}, and s_{1/2} orbitals to generate strong quadrupole correlations or to the coexistence of competing different shapes. An unexpected continuous decrease of R_{4/2} as a function of the neutron number up to N=60 is also evidenced. This measurement establishes the Kr isotopic chain as the low-Z boundary of the island of deformation for N=60 isotones. A comparison with available theoretical predictions using different beyond mean-field approaches shows that these models fail to reproduce the abrupt transitions at N=60 and Z=36.

7.
Phys Rev Lett ; 117(22): 222302, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27925748

RESUMO

The ^{54}Fe nucleus was populated from a ^{56}Fe beam impinging on a Be target with an energy of E/A=500 MeV. The internal decay via γ-ray emission of the 10^{+} metastable state was observed. As the structure of this isomeric state has to involve at least four unpaired nucleons, it cannot be populated in a simple two-neutron removal reaction from the ^{56}Fe ground state. The isomeric state was produced in the low-momentum (-energy) tail of the parallel momentum (energy) distribution of ^{54}Fe, suggesting that it was populated via the decay of the Δ^{0} resonance into a proton. This process allows the population of four-nucleon states, such as the observed isomer. Therefore, it is concluded that the observation of this 10^{+} metastable state in ^{54}Fe is a consequence of the quark structure of the nucleons.

8.
Phys Rev Lett ; 115(22): 222502, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26650299

RESUMO

The isospin mixing was deduced in the compound nucleus ^{80}Zr at an excitation energy of E^{*}=54 MeV from the γ decay of the giant dipole resonance. The reaction ^{40}Ca+^{40}Ca at E_{beam}=136 MeV was used to form the compound nucleus in the isospin I=0 channel, while the reaction ^{37}Cl+^{44}Ca at E_{beam}=95 MeV was used as the reference reaction. The γ rays were detected with the AGATA demonstrator array coupled with LaBr_{3}:Ce detectors. The temperature dependence of the isospin mixing was obtained and the zero-temperature value deduced. The isospin-symmetry-breaking correction δ_{C} used for the Fermi superallowed transitions was extracted and found to be consistent with ß-decay data.

9.
Phys Rev Lett ; 113(5): 052501, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25126912

RESUMO

An excitation function of one- and two-neutron transfer channels for the ^{60}Ni+^{116}Sn system has been measured with the magnetic spectrometer PRISMA in a wide energy range, from the Coulomb barrier to far below it. The experimental transfer probabilities are well reproduced, for the first time with heavy ions, in absolute values and in slope by microscopic calculations which incorporate nucleon-nucleon pairing correlations.

10.
Phys Rev Lett ; 113(18): 182501, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25396363

RESUMO

The reduced transition probability B(E2;0(+)→2(+)) has been measured for the neutron-rich nucleus (74)Ni in an intermediate energy Coulomb excitation experiment performed at the National Superconducting Cyclotron Laboratory at Michigan State University. The obtained B(E2;0(+)→2(+))=642(-226)(+216) e(2) fm(4) value defines a trend which is unexpectedly small if referred to (70)Ni and to a previous indirect determination of the transition strength in (74)Ni. This indicates a reduced polarization of the Z=28 core by the valence neutrons. Calculations in the pfgd model space reproduce well the experimental result indicating that the B(E2) strength predominantly corresponds to neutron excitations. The ratio of the neutron and proton multipole matrix elements supports such an interpretation.

11.
Phys Rev Lett ; 113(1): 012501, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-25032921

RESUMO

The properties of pygmy dipole states in 208Pb were investigated using the 208Pb(17O, 17O'γ) reaction at 340 MeV and measuring the γ decay with high resolution with the AGATA demonstrator array. Cross sections and angular distributions of the emitted γ rays and of the scattered particles were measured. The results are compared with (γ, γ') and (p, p') data. The data analysis with the distorted wave Born approximation approach gives a good description of the elastic scattering and of the inelastic excitation of the 2+ and 3- states. For the dipole transitions a form factor obtained by folding a microscopically calculated transition density was used for the first time. This has allowed us to extract the isoscalar component of the 1- excited states from 4 to 8 MeV.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa